The Structure of Atoms

97
4 4 The Structure The Structure of Atoms of Atoms

description

4. The Structure of Atoms. Chapter Outline. Subatomic Particles 次原子粒子 Fundamental Particles 基本粒子 The Discovery of Electrons 電子的發現 Canal Rays and Protons 陽極射線與質子 Rutherford and the Nuclear Atom 拉塞福與核型原子 Atomic Number 原子序 Neutrons 中子 Mass Number and Isotopes 質量數和同位素 - PowerPoint PPT Presentation

Transcript of The Structure of Atoms

Page 1: The Structure of Atoms

44 The Structure of The Structure of AtomsAtoms

2

Chapter OutlineChapter OutlineSubatomic ParticlesSubatomic Particles 次原子粒子次原子粒子

11 Fundamental ParticlesFundamental Particles 基本粒子基本粒子22 The Discovery of ElectronsThe Discovery of Electrons 電子的發現電子的發現33 Canal Rays and ProtonsCanal Rays and Protons 陽極射線與質子陽極射線與質子44 Rutherford and the Nuclear AtomRutherford and the Nuclear Atom 拉塞福與核型原子拉塞福與核型原子55 Atomic NumberAtomic Number 原子序原子序66 NeutronsNeutrons 中子中子77 Mass Number and IsotopesMass Number and Isotopes 質量數和同位素質量數和同位素88 Mass spectrometry and Isotopic AbundanceMass spectrometry and Isotopic Abundance 質譜儀和質譜儀和同位素豐量同位素豐量99 The Atomic Weight Scale and Atomic WeightsThe Atomic Weight Scale and Atomic Weights 化學原化學原子量單位和原子量子量單位和原子量1010 The Periodic Table Metals Nonmetals and MetalloidsThe Periodic Table Metals Nonmetals and Metalloids 周期表周期表 金屬金屬 非金屬和類金屬非金屬和類金屬

3

Chapter OutlineChapter OutlineThe Electronic Structures of AtomsThe Electronic Structures of Atoms 原子的電子構造原子的電子構造

11 Electromagnetic radiation11 Electromagnetic radiation 電磁輻射電磁輻射12 The Photoelectric Effect12 The Photoelectric Effect 光電效應光電效應13 Atomic Spectra and the Bohr Atom13 Atomic Spectra and the Bohr Atom 原子光譜和原子光譜和波耳原子模型波耳原子模型14 The Wave Nature of the Electron14 The Wave Nature of the Electron 電子具波的性質 電子具波的性質 15 The Quantum Mechanical Picture of the Atom15 The Quantum Mechanical Picture of the Atom 原子的量子力學架原子的量子力學架構構16 Quantum Numbers16 Quantum Numbers 量子數量子數17 Atomic Orbitals17 Atomic Orbitals 原子軌道原子軌道18 Electron Configurations18 Electron Configurations 電子組態電子組態19 The Periodic Table and Electron19 The Periodic Table and Electron ConfigurationsConfigurations 週期表與電子組週期表與電子組態態20 Paramagnetism and Diamagnetism20 Paramagnetism and Diamagnetism 順磁性及逆磁性順磁性及逆磁性

4

Fundamental ParticlesFundamental Particles 基本粒子基本粒子bullThree fundamental particles make up atoms The

following table lists these particles together with their masses and their charges

Particles Mass (amu) ChargeElectron 電子 (e-) 000054858 -1

Proton 質子 (p p+) 10073 +1Neutron 中子 (nn0) 10087 0

Table 4-1 Fundamental Particles of Matter

5

The Discovery of ElectronsThe Discovery of ElectronsbullHumphrey Davy in the early 1800rsquos passed electricity

through compounds and notedndashthat the compounds decomposed into elementsndashconcluded that compounds are held together by electrical

forces 電力 bullMichael Faraday in 1832-1833 realized that the amount of

reaction that occurs during electrolysis 電解 is proportional to the electrical current passed through the compounds

法拉第電學之父 戴維無機化學之父第一作個人的筆記第二持續的上課第三有讀書的同伴第四成立讀書會第五學習仔細觀察和精確的用字

6

The Discovery of ElectronsThe Discovery of ElectronsbullCathode Ray Tubes 陰極射線管 experiments

performed in the late 1800rsquos amp early 1900rsquos ndashConsist of two electrodes 電極 sealed in a glass

tube containing a gas at very low pressurendashWhen a voltage is applied to the cathodes a glow

discharge is emitted燈絲加熱陰極發射電子加速和聚焦後形成電子束陰性電子束會受到螢光屏的陽極吸引而正確投射

Collimator 準直儀把點光源發出的發散光或其他輻射變成平行光束的器件

7

The Discovery of ElectronsThe Discovery of ElectronsbullThese ldquoraysrdquo are emitted from cathode (- end) and

travel to anode (+ end)ndashCathode Rays must be negatively charged

bullJJ Thomson modified the cathode ray tube experiments in 1897 by adding two adjustable voltage electrodesndashStudied the amount that the cathode ray beam was

deflected by additional electric field

8

The Discovery of ElectronsThe Discovery of Electrons

陰極射線以直線行進

陰極射線具質量

9

The Discovery of ElectronsThe Discovery of ElectronsbullThomson used his modification to measure the charge

to mass ratio of electronsCharge to mass ratio 基本粒子的荷質比em = -175881 x 108 coulombg of e-

bullThomson named the cathode rays electronsbullThomson is considered to be the ldquodiscoverer of

electronsrdquobullTV sets and computer screens are cathode ray tubes

The coulomb (C) 庫侖 is the standard unit of quantity of electric charge It is defined as the quantity of electricity transported in one second by a current of one ampere

10

The Discovery of ElectronsThe Discovery of ElectronsbullRobert A Millikan won

the 1st American Nobel Prize in 1923 for his famous oil-drop experiment 油滴實驗bullIn 1909 Millikan

determined the charge and mass of the electron

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 2: The Structure of Atoms

2

Chapter OutlineChapter OutlineSubatomic ParticlesSubatomic Particles 次原子粒子次原子粒子

11 Fundamental ParticlesFundamental Particles 基本粒子基本粒子22 The Discovery of ElectronsThe Discovery of Electrons 電子的發現電子的發現33 Canal Rays and ProtonsCanal Rays and Protons 陽極射線與質子陽極射線與質子44 Rutherford and the Nuclear AtomRutherford and the Nuclear Atom 拉塞福與核型原子拉塞福與核型原子55 Atomic NumberAtomic Number 原子序原子序66 NeutronsNeutrons 中子中子77 Mass Number and IsotopesMass Number and Isotopes 質量數和同位素質量數和同位素88 Mass spectrometry and Isotopic AbundanceMass spectrometry and Isotopic Abundance 質譜儀和質譜儀和同位素豐量同位素豐量99 The Atomic Weight Scale and Atomic WeightsThe Atomic Weight Scale and Atomic Weights 化學原化學原子量單位和原子量子量單位和原子量1010 The Periodic Table Metals Nonmetals and MetalloidsThe Periodic Table Metals Nonmetals and Metalloids 周期表周期表 金屬金屬 非金屬和類金屬非金屬和類金屬

3

Chapter OutlineChapter OutlineThe Electronic Structures of AtomsThe Electronic Structures of Atoms 原子的電子構造原子的電子構造

11 Electromagnetic radiation11 Electromagnetic radiation 電磁輻射電磁輻射12 The Photoelectric Effect12 The Photoelectric Effect 光電效應光電效應13 Atomic Spectra and the Bohr Atom13 Atomic Spectra and the Bohr Atom 原子光譜和原子光譜和波耳原子模型波耳原子模型14 The Wave Nature of the Electron14 The Wave Nature of the Electron 電子具波的性質 電子具波的性質 15 The Quantum Mechanical Picture of the Atom15 The Quantum Mechanical Picture of the Atom 原子的量子力學架原子的量子力學架構構16 Quantum Numbers16 Quantum Numbers 量子數量子數17 Atomic Orbitals17 Atomic Orbitals 原子軌道原子軌道18 Electron Configurations18 Electron Configurations 電子組態電子組態19 The Periodic Table and Electron19 The Periodic Table and Electron ConfigurationsConfigurations 週期表與電子組週期表與電子組態態20 Paramagnetism and Diamagnetism20 Paramagnetism and Diamagnetism 順磁性及逆磁性順磁性及逆磁性

4

Fundamental ParticlesFundamental Particles 基本粒子基本粒子bullThree fundamental particles make up atoms The

following table lists these particles together with their masses and their charges

Particles Mass (amu) ChargeElectron 電子 (e-) 000054858 -1

Proton 質子 (p p+) 10073 +1Neutron 中子 (nn0) 10087 0

Table 4-1 Fundamental Particles of Matter

5

The Discovery of ElectronsThe Discovery of ElectronsbullHumphrey Davy in the early 1800rsquos passed electricity

through compounds and notedndashthat the compounds decomposed into elementsndashconcluded that compounds are held together by electrical

forces 電力 bullMichael Faraday in 1832-1833 realized that the amount of

reaction that occurs during electrolysis 電解 is proportional to the electrical current passed through the compounds

法拉第電學之父 戴維無機化學之父第一作個人的筆記第二持續的上課第三有讀書的同伴第四成立讀書會第五學習仔細觀察和精確的用字

6

The Discovery of ElectronsThe Discovery of ElectronsbullCathode Ray Tubes 陰極射線管 experiments

performed in the late 1800rsquos amp early 1900rsquos ndashConsist of two electrodes 電極 sealed in a glass

tube containing a gas at very low pressurendashWhen a voltage is applied to the cathodes a glow

discharge is emitted燈絲加熱陰極發射電子加速和聚焦後形成電子束陰性電子束會受到螢光屏的陽極吸引而正確投射

Collimator 準直儀把點光源發出的發散光或其他輻射變成平行光束的器件

7

The Discovery of ElectronsThe Discovery of ElectronsbullThese ldquoraysrdquo are emitted from cathode (- end) and

travel to anode (+ end)ndashCathode Rays must be negatively charged

bullJJ Thomson modified the cathode ray tube experiments in 1897 by adding two adjustable voltage electrodesndashStudied the amount that the cathode ray beam was

deflected by additional electric field

8

The Discovery of ElectronsThe Discovery of Electrons

陰極射線以直線行進

陰極射線具質量

9

The Discovery of ElectronsThe Discovery of ElectronsbullThomson used his modification to measure the charge

to mass ratio of electronsCharge to mass ratio 基本粒子的荷質比em = -175881 x 108 coulombg of e-

bullThomson named the cathode rays electronsbullThomson is considered to be the ldquodiscoverer of

electronsrdquobullTV sets and computer screens are cathode ray tubes

The coulomb (C) 庫侖 is the standard unit of quantity of electric charge It is defined as the quantity of electricity transported in one second by a current of one ampere

10

The Discovery of ElectronsThe Discovery of ElectronsbullRobert A Millikan won

the 1st American Nobel Prize in 1923 for his famous oil-drop experiment 油滴實驗bullIn 1909 Millikan

determined the charge and mass of the electron

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 3: The Structure of Atoms

3

Chapter OutlineChapter OutlineThe Electronic Structures of AtomsThe Electronic Structures of Atoms 原子的電子構造原子的電子構造

11 Electromagnetic radiation11 Electromagnetic radiation 電磁輻射電磁輻射12 The Photoelectric Effect12 The Photoelectric Effect 光電效應光電效應13 Atomic Spectra and the Bohr Atom13 Atomic Spectra and the Bohr Atom 原子光譜和原子光譜和波耳原子模型波耳原子模型14 The Wave Nature of the Electron14 The Wave Nature of the Electron 電子具波的性質 電子具波的性質 15 The Quantum Mechanical Picture of the Atom15 The Quantum Mechanical Picture of the Atom 原子的量子力學架原子的量子力學架構構16 Quantum Numbers16 Quantum Numbers 量子數量子數17 Atomic Orbitals17 Atomic Orbitals 原子軌道原子軌道18 Electron Configurations18 Electron Configurations 電子組態電子組態19 The Periodic Table and Electron19 The Periodic Table and Electron ConfigurationsConfigurations 週期表與電子組週期表與電子組態態20 Paramagnetism and Diamagnetism20 Paramagnetism and Diamagnetism 順磁性及逆磁性順磁性及逆磁性

4

Fundamental ParticlesFundamental Particles 基本粒子基本粒子bullThree fundamental particles make up atoms The

following table lists these particles together with their masses and their charges

Particles Mass (amu) ChargeElectron 電子 (e-) 000054858 -1

Proton 質子 (p p+) 10073 +1Neutron 中子 (nn0) 10087 0

Table 4-1 Fundamental Particles of Matter

5

The Discovery of ElectronsThe Discovery of ElectronsbullHumphrey Davy in the early 1800rsquos passed electricity

through compounds and notedndashthat the compounds decomposed into elementsndashconcluded that compounds are held together by electrical

forces 電力 bullMichael Faraday in 1832-1833 realized that the amount of

reaction that occurs during electrolysis 電解 is proportional to the electrical current passed through the compounds

法拉第電學之父 戴維無機化學之父第一作個人的筆記第二持續的上課第三有讀書的同伴第四成立讀書會第五學習仔細觀察和精確的用字

6

The Discovery of ElectronsThe Discovery of ElectronsbullCathode Ray Tubes 陰極射線管 experiments

performed in the late 1800rsquos amp early 1900rsquos ndashConsist of two electrodes 電極 sealed in a glass

tube containing a gas at very low pressurendashWhen a voltage is applied to the cathodes a glow

discharge is emitted燈絲加熱陰極發射電子加速和聚焦後形成電子束陰性電子束會受到螢光屏的陽極吸引而正確投射

Collimator 準直儀把點光源發出的發散光或其他輻射變成平行光束的器件

7

The Discovery of ElectronsThe Discovery of ElectronsbullThese ldquoraysrdquo are emitted from cathode (- end) and

travel to anode (+ end)ndashCathode Rays must be negatively charged

bullJJ Thomson modified the cathode ray tube experiments in 1897 by adding two adjustable voltage electrodesndashStudied the amount that the cathode ray beam was

deflected by additional electric field

8

The Discovery of ElectronsThe Discovery of Electrons

陰極射線以直線行進

陰極射線具質量

9

The Discovery of ElectronsThe Discovery of ElectronsbullThomson used his modification to measure the charge

to mass ratio of electronsCharge to mass ratio 基本粒子的荷質比em = -175881 x 108 coulombg of e-

bullThomson named the cathode rays electronsbullThomson is considered to be the ldquodiscoverer of

electronsrdquobullTV sets and computer screens are cathode ray tubes

The coulomb (C) 庫侖 is the standard unit of quantity of electric charge It is defined as the quantity of electricity transported in one second by a current of one ampere

10

The Discovery of ElectronsThe Discovery of ElectronsbullRobert A Millikan won

the 1st American Nobel Prize in 1923 for his famous oil-drop experiment 油滴實驗bullIn 1909 Millikan

determined the charge and mass of the electron

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 4: The Structure of Atoms

4

Fundamental ParticlesFundamental Particles 基本粒子基本粒子bullThree fundamental particles make up atoms The

following table lists these particles together with their masses and their charges

Particles Mass (amu) ChargeElectron 電子 (e-) 000054858 -1

Proton 質子 (p p+) 10073 +1Neutron 中子 (nn0) 10087 0

Table 4-1 Fundamental Particles of Matter

5

The Discovery of ElectronsThe Discovery of ElectronsbullHumphrey Davy in the early 1800rsquos passed electricity

through compounds and notedndashthat the compounds decomposed into elementsndashconcluded that compounds are held together by electrical

forces 電力 bullMichael Faraday in 1832-1833 realized that the amount of

reaction that occurs during electrolysis 電解 is proportional to the electrical current passed through the compounds

法拉第電學之父 戴維無機化學之父第一作個人的筆記第二持續的上課第三有讀書的同伴第四成立讀書會第五學習仔細觀察和精確的用字

6

The Discovery of ElectronsThe Discovery of ElectronsbullCathode Ray Tubes 陰極射線管 experiments

performed in the late 1800rsquos amp early 1900rsquos ndashConsist of two electrodes 電極 sealed in a glass

tube containing a gas at very low pressurendashWhen a voltage is applied to the cathodes a glow

discharge is emitted燈絲加熱陰極發射電子加速和聚焦後形成電子束陰性電子束會受到螢光屏的陽極吸引而正確投射

Collimator 準直儀把點光源發出的發散光或其他輻射變成平行光束的器件

7

The Discovery of ElectronsThe Discovery of ElectronsbullThese ldquoraysrdquo are emitted from cathode (- end) and

travel to anode (+ end)ndashCathode Rays must be negatively charged

bullJJ Thomson modified the cathode ray tube experiments in 1897 by adding two adjustable voltage electrodesndashStudied the amount that the cathode ray beam was

deflected by additional electric field

8

The Discovery of ElectronsThe Discovery of Electrons

陰極射線以直線行進

陰極射線具質量

9

The Discovery of ElectronsThe Discovery of ElectronsbullThomson used his modification to measure the charge

to mass ratio of electronsCharge to mass ratio 基本粒子的荷質比em = -175881 x 108 coulombg of e-

bullThomson named the cathode rays electronsbullThomson is considered to be the ldquodiscoverer of

electronsrdquobullTV sets and computer screens are cathode ray tubes

The coulomb (C) 庫侖 is the standard unit of quantity of electric charge It is defined as the quantity of electricity transported in one second by a current of one ampere

10

The Discovery of ElectronsThe Discovery of ElectronsbullRobert A Millikan won

the 1st American Nobel Prize in 1923 for his famous oil-drop experiment 油滴實驗bullIn 1909 Millikan

determined the charge and mass of the electron

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 5: The Structure of Atoms

5

The Discovery of ElectronsThe Discovery of ElectronsbullHumphrey Davy in the early 1800rsquos passed electricity

through compounds and notedndashthat the compounds decomposed into elementsndashconcluded that compounds are held together by electrical

forces 電力 bullMichael Faraday in 1832-1833 realized that the amount of

reaction that occurs during electrolysis 電解 is proportional to the electrical current passed through the compounds

法拉第電學之父 戴維無機化學之父第一作個人的筆記第二持續的上課第三有讀書的同伴第四成立讀書會第五學習仔細觀察和精確的用字

6

The Discovery of ElectronsThe Discovery of ElectronsbullCathode Ray Tubes 陰極射線管 experiments

performed in the late 1800rsquos amp early 1900rsquos ndashConsist of two electrodes 電極 sealed in a glass

tube containing a gas at very low pressurendashWhen a voltage is applied to the cathodes a glow

discharge is emitted燈絲加熱陰極發射電子加速和聚焦後形成電子束陰性電子束會受到螢光屏的陽極吸引而正確投射

Collimator 準直儀把點光源發出的發散光或其他輻射變成平行光束的器件

7

The Discovery of ElectronsThe Discovery of ElectronsbullThese ldquoraysrdquo are emitted from cathode (- end) and

travel to anode (+ end)ndashCathode Rays must be negatively charged

bullJJ Thomson modified the cathode ray tube experiments in 1897 by adding two adjustable voltage electrodesndashStudied the amount that the cathode ray beam was

deflected by additional electric field

8

The Discovery of ElectronsThe Discovery of Electrons

陰極射線以直線行進

陰極射線具質量

9

The Discovery of ElectronsThe Discovery of ElectronsbullThomson used his modification to measure the charge

to mass ratio of electronsCharge to mass ratio 基本粒子的荷質比em = -175881 x 108 coulombg of e-

bullThomson named the cathode rays electronsbullThomson is considered to be the ldquodiscoverer of

electronsrdquobullTV sets and computer screens are cathode ray tubes

The coulomb (C) 庫侖 is the standard unit of quantity of electric charge It is defined as the quantity of electricity transported in one second by a current of one ampere

10

The Discovery of ElectronsThe Discovery of ElectronsbullRobert A Millikan won

the 1st American Nobel Prize in 1923 for his famous oil-drop experiment 油滴實驗bullIn 1909 Millikan

determined the charge and mass of the electron

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 6: The Structure of Atoms

6

The Discovery of ElectronsThe Discovery of ElectronsbullCathode Ray Tubes 陰極射線管 experiments

performed in the late 1800rsquos amp early 1900rsquos ndashConsist of two electrodes 電極 sealed in a glass

tube containing a gas at very low pressurendashWhen a voltage is applied to the cathodes a glow

discharge is emitted燈絲加熱陰極發射電子加速和聚焦後形成電子束陰性電子束會受到螢光屏的陽極吸引而正確投射

Collimator 準直儀把點光源發出的發散光或其他輻射變成平行光束的器件

7

The Discovery of ElectronsThe Discovery of ElectronsbullThese ldquoraysrdquo are emitted from cathode (- end) and

travel to anode (+ end)ndashCathode Rays must be negatively charged

bullJJ Thomson modified the cathode ray tube experiments in 1897 by adding two adjustable voltage electrodesndashStudied the amount that the cathode ray beam was

deflected by additional electric field

8

The Discovery of ElectronsThe Discovery of Electrons

陰極射線以直線行進

陰極射線具質量

9

The Discovery of ElectronsThe Discovery of ElectronsbullThomson used his modification to measure the charge

to mass ratio of electronsCharge to mass ratio 基本粒子的荷質比em = -175881 x 108 coulombg of e-

bullThomson named the cathode rays electronsbullThomson is considered to be the ldquodiscoverer of

electronsrdquobullTV sets and computer screens are cathode ray tubes

The coulomb (C) 庫侖 is the standard unit of quantity of electric charge It is defined as the quantity of electricity transported in one second by a current of one ampere

10

The Discovery of ElectronsThe Discovery of ElectronsbullRobert A Millikan won

the 1st American Nobel Prize in 1923 for his famous oil-drop experiment 油滴實驗bullIn 1909 Millikan

determined the charge and mass of the electron

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 7: The Structure of Atoms

7

The Discovery of ElectronsThe Discovery of ElectronsbullThese ldquoraysrdquo are emitted from cathode (- end) and

travel to anode (+ end)ndashCathode Rays must be negatively charged

bullJJ Thomson modified the cathode ray tube experiments in 1897 by adding two adjustable voltage electrodesndashStudied the amount that the cathode ray beam was

deflected by additional electric field

8

The Discovery of ElectronsThe Discovery of Electrons

陰極射線以直線行進

陰極射線具質量

9

The Discovery of ElectronsThe Discovery of ElectronsbullThomson used his modification to measure the charge

to mass ratio of electronsCharge to mass ratio 基本粒子的荷質比em = -175881 x 108 coulombg of e-

bullThomson named the cathode rays electronsbullThomson is considered to be the ldquodiscoverer of

electronsrdquobullTV sets and computer screens are cathode ray tubes

The coulomb (C) 庫侖 is the standard unit of quantity of electric charge It is defined as the quantity of electricity transported in one second by a current of one ampere

10

The Discovery of ElectronsThe Discovery of ElectronsbullRobert A Millikan won

the 1st American Nobel Prize in 1923 for his famous oil-drop experiment 油滴實驗bullIn 1909 Millikan

determined the charge and mass of the electron

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 8: The Structure of Atoms

8

The Discovery of ElectronsThe Discovery of Electrons

陰極射線以直線行進

陰極射線具質量

9

The Discovery of ElectronsThe Discovery of ElectronsbullThomson used his modification to measure the charge

to mass ratio of electronsCharge to mass ratio 基本粒子的荷質比em = -175881 x 108 coulombg of e-

bullThomson named the cathode rays electronsbullThomson is considered to be the ldquodiscoverer of

electronsrdquobullTV sets and computer screens are cathode ray tubes

The coulomb (C) 庫侖 is the standard unit of quantity of electric charge It is defined as the quantity of electricity transported in one second by a current of one ampere

10

The Discovery of ElectronsThe Discovery of ElectronsbullRobert A Millikan won

the 1st American Nobel Prize in 1923 for his famous oil-drop experiment 油滴實驗bullIn 1909 Millikan

determined the charge and mass of the electron

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 9: The Structure of Atoms

9

The Discovery of ElectronsThe Discovery of ElectronsbullThomson used his modification to measure the charge

to mass ratio of electronsCharge to mass ratio 基本粒子的荷質比em = -175881 x 108 coulombg of e-

bullThomson named the cathode rays electronsbullThomson is considered to be the ldquodiscoverer of

electronsrdquobullTV sets and computer screens are cathode ray tubes

The coulomb (C) 庫侖 is the standard unit of quantity of electric charge It is defined as the quantity of electricity transported in one second by a current of one ampere

10

The Discovery of ElectronsThe Discovery of ElectronsbullRobert A Millikan won

the 1st American Nobel Prize in 1923 for his famous oil-drop experiment 油滴實驗bullIn 1909 Millikan

determined the charge and mass of the electron

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 10: The Structure of Atoms

10

The Discovery of ElectronsThe Discovery of ElectronsbullRobert A Millikan won

the 1st American Nobel Prize in 1923 for his famous oil-drop experiment 油滴實驗bullIn 1909 Millikan

determined the charge and mass of the electron

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 11: The Structure of Atoms

11

The Discovery of ElectronsThe Discovery of ElectronsbullMillikan determined that the charge on a single electron =

-160218 x 10-19 coulombbullUsing Thomsonrsquos charge to mass ratio we get that the mass

of one electron is 911 x 10-28 gndashem = -175881 x 108 coulombndash e = -160218 x 10-19 coulombndashThus m = 910940 x 10-28 g

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 12: The Structure of Atoms

12

Canal RaysCanal Rays 陽極射線陽極射線 and Protonsand Protons質子質子

陰極陽極

Atom cation++ e-

Canal rays particles have em ratios many smaller than those of electrons because of their much greater masses

bull Eugene Goldstein noted streams of positively charged particles in cathode rays in 1886

ndash Particles move in opposite direction of cathode rays ndash Called ldquoCanal Raysrdquo because they passed through holes (channels or

canals) drilled through the negative electrodebull Canal rays must be positive

ndashGoldstein postulated the existence of a positive fundamental particle called the ldquoprotonrdquo

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 13: The Structure of Atoms

13

RutherfordRutherford 拉塞福拉塞福 and the and the Nuclear Atom Nuclear Atom 核型原子核型原子

bullErnest Rutherford directed Hans Geiger 蓋革 and Ernst Marsdenrsquos 馬斯頓 experiment in 1910

- particle scattering from thin Au foils ndashGave us the basic picture of the atomrsquos structurendash散射粒子到金箔並且觀察到大角度的散射提出了原子有很小密度大且帶正電的核

Deflected particles

Undeflected α particles

ZnS fluorescent screen

Source of narrow beam of fast-moving a particle (positive charge)

How are these charge distributed

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 14: The Structure of Atoms

14

Rutherford and the Nuclear AtomRutherford and the Nuclear Atom

In 1912 Rutherford decoded the -particle scattering informationndashExplanation involved a

nuclear atom with electrons surrounding the nucleus

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 15: The Structure of Atoms

15

Rutherford and the Nuclear AtomRutherford and the Nuclear AtomRutherfordrsquos major conclusions from the -particle

scattering experiment1 The atom is mostly empty space2 It contains a very small dense center called the

nucleus3 Nearly all of the atomrsquos mass is in the nucleus4 The nuclear diameter is 110000 to 1100000

times less than atomrsquos radius

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 16: The Structure of Atoms

16

Rutherford and the Nuclear AtomRutherford and the Nuclear AtombullBecause the atomrsquos mass is contained in such a small

volumendashThe nuclear density is 1015gmLndashThis is equivalent to 372 x 109 tonsin3ndashDensity inside the nucleus is almost the same as a

neutron starrsquos density

Rutherford Model of the atom Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 17: The Structure of Atoms

17

Atomic NumberAtomic Number 原子序原子序bullThe atomic number is equal to the number of

protons in the nucleusndashSometimes given the symbol ZndashOn the periodic chart Z is the uppermost number in

each elementrsquos boxbullIn 1913 HGJ Moseley realized that the atomic

number determines the elementndashThe elements differ from each other by the number of

protons in the nucleus ndashThe number of electrons in a neutral atom is also

equal to the atomic number

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 18: The Structure of Atoms

18

Neutrons Neutrons 中子中子bullJames Chadwick 查兌克 in 1932 analyzed the

results of -particle scattering on thin be filmsbullChadwick recognized existence of massive neutral

particles which he called neutronsndashChadwick discovered the neutron

Atoms consist of very small very dense positively charged nuclei surrounded by clouds of electrons at relatively large distances from the nuclei All nuclei contain protons nuclei of all atoms except the common form of hydrogen also contain neutrons

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 19: The Structure of Atoms

19

Mass NumberMass Number 質量數質量數 and and IsotopesIsotopes 同位數同位數

bull Can be shortened to this symbolismE for exampleA

ZC12

6Ca40

20Au197

79

N14 Cu63 Ag107

bullMass number is given the symbol AbullA is the sum of the number of protons and neutrons

ndashAtomic number Z = proton number N = neutron numberndashMass number A = Z + N

bullA common symbolism used to show mass and proton numbers is

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 20: The Structure of Atoms

20

Mass Number and IsotopesMass Number and Isotopes

the most common hydrogen

a radioactive hydrogen isotope

bullIsotopes are atoms of the same element but with different neutron numbersndashIsotopes have different masses and A values but are

the same elementbullDisplay very similar chemical propertiesbullOne example of an isotopic series is the hydrogen

isotopes

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 21: The Structure of Atoms

21

Mass Number and IsotopesMass Number and IsotopesbullThe stable oxygen isotopes provide another examplebull16O is the most abundant stable O isotope

ndashHow many protons and neutrons are in 16O

bull 17O is the least abundant stable O isotope How many protons and neutrons are in 17O

bull 18O is the second most abundant stable O isotope How many protons and neutrons in 18O

8 protons and 8 neutrons

8 protons and 9 neutrons

8 protons and 10 neutrons

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 22: The Structure of Atoms

22

Example 4-1 Determination of Atomic MakeupDetermine the number of protons neutrons and electrons in each of the following species Are the members within each pair isotopes(a) (b)

(a) Atomic number=17 17protonsnucleus mass number =35 18 neutrons Because no charge is indicated 17 electrons

These are isotopes of the same element(b)

These are isotopes of the same element

Exercise 18 20

Cl and 3517

Cl3717

Cu and 6329

Cu6529

Cl 3517

Cl 17 protons 20 neutrons and 17 electrons 3717

Cu 29 protons 34 neutrons and 29 electrons6329

Cu 29 protons 36 neutrons and 29 electrons6529

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 23: The Structure of Atoms

23

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

bullFrancis Aston devised the first mass spectrometer 英國物理學家因研製質譜儀並用以準確測量原子及分子質量以及發現大量核素獲 1922 年諾貝爾化學獎bull質譜儀 (mass spectrometry MS) 是以熱電子撞擊氣體分子使產生碎片及離子再經磁場分離依據質荷比之測量來決定分子質量的技術bullThere are four factors which determine a particlersquos

path in the mass spectrometer1 accelerating voltage ndash 電場強度2 magnetic field strength ndash 磁場強度3 masses of particles ndash 物質質量4 charge on particles ndash 物質電荷

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 24: The Structure of Atoms

24

Mass SpectrometryMass Spectrometry 質譜儀質譜儀 andandIsotopic AbundancesIsotopic Abundances

基本原理 (1) 將不同型態的樣品〈氣液固相〉導入質譜儀(2) 樣品分子在離子源內游離 (ionization) 成氣相之離子形式(3) 依質荷比 (mz mass to charge ratio) 不同分離各個樣品離子(4) 各樣品離子到達偵測器被偵測出來(5) 在資料處理系統中離子偵測訊號被轉換成可讀或圖譜方式呈現

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 25: The Structure of Atoms

25

Mass Spectrometry andMass Spectrometry andIsotopic AbundancesIsotopic Abundances

bullMass spectrum of Ne+ ions shown belowndashHow scientists determine the masses and abundances

of the isotopes of an element組成比例

Isotope abundances the relative amounts of the isotopes同位素豐量 (isotopic abundance) 為某種同位素在此元素之各種同位素中所占的原子百分比

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 26: The Structure of Atoms

26

A modern mass spectrum

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 27: The Structure of Atoms

27

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 28: The Structure of Atoms

28

The Atomic Weight ScaleThe Atomic Weight Scale 原子量單位原子量單位and Atomic Weightsand Atomic Weights 原子量原子量

bullIf we define the mass of 12C as exactly 12 atomic mass units (amu) 原子質量單位 then it is possible to establish a relative weight scale for atomsndash1 amu = (112) mass of 12C by definitionndashWhat is the mass of an amu in grams

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 29: The Structure of Atoms

29

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullThe atomic number Z =proton number in the nucleus = electrons (in a neutral atom)bullThe Mass Number A = proton number +neutron numberbullThe atomic weight of an element is the weighted average

of the masses of its stable isotopes

EAZ

Atomic number Z = proton number N = neutron numberMass number A = Z + N

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 30: The Structure of Atoms

30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-2 Naturally occurring Cu consists of 2 isotopes It is 691 63Cu with a mass of 629 amu and 309 65Cu which has a mass of 649 amu Calculate the atomic weight of Cu to one decimal place

Atomic weight= (0691)x(629 amu) + (0309)x(649amu)

=635 amu for copper

63Cu isotope 65Cu isotope

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 31: The Structure of Atoms

31

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-3 Naturally occurring chromium consists of four isotopes It is 431 24

50Cr mass = 49946 amu 8376 24

52Cr mass = 51941 amu 955 2453Cr mass = 52941 amu

and 238 2454Cr mass = 53939 amu Calculate the atomic

weight of chromiumAtomic weight= (06431x49946 amu)+(08376x51941 amu)

+(00955x52941 amu)+(00238x53939 amu)

=51998 amu for chromium

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 32: The Structure of Atoms

32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

bullExample 4-4 The atomic weight of boron is 10811 amu The masses of the two naturally occurring isotopes 5

10B and 5

11B are 10013 and 11009 amu respectively Calculate the fraction and percentage of each isotope

Let the 10B fraction is x11811amu = (x x 10013 amu)+((1-x ) x 11009amu) =(10013 x +11009-11009 x)amu(11811-11009) amu=(10013-11009) x amu x =0199

5

abundance of 10B is 191 abundance of 11B = 100-191 = 809

5

5

Textbook example 4-2 and 4-3 p132-133

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 33: The Structure of Atoms

33

Example 4-2 Calculation of Atomic WeightThree isotopes of magnesium occur in nature Their abundances an masses determined by mass spectrometry are listed in the following table Use this information to calculate the atomic weight of magnesium

Isotope Abundance Mass (amu) 24Mg 7899 2398504 25Mg 1000 2498584 26Mg 1101 2598259

Atomic weight = 07899 x (2398504amu) + 01000 x (2498584 amu) + 01101 x (2598259 amu)

=18946amu+24986amu+28607amu= 2430 amu

Exercise 28 30

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 34: The Structure of Atoms

34

Example 4-3 Calculation of Iostope AbundanceThe atomic weight of gallium is 6972 amu The masses of the naturally occurring isotopes are 699257 amu for 69Ga and 709249 amu for 71Ga Calculate the percent abundance of each isotope

Let x =fraction of 69Ga Then (1-x)= fraction of 71Ga x x (699257amu) + (1-x) x (709249amu) = 6972amu

689257x + 709249-709249 x =6972 -1992x = -120

x = 06 x = fraction of 69Ga 6000 69Ga (1-x )= 04=fraction of 71Ga 4000 71Ga

Exercise 32

The Atomic Weight Scale and The Atomic Weight Scale and Atomic WeightsAtomic Weights

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 35: The Structure of Atoms

The Periodic Table Metals The Periodic Table Metals Nonmetals and MetalloidsNonmetals and Metalloids

bull1869 - Mendeleev amp MeyerndashDiscovered the periodic law

bullThe properties of the elements are periodic functions of their atomic numbers

35

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 36: The Structure of Atoms

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids周期表周期表 金屬非金屬類金屬金屬非金屬類金屬

bullGroups or families ( 族 )ndashVertical group of elements on periodic tablendashSimilar chemical and physical properties

36

鉻 鉬 鎢

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 37: The Structure of Atoms

37

Group ( 族 )

鋰鈉鉀銣銫

鈹鎂鈣鍶鋇鐳鍅

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 38: The Structure of Atoms

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullPeriod ( 週期 ) ndashHorizontal group of elements on periodic tablendashTransition from metals to nonmetals ndashIncreasing atomic number 原子序

38

鋰 鈹 硼 碳

氮 氧 氟 氖

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 39: The Structure of Atoms

39

鹼金屬鹼土金屬

過渡元素

金屬非金屬類金屬 鈍氣

鑭系元素錒系元素

鹵素

Most activeNaturally occur

Most active nonmetal

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 40: The Structure of Atoms

40

Table 4-6 Some physical properties of nonmetalsbull Poor electrical conductivity (except carbon)bull Good heat insulators (except carbon)bull No metallic lusterbull Solid liquid or gasesbull Brittle in solid statebull Nonductile

Table 4-6 Some physical properties of metalsbull High electrical conductivity that decreases with

increasing temperature 導電性 ( 溫度升高導電性降低 )

bull High Thermal conductivity 導熱性bull Metallic gray or silver luster 具金屬光澤bull Almost all are solids bull Malleable (can be hammered into sheets) 可塑性bull Ductile (can be drawn into wires) 具展延性

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 41: The Structure of Atoms

41

Table 4-7 Some chemical properties of metalsbull Outer shells contain few electronsmdashthree or fewerbull Form cations by losing electrons (易失電子而帶正電 )bull Form ionic compounds with nonmetals與非金屬形成離子化合物bull Solid state characterized by metallic bonding 金屬鍵結Table 4-7 Some chemical properties of nonmetalsbull Outer shells contain four or more electronsbull Form anion by gating electrons (易得電子而帶負電 ) bull Form ionic compounds with metals and molecular

(covalent) other compounds with nonmetalsbull Covalently bonded molecules 共價分子 noble gases are

monatomic

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 42: The Structure of Atoms

42

Metallic character increases from top to bottom and decreases from left to right with respect to position in the periodic tableNonmetallic character decreases from top to bottom and increases from left to right with respect to position in the periodic table

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 43: The Structure of Atoms

Metalloid 類金屬ndashSome properties that are characteristic of both

metals and nonmetalsndashSome act as semiconductors半導體 such as silicon矽 germanium 鍺 antimony銻bullinsulators at lower temperaturebullBecome conductors at higher temperature

ndashAluminum is the least metallic of the metals and is sometimes classified as a metalloidbullIt is metallic in appearance and an excellent conductor

of electricity

43

The Periodic Table Metals Nonmetals and The Periodic Table Metals Nonmetals and MetalloidsMetalloids

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 44: The Structure of Atoms

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup IA metals (Alkali metals 鹼金屬 )ndashLi Na K Rb Cs Fr

bullOne example of a periodic trendndashThe reactions with water of Li Na amp K

44

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 45: The Structure of Atoms

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand MetalloidsbullGroup IIA metals

ndashalkaline earth metals 鹼土金屬bullBe Mg Ca Sr Ba Ra

45

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 46: The Structure of Atoms

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIIA nonmetalsndashHalogens 鹵素ndashF Cl Br I At

46

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 47: The Structure of Atoms

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup VIA nonmetalsndashO S Se Te

47

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 48: The Structure of Atoms

The Periodic Table Metals Nonmetals The Periodic Table Metals Nonmetals and Metalloidsand Metalloids

bullGroup 8A nonmetalsndashnoble inert or rare gasesndashHe Ne Ar Kr Xe Rn

48

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 49: The Structure of Atoms

49

Electromagnetic RadiationElectromagnetic Radiation電磁輻射電磁輻射bull以電磁波方式在自由空間或實物媒質中傳播的能量例如無線電波可見光和 γ 射線bullThe wavelengthwavelength 波長 of electromagnetic radiation has the symbol ndashWavelength is the distance from the top (crest) of one wave to

the top of the next wave bullMeasured in units of distance such as mcm Aring

ndash1 Aring = 1 x 10-10 m = 1 x 10-8 cmbullThe frequencyfrequency 頻率 of electromagnetic radiation has the symbol

ndashFrequency is the number of crests or troughs that pass a given point per secondbullMeasured in units of 1time - s-1

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 50: The Structure of Atoms

50

電磁輻射電磁輻射bull以具能量之光子形式以光速 (3 x 1010 cmsec)於空間中移動bull能量 ( 電子伏特 eV 表之 ) 與頻率成正比與波長呈反比bull高能量光子具長射程強穿透力 (遠離發射源仍具影響力 )bull依能量強弱分為游離輻射與非游離輻射

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 51: The Structure of Atoms

51

Electromagnetic RadiationElectromagnetic Radiation

Visible spectrum可見光譜

Energy increaseswavelength increases

波長 4000 7000 Aring

75x1014 4x1014頻率

For electromagnetic radiation the velocity is 300 x 108 ms= c =

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 52: The Structure of Atoms

52

Electromagnetic RadiationElectromagnetic RadiationbullExample 4-5 What is the frequency of green light of

wavelength 5200 Aringc =

= 5200 x 1x10-10 (m)=5200x10 -7m=

c

= 5200x10-7 m300x108ms = 577x1014 s-1

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 53: The Structure of Atoms

53

The Photoelectric EffectThe Photoelectric Effect光電效應光電效應bullLight can strike the surface of some metals causing

an electron to be ejected頻率夠高之光子與金屬原子中的電子碰撞可以將電子撞離原子

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 54: The Structure of Atoms

Atomic Spectra and the Bohr Atomic Spectra and the Bohr AtomAtom 原子光譜和原子光譜和波耳原子模型波耳原子模型

54

電子只能存在某些特殊的軌道上才是穩定的在這些軌道上不會放射出電磁波因此電子也不會損失能量 在這個假設下原子的激發光譜自然而然也是不連續的bullEnergy is quantized 能量可被量化bullEach orbit corresponds to a definite energy level

for the electron 電子軌道具有特定的能階bullWhen an electron is promoted form a lower

energy level to a higher one it absorbs a definite amount of energy 當電子從低能階移到高能階時 必吸收能量

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 55: The Structure of Atoms

55Fig 4-17

nuclear

The 4 radii are in the ratio1223242=14916

波耳倡議bull電子在特定的層殼內運動也就是在特定分隔的能階上運動並不會發出電磁輻射bull當電子由較高的能階躍遷 (掉落 ) 至較低能階時會發出電磁輻射bull而由較低的能階躍遷 ( 提昇 ) 至較高能階時則會吸收電磁幅射bull躍遷所發出或吸收的輻射能量必須等於電子在初始能階和最後能階兩者之間的能量差這也可說明為何原子只吸收某些波長的輻射

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 56: The Structure of Atoms

56

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

Basic Postulates of Quantum Theory1 Atoms and molecules can exist only in certain

energy states In each energy state the atom or molecule has a definite energy When an atom or molecule changes its energy state it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition) 原子或分子存在特定能階

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 57: The Structure of Atoms

57

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

2Atoms or molecules emit or absorb radiation (light) as they change their energies The frequency of the light emitted or absorbed is related to the energy change by a simple equation 當原子或分子改變能量時 必放出或吸收輻射能

hch E

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 58: The Structure of Atoms

58

The Quantum Mechanical The Quantum Mechanical Picture of the AtomPicture of the Atom

3 The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers 量子數 以數字描述原子或分子的能量狀態稱之為量子數ndash Quantum numbers are the solutions of the

Schrodinger Heisenberg amp Dirac equationsndash Four quantum numbers are necessary to describe

energy states of electrons in atoms 有 4 種量子數

EV

8b

equationdinger oSchr

2

2

2

2

2

2

2

2

zyxm

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 59: The Structure of Atoms

59

Quantum NumbersQuantum NumbersbullThe principal quantum number 主量子數 has the

symbol ndash nn = 1 2 3 4 ldquoshellsrdquo or main energy level 主能階n = K L M N The electronrsquos energy depends principally on n 原子軌域分為 n = 1 2 3 4 hellip等正整數主殼層( 早期科學家以 K L M N hellip等符號表示主殼層 ) 最大 n值為infin的正整數原子軌域主殼層 n值愈大能量愈高其電子在核外空間的主要活動範圍離原子核愈遠

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 60: The Structure of Atoms

60

Quantum NumbersQuantum NumbersbullThe angular momentum 角動量 quantum number or

orbital quantum number 軌道量子數 has the symbol

= 0 1 2 3 4 5 (n-1) = s p d f g h (n-1)

designates a sublevel (副殼層 ) tells us the shape of the orbitals 軌道的形狀bullThese orbitals are the volume around the atom that the

electrons occupy 90-95 of the timeThis is one of the places where Heisenbergrsquos Uncertainty

principle comes into play

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 61: The Structure of Atoms

61

n主殼層又分為個副殼層副殼層依序以 s p d f g hhellip等符號表示 =(n-1) = 0 1 2 3 hellip s p d f

n = 1 的主殼層只有一種副殼層以 1s 表示又稱為 1s 原子軌域簡稱 1s 軌域 n = 2 的主殼層則有二種副殼層以 2s 及 2p 表示又稱為 2s 及 2p 軌域 n = 3主殼層則有 3s 3p 及 3d 三種副殼層軌域 n = 4主殼層有 4s 4p 4d 4f 四種副殼層軌域 n = 5主殼層有 5s 5p 5d 5f 及 5g 五種副殼層軌域其他主殼層以此類推

原子軌域的副殼層原子軌域的副殼層

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 62: The Structure of Atoms

62

Quantum NumbersQuantum NumbersbullOrbital within a given subshell differ in their orientation 方向 in

space but not in their energiesbullThe symbol for the magnetic quantum number 磁量子數 is m

m = - (- + 1) (- +2) 0 ( -2) ( -1) bull If = 0 (or an s orbital) then m = 0

ndashNotice that there is only 1 value of mThis implies that there is one s orbital per n value n 1

bullIf = 1 (or a p orbital) then m = -1 0 +1ndashThere are 3 values of m

Thus there are three p orbitals per n value n 2

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 63: The Structure of Atoms

63

Quantum NumbersQuantum NumbersbullIf = 2 (or a d orbital) then m = -2-10+1+2

ndashThere are 5 values of mThus there are five d orbitals per n value n 3

bullIf = 3 (or an f orbital) then m = -3-2-10+1+2 +3 ndashThere are 7 values of m

Thus there are seven f orbitals per n value n 4bullTheoretically this series continues on to ghi etc

orbitalsndashAtoms that have been discovered or made up to

this point in time only have electrons in s p d or f orbitals in their ground state configurations

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 64: The Structure of Atoms

64

Quantum NumbersQuantum NumbersbullThe last quantum number is the spin quantum number自旋磁量子數 msbullThe spin quantum number only has two possible values

ms = +12 or -12bullThis quantum number tells us the spin and orientation

of the magnetic field of the electrons 電子的磁場的旋轉方向 bullWolfgang Pauli in 1925 discovered the Exclusion

Principle 包利不相容原理 ndashNo two electrons in an atom can have the same set of 4

quantum numbers

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 65: The Structure of Atoms

65

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 66: The Structure of Atoms

66

Atomic OrbitalsAtomic OrbitalsbullAtomic orbitals are regions of space where the

probability of finding an electron about an atom is highestbulls orbital properties

ndashThere is one s orbital per n level = 0 1 value of m

bulls orbitals are spherically symmetric

s 副殼層只有一個軌域稱為 s 軌域其電子在空間出現機率為球形即與原子核等距離的位置 ( 球面 ) 電子出現的機率相同

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 67: The Structure of Atoms

67

Atomic OrbitalsAtomic Orbitalsbullp orbital properties

ndashThe first p orbitals appear in the n = 2 shellbullp orbitals are peanut or dumbbell shaped volumes啞鈴狀

ndashThey are directed along the axes of a Cartesian coordinate system

bullThere are 3 p orbitals per n level ndashThe three orbitals are named px py pzndashThey have an = 1ndashm =-1 0 +1 3 values of m

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 68: The Structure of Atoms

68

Atomic OrbitalsAtomic Orbitalsbullp orbitals are peanut or dumbbell shaped

p副殼層有三個能量相等的軌域其電子在空間出現機率為啞鈴形這三個 p 軌域具方位性稱為 px py 及 pz 原子軌域

px 原子軌域的電子在空間中出現機率最大的位置在 x軸座標上而 py 及 pz 電子最大出現機率分別在 y 及 z軸座標上

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 69: The Structure of Atoms

69

Atomic OrbitalsAtomic Orbitalsbulld orbital properties

ndashThe first d orbitals appear in the n = 3 shellbullThe five d orbitals have two different shapes

ndash4 are clover leaf shapedndash1 is peanut shaped with a doughnut around itndashThe orbitals lie directly on the Cartesian axes or are

rotated 45o from the axesbullThere are 5 d orbitals per n level

ndashThe five orbitals are named ndash dxy dyz dxzdx2-y2 dz2

ndashThey have an = 2ndashm = -2-10+1+2 5 values of m

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 70: The Structure of Atoms

70

Atomic OrbitalsAtomic Orbitalsbulld orbital shapes

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 71: The Structure of Atoms

71

Atomic OrbitalsAtomic Orbitalsbullf orbital properties

ndashThe first f orbitals appear in the n = 4 shellbullThe f orbitals have the most complex shapesbullThere are seven f orbitals per n level

ndashThe f orbitals have complicated namesndashThey have an = 3ndashm = -3-2-10+1+2 +3 7 values of mndashThe f orbitals have important effects in the

lanthanide and actinide elements

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 72: The Structure of Atoms

72

Atomic OrbitalsAtomic Orbitalsbullf orbital shapes

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 73: The Structure of Atoms

bullIn any atom all orbitals with the same principal quantum number n are similar in size 具相同主量子數 n 其原子大小相當bullIn an atom larger values

of n correspond to larger orbital size (n值越大 軌域越大 )bullEach orbital with a given n

value becomes smaller as nuclear charge increase (在相同 n值時 當核電荷增加時 軌域越小 )

73

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 74: The Structure of Atoms

74

Atomic OrbitalsAtomic OrbitalsbullSpin quantum number自旋磁量子數 effects

ndashEvery orbital can hold up to two electronsbullConsequence of the Pauli Exclusion Principle

ndashThe two electrons are designated as having one spin up and one spin down

bullSpin describes the direction of the electronrsquos magnetic fields

Electron spin The attraction due to their opposite magnetic fields helps to overcome the repulsion of their like charges Two electrons occupy the same region

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 75: The Structure of Atoms

75

ParamagnetismParamagnetism 順磁性順磁性 and and DiamagnetismDiamagnetism 反磁性反磁性

bullUnpaired electrons have their spins aligned or ndashThis increases the magnetic field of the atomndashAtoms with unpaired electrons are called

paramagnetic ndashParamagnetic atoms are attracted to a magnet

bullPaired electrons have their spins unaligned ndashPaired electrons have no net magnetic fieldndashAtoms with paired electrons are called diamagneticdiamagnetic ndashDiamagnetic atoms are repelled by a magnet

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 76: The Structure of Atoms

Shell n

Number of subshells Per shell

n

Number of Atomic Orbitals

n2

Maximun NumberOf Electrons

2n2

1 1 1(1s) 22 2 4 (2s 2px2py 2pz) 83 3 9 (3s three 3prsquos five 3drsquos ) 184 4 16 325 5 25 50

76

Paramagnetism and Paramagnetism and DiamagnetismDiamagnetism

bull Because two electrons in the same orbital must be paired it is possible to calculate the number of orbitals and the number of electrons in each n shell

bull The number of orbitals per n level is given by n2bull The maximum number of electrons per n level is 2n2

ndash The value is 2n2 because of the two paired electrons

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 77: The Structure of Atoms

電子組態電子組態Electron ConfigurationsElectron Configurations

bull原子內電子於原子軌域的分布情形稱為電子組態bull原子最低能量的電子組態稱為基態電子組態

(ground state electron configuration) bull原子之基態電子組態需遵循

ndash構築原則 (aufbau principle) ndash包立不相容原則 (Pauli exclusion principle)ndash洪德定則 (Hundrsquos rule)

77

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 78: The Structure of Atoms

構築原理構築原理 (aufbau principle)(aufbau principle)bullEach atom is ldquobuilt uprdquo by

1 Adding the appropriate numbers of protons and neutrons in the nucleus as specified by the atomic number and the mass number

2 Adding the necessary number of electrons into orbitals in the way that gives the lowest total energy for the atom

bull在不考慮原子核內中子數目元素原子的建構方式為依序在原子核內加入一個質子同時在核外加入一個電子形成bull原子內質子與電子數相同為電中性原子核內質子數稱為原子序原子序不同元素性質不同bull電子先填入低能量軌域然後依序往高能量軌域填入

78

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 79: The Structure of Atoms

79Fig 5-29 The usual order of filling of the orbitals of an atom

bullThe largest energy gap is between 1s and 2s orbitalsbull the energies of orbitals are generally closer together at higher energiesbullThe gap between np and (n+1)s is fairly high

2p 3s 3p 4sbullThe gap between (n-1)d and ns is quite small

3d 4sbullThe gap between (n-2)f and ns is even smaller

4f 6s

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 80: The Structure of Atoms

包立不相容原則包立不相容原則(Pauli Exclusion Principle)(Pauli Exclusion Principle)

bullNo two electrons in an atom may have identical sets of four quantum numberbull每一個原子軌域最多只能容納兩個電子但這兩個電子的自轉方向需相反稱為包立不相容原則bull包立不相容原則比較簡單的定義為每一個原子軌域最多只能容納兩個自轉方向相反的電子bull填入兩個電子的軌域淨電子自轉磁量為 0 此為自然法則

80

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 81: The Structure of Atoms

81

主量子數

軌道量子數

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 82: The Structure of Atoms

82

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 83: The Structure of Atoms

洪德定則洪德定則 (Hundrsquos Rule)(Hundrsquos Rule)bullElectron occupy all the orbitals of a given subshell

singly before pairing begins These unpaired electron have parallel spinsbull電子填入能量相同的副層軌域時電子先分別填入不同軌域當副層軌域各填入一個電子後 電子再配對填入副層軌域至所有副層軌域各填入兩個電子如碳及氧原子的原子軌域電子組態bull

6C 1s22s22px12py

1 ( 或 1s22s22px12pz

1 hellip )bull

8O 1s22s22px22py

12pz1 ( 或 1s22s22px

12py22pz

1 hellip )

83

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 84: The Structure of Atoms

84

價電子

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 85: The Structure of Atoms

85

3

Atomic number

45

678910

Row 2 Elements of atomic number 3 through 10 occupy the second period in the periodic table

bullHundrsquos rule tells us that the electrons will fill the p orbitals by placing electrons in each orbital singly and with same spin until half-filled Then the electrons will pair to finish the p orbitals

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 86: The Structure of Atoms

86

Row 3 the next element beyond neon is sodium Here we begin to add electrons of the 3rd shell Element 11 through 18 occupy the third period in the periodic table

11

Atomic number

1213

14

15

1617

18

10

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 87: The Structure of Atoms

87

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

bull There are two ways to remember the correct filling order for electrons in atoms1 You can use this mnemonic

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 88: The Structure of Atoms

88

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

2 Or you can use the periodic chart

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 89: The Structure of Atoms

89

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 90: The Structure of Atoms

90

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 91: The Structure of Atoms

91

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

orbitals filled completely and filled-half withassociatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Ar 18

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 92: The Structure of Atoms

92

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 93: The Structure of Atoms

93

The Periodic Table and The Periodic Table and Electron ConfigurationsElectron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar Ar Ga

ionConfigurat 4p 4s 3d

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 94: The Structure of Atoms

94

Example 4-8 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a nitrogen atom

Nitrogen 7 electrons 1s 2s 2p Na

Electron n l ml ms e- Configuration

121 0 0 +12

1s21 0 0 -12

342 0 0 +12

2s22 0 0 -12

567

2 1 -1 +12 or -12 1p1x

2 1 0 +12 or -12 2p1y or 2p3

2 1 +1 +12 or -12 2p1z

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 95: The Structure of Atoms

95

Example 4-9 Electron Configurations and Quantum NumbersWrite an acceptable set of four quantum numbers for each electron in a chlorine atom Chlorine 17 electrons

1s 2s 2p 3s 3PNa

Electron n l ml ms e- Configuration

12 1 0 0 plusmn12 1s2

34 2 0 0 plusmn12 2s2

5-102 1 -1 plusmn12

2p62 1 0 plusmn122 1 +1 plusmn12

1112 3 0 0 plusmn12 3s2

13-173 1 -1 plusmn12

3p53 1 0 plusmn123 1 +1 +12 or -12

Exercise 104108

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 96: The Structure of Atoms

96

Example 4-10 Electron Configurations Use Table 5-5 to determine the electron configurations of (a) magnesium Mg (b) germanium Ge and (c) molybdenum Mo magnesium Mg 12 electrons last filled noble gas is neon

(atomic number 10) [Ne] 3s2

germanium Ge 32 electrons last filled noble gas is Argon(atomic number 18)

[Ar] 3d10 4s2 4p2 or [Ar] 4s2 3d10 4p2

molybdenum Mo 42 electrons last filled noble gas is krypton(atomic number 36)

[Kr] 5s1 4d5 or [kr] 4d5 5s1

Exercise 106

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97
Page 97: The Structure of Atoms

97

Example 4-11 Unpaired electronsDetermine the number of unpaired electrons in an atom of tellurium Te tellurium Te 52 electrons last filled noble gas is krypton

(atomic number 36) 5s 4d 5p Te [Kr] 5s2 4d10 5p4

two unpaired electrons Exercise 112 114

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97