The Results of Limiting MRU Updates In Multibeam Data Collection

5
The Results of Limiting MRU Updates In Multibeam Data by Pat Sanders, HYPACK, Inc. Abstract: Some Motion Reference Units (MRUs) can deliver heavepitchroll data at rates up to 100Hz. This paper investigates how limiting the update rate affects your survey results in high dynamic (offshore) hydrographic surveys. Background: During hydrographic surveys, hydrographers utilize heavepitchroll data from a motion reference unit in order to determine the orientation of the survey vessel as depth measurements are made. This information is of particular importance during multibeam surveys. MRUs have continued to increase their output data rates. It is becoming a common occurrence to receive multibeam data where the user has logged MRU data at rates of 50 to 100Hz. These faster data rates result in larger data files and increased overhead during the postprocessing of multibeam surveys. This paper attempts to determine a recommended update rate for MRU data for highdynamic (bouncing around offshore) hydrographic surveys. Methodology: For both the highdynamic and lowdynamic surveys, I started with a raw multibeam data file collected in HYPACK’s HYSWEEP SURVEY program that contained MRU updates at 50Hz. This file was collected of offshore on a very rough day. The MRU reported a maximum heave range of 3.4m and an average range of 2.0m with a heave period averaging 4 seconds. The equipment used for the survey were a POSMV for positions, heading and motion data and a Reson 8101 multibeam sonar. Data was collected and processed in HYPACK’s HYSWEEP module and TIN MODEL program. Figure 1 Heave Graph of 50Hz Data Set Roll and pitch measurements also reflect a very rough day on the water, with typical roll values showing a range of 12 degrees every 5 seconds and pitch is showing a range of 10 degrees every 5 seconds. In summary, this was a gutwrenching day where most surveyors would head for the harbor.

Transcript of The Results of Limiting MRU Updates In Multibeam Data Collection

Page 1: The Results of Limiting MRU Updates In Multibeam Data Collection

The  Results  of  Limiting  MRU  Updates  In  Multibeam  Data  by  Pat  Sanders,  HYPACK,  Inc.      Abstract:    Some  Motion  Reference  Units  (MRUs)  can  deliver  heave-­‐pitch-­‐roll  data  at  rates  up  to  100Hz.    This  paper  investigates  how  limiting  the  update  rate  affects  your  survey  results  in  high  dynamic  (offshore)  hydrographic  surveys.      Background:    During  hydrographic  surveys,  hydrographers  utilize  heave-­‐pitch-­‐roll  data  from  a  motion  reference  unit  in  order  to  determine  the  orientation  of  the  survey  vessel  as  depth  measurements  are  made.    This  information  is  of  particular  importance  during  multibeam  surveys.    MRUs  have  continued  to  increase  their  output  data  rates.    It  is  becoming  a  common  occurrence  to  receive  multibeam  data  where  the  user  has  logged  MRU  data  at  rates  of  50  to  100Hz.    These  faster  data  rates  result  in  larger  data  files  and  increased  overhead  during  the  post-­‐processing  of  multibeam  surveys.    This  paper  attempts  to  determine  a  recommended  update  rate  for  MRU  data  for  high-­‐dynamic  (bouncing  around  offshore)  hydrographic  surveys.      Methodology:    For  both  the  high-­‐dynamic  and  low-­‐dynamic  surveys,  I  started  with  a  raw  multibeam  data  file  collected  in  HYPACK’s  HYSWEEP  SURVEY  program  that  contained  MRU  updates  at  50Hz.    This  file  was  collected  of  offshore  on  a  very  rough  day.    The  MRU  reported  a  maximum  heave  range  of  3.4m  and  an  average  range  of  2.0m  with  a  heave  period  averaging  4  seconds.      The  equipment  used  for  the  survey  were  a  POSMV  for  positions,  heading  and  motion  data  and  a  Reson  8101  multibeam  sonar.    Data  was  collected  and  processed  in  HYPACK’s  HYSWEEP  module  and  TIN  MODEL  program.    

 Figure  1    Heave  Graph  of  50Hz  Data  Set  

Roll  and  pitch  measurements  also  reflect  a  very  rough  day  on  the  water,  with  typical  roll  values  showing  a  range  of  12  degrees  every  5  seconds  and  pitch  is  showing  a  range  of  10  degrees  every  5  seconds.    In  summary,  this  was  a  gut-­‐wrenching  day  where  most  surveyors  would  head  for  the  harbor.  

Page 2: The Results of Limiting MRU Updates In Multibeam Data Collection

 Figure  2    Roll  Graph  of  Original  50Hz  Data  Set  

A  utility  program  was  written  to  generate  additional  raw  multibeam  data  files  from  the  original  where  the  MRU  data  was  limited  to  every  2nd  (25Hz),  3rd  (17Hz),  4th  (12Hz),  5th  (10Hz)  and  10th  (5Hz)  MRU  record.    All  other  records  were  left  intact.      

 Figure  3    Heave  Data  from  the  5Hz  file  (dots)  plotted  on  top  of  the  50Hz  file  (red  line)  

The  above  graph  shows  the  heave  data  from  the  original  data  file  (red  line)  and  the  file  with  MRU  data  reduced  to  5Hz.    It  can  be  seen  that  interpolating  values  between  the  5Hz  updates  should  not  result  in  major  errors.    

Page 3: The Results of Limiting MRU Updates In Multibeam Data Collection

 Figure  4    MRU  Roll  Values  from  the  50Hz  file  (red  line)  and  the  5Hz  file  (black  dots)  

The  roll  and  pitch  graphs  were  very  similar.    By  straight-­‐line  interpolating  MRU  values  from  the  5Hz  values  there  may  exist  small  differences  in  the  resulting  roll  and  pitch  values  at  the  peaks  and  crests.  

 The  data  from  each  file  was  processed  in  HYPACK’s  MBMAX-­‐64  multibeam  editor.    Each  file  was  edited  using  the  same  tide  and  sound  velocity  corrections.    In  order  to  eliminate  possible  bias  from  manual  editing,  only  automated  filters  were  applied.    The  same  automated  filters  were  applied  to  each  data  set  and  the  resulting  files  were  saved  to  XYZ  files.    A  resulting  edited  file  is  shown  in  Figure  5.    The  area  surveyed  ranges  from  35m  to  50m  deep  and  had  large  areas  of  sand  swales  running  through  it.    The  resulting  XYZ  files  were  each  compared  to  the  original  50Hz  data  set  by  creating  surface  models  and  generating  the  difference  in  Z-­‐values  between  the  50Hz  data  and  the  MRU-­‐limited  data  at  a  0.5m  x  0.5m  grid.    HYPACK’s  TIN  MODEL  was  used  to  generate  the  difference  models  and  the  statistics,  using  it’s  TIN  vs.  TIN  capability.    The  results  were  then  analyzed  to  determine  how  close  the  reduced  MRU  data  sets  came  to  the  50Hz  original  data  set.  

   

Figure  5    TIN  MODEL  of  50Hz  Data  Set  

Page 4: The Results of Limiting MRU Updates In Multibeam Data Collection

Results:    High  Dynamic  Data    

Comparison   Mean   St.  Dev.   Z-­‐Max   Z-­‐Min  Max  Diff  

Min  Diff  

50Hz  vs.  25Hz   0.00   0.01   49.79   37.93   0.58   -­‐0.45  50Hz  vs  16  Hz   0.00   0.01   49.78   37.93   0.72   -­‐0.33  50Hz  vs  12Hz   0.00   0.01   49.78   37.93   0.43   -­‐0.58  50Hz  vs  10Hz   0.00   0.01   49.78   37.93   0.48   -­‐0.58  50Hz  vs  5Hz   0.00   0.02   49.78   37.93   0.73   -­‐0.58  50Hz  vs  1Hz   0.01   0.15   49.78   37.93   1.21   -­‐1.16    Reducing  the  rate  of  MRU  records  from  50Hz  down  to  10Hz  in  a  VERY  dynamic  sea  state  resulted  in  only  minor  differences  in  the  resulting  edited  data  sets.    The  mean  differences  when  comparing  the  50Hz  (original)  data  set  to  the  reduced  MRU  data  sets  was  0.00m.    What  was  somewhat  surprising  is  that  the  standard  deviations  between  the  resulting  edited  data  sets  for  the  comparisons  down  to  MRU  rates  of  10Hz  were  constant  at  1cm.    They  increased  to  2cm  when  comparing  the  original  data  set  to  the  5Hz  MRU  data  and  finally  started  to  take  off  when  we  compared  a  1Hz  MRU  data  set,  rising  to  15cm.    In  all  cases,  the  minimum  and  maximum  Z-­‐values  of  the  resulting  data  set  were  equal.    The  Maximum  and  Minimum  z-­‐value  differences  between  the  50Hz  and  10Hz  data  sets  were  48cm  (max  diff)  and  58cm  (min  diff).    These  differences  were  caused  by  a  few  isolated  points  which  were  not  removed  by  the  automated  filters  during  the  data  editing  that  would  most  certainly  have  been  removed  if  I  allowed  some  manual  review  and  editing  before  saving  the  edited  files.  

 Figure  6    Differences  Between  50Hz  and  10Hz  Edited  Data  

Page 5: The Results of Limiting MRU Updates In Multibeam Data Collection

It  was  my  expectation  that  the  differences  would  be  largest  on  the  outside  beams,  due  to  slight  differences  between  the  50Hz  and  interpolated  10Hz  data.    This  was  not  the  case,  as  illustrated  by  Figure  6.    The  differences  in  final  Z-­‐values  between  the  two  data  sets  were  extremely  small  in  most  areas  (+/-­‐  1cm)  with  occasional  random  spikes  of  2cm  to  10cm.    The  largest  differences  (+/-­‐  40  to  50cm)  were  isolated  points  which  would  have  been  eliminated  if  any  manual  editing/review  was  applied.      Conclusions:    

• More  does  not  always  equal  better.    In  the  test  data  set,  the  value  of  additional  MRU  data  rates  was  quickly  dimished.  

• Even  in  rough  sea  conditions,  MRU  data  at  a  rate  faster  than  16Hz  just  fills  your  hard  drive  and  does  not  have  a  substantial  effect  on  your  edited  results.    This  will  be  true  only  if  your  editing  software  interpolates  MRU-­‐values  for  the  transmit  and  receipt  times  of  each  ping.  

• For  those  of  you  who  have  a  beam-­‐steered  multibeam  system:      o Some  systems  rely  on  the  last  MRU  data  packet  received  in  order  to  steer  the  transmit  

beams  at  precise  angles.    Slower  MRU  data  rates  might  affect  their  precision  in  beam  steering  if  they  only  rely  on  the  last  MRU  packet  received  and  don’t  model  the  vessel  motion  to  determine  the  orientation  at  the  time  of  the  ping.  

o Check  with  your  manufacturer  to  see  if  a  reduced  MRU  data  rate  will  affect  your  system  results.  

• In  a  dynamic  sea,  you  are  much  better  off  using  post-­‐processed  heave  than  increasing  the  data  rate  of  your  real-­‐time  MRU.    The  graph  below  shows  the  difference  between  the  post-­‐processed  heave  (blue)  and  real  time  heave  (red).  

 

 Figure  7    Post  processed  versus  Real  Time  Heave  from  POSMV