The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early...

25
Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019522̶ 24原子核物理でつむぐrプロセス

Transcript of The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early...

Page 1: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Beyond r-process: The Cocoon emission in the

early macronova in GW170817

Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi

2019年5月22日 ̶24日 原子核物理でつむぐrプロセス

Page 2: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

ReviewFernandez Metzger 2016

This study Late ObservationsNumerical Relativity

Page 3: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Jet propagation in an expanding ejecta

• 1

HH+19 in prep

Page 4: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Motivation• Engine powered “Cocoon”:

What EM counterparts/signature to be expected?

Credit: Kasliwal+17

Page 5: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Tool I. Numerical Simulations

Velocity Density

β = β2r + β2

θ log10(ρ)

Page 6: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Tool II. Analytic Modeling

MNRAS 000, 1–3 (2018) Preprint 13 August 2018 Compiled using MNRAS LATEX style file v3.0

The propagation of relativistic jets in an expanding ejecta

Hamid Hamidani?, Kunihito Ioka, and Kenta Kiuchi

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Last updated 2018 August 30

ABSTRACT...

Key words: gamma-ray: burst – hydrodynamics – relativistic processes – shockwaves – ISM: jets and outflows – supernovae: general

1 INTRODUCTION

Gamma-Ray Bursts (GRBs) are ... ...The numerical simulations were carried-out using

CFCA X30. In total, this study consumed about ??? 000core-hours of computing time.

This paper is organized as follows: In § 2, we. In § 3, we. In § ??, we . Results are presented and discussed in § 4. Aconclusion is given at the end of this paper (§ 5).

2 NUMERICAL METHOD

We...

3 SETUP OF THE SIMULATIONS

3.1 Stellar model

...

3.2 Grid

4 RESULTS

4.1 ???

5 CONCLUSION

Using a 2D hydrodynamical relativistic code...

(i) aaaa(ii) bbbb

Considering the above results ...

? E-mail: [email protected]

ACKNOWLEDGEMENTS

We gratefully thank. This research was supported by theMEXT of Japan, for which we are gratefully thankful. Nu-merical computations were carried out on Cray XC30 atCenter for Computational Astrophysics, National Astro-nomical Observatory of Japan. This work has been partlysupported by Grants-in-Aid for Scientific Research (??????)from Japan Society for the Promotion of Science and Grant-in-Aid for Scientific Research on Innovative Areas (??????)from the MEXT in Japan.

APPENDIX A: THE ANALYTICAL MODEL

Here we prsent the analytical model for a relativistic jet,powered by the central engine, and expanding in a givenmedium (or ejecta). The shock jump conditions can be writ-ten as (refer to Bromberg et al. 2011; and, Ioka & Nakamura2017):

hj⇢jc2�2

j�2j + Pj = he⇢ec

2�e�2e + Pe (A1)

Both Pe and Pj can be neglected. Hence, we can writethe jet head velocity as it follows:

�h =�j � �e

1 + L̃�1/2+ �e ' L̃1/2 + �e (A2)

Where L̃ is the ratio of energy density between the jetand the ejecta.

L̃ =hj⇢j�

2j

he⇢e�2e' Lj

⌃j⇢ec3(A3)

⌃j is the jet cross section. Assuming ✓j as the jet open-ing angle, ⌃j = 4⇡✓2j r

2j . We assume that the jet opening

angle is roughly constant: ✓j ' ✓0.

A1 Case 1: Static ejecta

For a static medium (or ejecta) case, �e ' 0 and �j ' 1.Equation A2 can be simplified to the following:

c� 2018 The Authors

Gives: Jet head motion

Cocoon (E, M, <v>)

MNRAS 000, 1–3 (2018) Preprint 13 August 2018 Compiled using MNRAS LATEX style file v3.0

The propagation of relativistic jets in an expanding ejecta

Hamid Hamidani?, Kunihito Ioka, and Kenta Kiuchi

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Last updated 2018 August 30

ABSTRACT...

Key words: gamma-ray: burst – hydrodynamics – relativistic processes – shockwaves – ISM: jets and outflows – supernovae: general

1 INTRODUCTION

Gamma-Ray Bursts (GRBs) are ... ...The numerical simulations were carried-out using

CFCA X30. In total, this study consumed about ??? 000core-hours of computing time.

This paper is organized as follows: In § 2, we. In § 3, we. In § ??, we . Results are presented and discussed in § 4. Aconclusion is given at the end of this paper (§ 5).

2 NUMERICAL METHOD

We...

3 SETUP OF THE SIMULATIONS

3.1 Stellar model

...

3.2 Grid

4 RESULTS

4.1 ???

5 CONCLUSION

Using a 2D hydrodynamical relativistic code...

(i) aaaa(ii) bbbb

Considering the above results ...

? E-mail: [email protected]

ACKNOWLEDGEMENTS

We gratefully thank. This research was supported by theMEXT of Japan, for which we are gratefully thankful. Nu-merical computations were carried out on Cray XC30 atCenter for Computational Astrophysics, National Astro-nomical Observatory of Japan. This work has been partlysupported by Grants-in-Aid for Scientific Research (??????)from Japan Society for the Promotion of Science and Grant-in-Aid for Scientific Research on Innovative Areas (??????)from the MEXT in Japan.

APPENDIX A: THE ANALYTICAL MODEL

Here we prsent the analytical model for a relativistic jet,powered by the central engine, and expanding in a givenmedium (or ejecta). The shock jump conditions can be writ-ten as (refer to Bromberg et al. 2011; and, Ioka & Nakamura2017):

hj⇢jc2�2

j�2j + Pj = he⇢ec

2�e�2e + Pe (A1)

Both Pe and Pj can be neglected. Hence, we can writethe jet head velocity as it follows:

�h =�j � �e

1 + L̃�1/2+ �e ' L̃1/2 + �e (A2)

Where L̃ is the ratio of energy density between the jetand the ejecta.

L̃ =hj⇢j�

2j

he⇢e�2e' Lj

⌃j⇢ec3(A3)

⌃j is the jet cross section. Assuming ✓j as the jet open-ing angle, ⌃j = 4⇡✓2j r

2j . We assume that the jet opening

angle is roughly constant: ✓j ' ✓0.

A1 Case 1: Static ejecta

For a static medium (or ejecta) case, �e ' 0 and �j ' 1.Equation A2 can be simplified to the following:

c� 2018 The Authors

Ram Pressure Balance

Engine Ejecta

Page 7: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Tool II. Analytic Modeling

MNRAS 000, 1–3 (2018) Preprint 13 August 2018 Compiled using MNRAS LATEX style file v3.0

The propagation of relativistic jets in an expanding ejecta

Hamid Hamidani?, Kunihito Ioka, and Kenta Kiuchi

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Last updated 2018 August 30

ABSTRACT...

Key words: gamma-ray: burst – hydrodynamics – relativistic processes – shockwaves – ISM: jets and outflows – supernovae: general

1 INTRODUCTION

Gamma-Ray Bursts (GRBs) are ... ...The numerical simulations were carried-out using

CFCA X30. In total, this study consumed about ??? 000core-hours of computing time.

This paper is organized as follows: In § 2, we. In § 3, we. In § ??, we . Results are presented and discussed in § 4. Aconclusion is given at the end of this paper (§ 5).

2 NUMERICAL METHOD

We...

3 SETUP OF THE SIMULATIONS

3.1 Stellar model

...

3.2 Grid

4 RESULTS

4.1 ???

5 CONCLUSION

Using a 2D hydrodynamical relativistic code...

(i) aaaa(ii) bbbb

Considering the above results ...

? E-mail: [email protected]

ACKNOWLEDGEMENTS

We gratefully thank. This research was supported by theMEXT of Japan, for which we are gratefully thankful. Nu-merical computations were carried out on Cray XC30 atCenter for Computational Astrophysics, National Astro-nomical Observatory of Japan. This work has been partlysupported by Grants-in-Aid for Scientific Research (??????)from Japan Society for the Promotion of Science and Grant-in-Aid for Scientific Research on Innovative Areas (??????)from the MEXT in Japan.

APPENDIX A: THE ANALYTICAL MODEL

Here we prsent the analytical model for a relativistic jet,powered by the central engine, and expanding in a givenmedium (or ejecta). The shock jump conditions can be writ-ten as (refer to Bromberg et al. 2011; and, Ioka & Nakamura2017):

hj⇢jc2�2

j�2j + Pj = he⇢ec

2�e�2e + Pe (A1)

Both Pe and Pj can be neglected. Hence, we can writethe jet head velocity as it follows:

�h =�j � �e

1 + L̃�1/2+ �e ' L̃1/2 + �e (A2)

Where L̃ is the ratio of energy density between the jetand the ejecta.

L̃ =hj⇢j�

2j

he⇢e�2e' Lj

⌃j⇢ec3(A3)

⌃j is the jet cross section. Assuming ✓j as the jet open-ing angle, ⌃j = 4⇡✓2j r

2j . We assume that the jet opening

angle is roughly constant: ✓j ' ✓0.

A1 Case 1: Static ejecta

For a static medium (or ejecta) case, �e ' 0 and �j ' 1.Equation A2 can be simplified to the following:

c� 2018 The Authors

drh(t)dt

+ (−vej

rm(t) ) rh(t) = Arm(t)3 − n2 rh(t)

n − 22

drh(t)dt

= Arh(t)n − 2

2 Static medium

Expanding medium

A = (r3−nm,0 − r3−n

0

(3 − n)r3−nm,0 ) (

4Lj

θ2j Mejc )

Page 8: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

0 0.05 0.1 0.15 0.2 0.25

r h(t)

[cm

]

t – t0 [s]

n=0 (A) n=0 (S)

n=1 (A) n=1 (S)

n=2 (A) n=2 (S)

rm(t)

vej = 0.1c

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

3.0E+09

0 0.05 0.1 0.15 0.2 0.25 0.3r h

(t) [c

m]

t – t0 [s]

n=0 (A) n=0 (S)

n=1 (A) n=1 (S)

n=2 (A) n=2 (S)

rm(t)

vej = 0.2c

I. Analytic Vs. Numerical Breakouts

HH+19 in prep

Page 9: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Results I: Engine parameters and jet dynamics

vb = A rb + vej

tb − t0 =r

4 − n2

m,0 − r4 − n

20

r4 − n

2m,0

vej

(4 − n)A+

rm,0

vej

2

−rm,0

vej

A = (r3−nm,0 − r3−n

0

(3 − n)r3−nm,0 ) (

4Liso,0

Mejc )

Page 10: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

1.E+48

1.E+49

1.E+50

1.E+51

1.E+52

1.E+53

1.E+54

0.001 0.010 0.100 1.000

L iso

,0 [e

rg s-1

]

t0 – tm [s]

tb – t0 = 1s

vb /vej = 2 (Ioka Nakamura 2017)

vb ~ c Relativistic Breakout

vb /vej = 1.6

tb – t0 = 0.1s

tb – t0 = 0.01s

Results I: Engine parameters and jet dynamics

Engine collapse/activation time

Engine Power

Page 11: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

II. Application for GW170817’s Cocoon

Page 12: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Modeling The Cocoon

Ein = 3PcVc

Ec = Ein + Ek,e

Ein = Lj(tb − t0)(1 − 1/c × Rb/(tb − t0))

Approximations/Assumptions:

β⊥ =Pc

ρa (rh) c2

Ec, Mc, & ⟨βc⟩Gives:

Page 13: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Results I: GW170817’s Cocoon (preliminary)

1.E+48

1.E+49

1.E+50

1.E+51

1.E+52

1.E+53

1.E+54

0.001 0.010 0.100 1.000

L iso

,0 [e

rg s-1

]

t0 – tm [s]

Mc = 1.1×10 -4M

⨀ <"c>

energy = 0.27

Narrow Jet (#0=6.8º)

Delay ⩽ 1.7s

Delay > 1.7s

tb – t0 = 1s

GW170817 (VLBI)

~50% of sGRBstb – t0 ≲ Median(T90)

GW170817:Delay = 1.7s

(Numerical relativity)for Mej ≳ 0.01M⨀

vb ~ c

vb /vej = 2 (Ioka Nakamura 2017)

Relativistic Breakout

vb /vej = 1.6

tb – t0 = 0.1s

tb – t0 = 0.01s

Mc = 1.2×10 -4 M

⨀ <"c>energy = 0.27

Mc = 1.2×10 -4 M

⨀ <"c>energy = 0.29

Mc = 1.1×10 -4 M⨀ <"

c>energy = 0.30

Page 14: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Results I: GW170817’s Cocoon (preliminary)

1.E+48

1.E+49

1.E+50

1.E+51

1.E+52

1.E+53

1.E+54

0.001 0.010 0.100 1.000

L iso

,0 [e

rg s-1

]

t0 – tm [s]

Mc = 4 ×10 -4 M⨀ <"

c>energy = 0.29

Wide Jet (#0=18.0º)

Delay ⩽ 1.7s

Delay > 1.7s

tb – t0 = 1s

GW170817 (VLBI)

~50% of sGRBstb – t0 ≲ Median(T90)

GW170817:Delay = 1.7s

(Numerical relativity)for Mej ≳ 0.01M⨀

vb ~ c

vb /vej = 2 (Ioka Nakamura 2017)

Relativistic Breakout

vb /vej = 1.6

tb – t0 = 0.1s

tb – t0 = 0.01s

Mc = 4.2 ×10 -4 M⨀ <"

c>energy = 0.29

Mc = 4.2 ×10 -4 M⨀ <"

c>energy = 0.34

Mc = 4 ×10 -4 M

⨀ <"c>energy = 0.34

Page 15: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

The EM Counterparts & The Cocoon

Page 16: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Photospheric Velocity (preliminary)

0.2

0.3

0.4

0 0.5 1

v/c

Time since GW170817 [day]

Delay ≥ 1.7s(VLBI)

GW170817's

<!c>

"0 = 1º

"0 = 3.4º

"0 = 9º

"0 = 20º

# = 1 cm2 g -1

0.1

0.2

0.3

0.4

0 1 2 3 4 5

v/c

Time since GW170817 [day]

GW170817's Cocoon

! = 1 cm2 g -1

! = 0.3 –3 cm2 g -1

Page 17: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

EE, and Plateau Emission

Kisaka+17

Page 18: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

EE, and Plateau Emission

Kisaka+17

Page 19: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

The Different Cocoons (preliminary)

HH+19 in prep

1E+39

1E+40

1E+41

1E+42

1E+43

1E+44

0 1 2 3

L bl[

erg

s-1]

Time since GW170817 [day]

GW170817 GW170817 [Waxman+17] R-process [Kisaka+15] Prompt [1e51 erg/s ×~2s] Narrow Prompt [1e51 erg/s ×~2s] Wide EE [1e49 erg/s ×~100s] Narrow EE [1e49 erg/s ×~100s] Wide Plateau [1e46 erg/s ×~1e4s] Narrow Plateau [1e46 erg/s ×~1e4s] Wide

1E+39

1E+40

1E+41

1E+42

1E+43

1E+44

0 1 2 3

L bl[

erg

s-1]

Time since GW170817 [day]

GW170817 [Kasliwal+17 & Drout+17] GW170817 [Waxman+17] R-process Emission [Kisaka+15] Prompt Phase's Cocoon [Narrow Jet] Prompt Phase's Cocoon [Wide Jet] Extended Phase's Cocoon [Narrow Jet] Extended Phase's Cocoon [Wide Jet] Plateau Phase's Cocoon [Narrow Jet] Plateau Phase's Cocoon [Wide Jet]

Page 20: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

The Cocoon outshining R-process (preliminary)

-20

-18

-16

-14

-12

-10

-8

-6

13

15

17

19

21

23

25

270 1 2

MA

B

mA

B (D

=40M

pc)

Time since GW170817 [day]

GW170817 R-process [Kisaka+15] Prompt [1e51 erg/s ×~2s] Narrow Prompt [1e51 erg/s ×~2s] Wide EE [1e49 erg/s ×~100s] Narrow EE [1e49 erg/s ×~100s] Wide Plateau [1e46 erg/s ×~1e4s] Narrow Plateau [1e46 erg/s ×~1e4s] Wide

J-Band

HH+19 in prep

-20

-18

-16

-14

-12

-10

-8

-6

13

15

17

19

21

23

25

270 1 2

MA

B

mA

B (D

=40M

pc)

Time since GW170817 [day]

GW170817 [Kasliwal+17 & Drout+17] R-process Emission [Kisaka+15] Prompt Phase's Cocoon [Narrow Jet] Prompt Phase's Cocoon [Wide Jet] Extended Phase's Cocoon [Narrow Jet] Extended Phase's Cocoon [Wide Jet] Plateau Phase's Cocoon [Narrow Jet] Plateau Phase's Cocoon [Wide Jet]

J-Band

Page 21: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

The Cocoon outshining R-process (preliminary)

-20

-18

-16

-14

-12

-10

-8

-6

13

15

17

19

21

23

25

270 1 2

MA

B

mA

B (D

=40M

pc)

Time since GW170817 [day]

GW170817 R-process [Kisaka+15] Prompt [1e51 erg/s ×~2s] Narrow Prompt [1e51 erg/s ×~2s] Wide EE [1e49 erg/s ×~100s] Narrow EE [1e49 erg/s ×~100s] Wide Plateau [1e46 erg/s ×~1e4s] Narrow Plateau [1e46 erg/s ×~1e4s] Wide

R-Band

HH+19 in prep

-20

-18

-16

-14

-12

-10

-8

-6

13

15

17

19

21

23

25

270 1 2

MA

B

mA

B (D

=40M

pc)

Time since GW170817 [day]

GW170817 [Kasliwal+17 & Drout+17] R-process Emission [Kisaka+15] Prompt Phase's Cocoon [Narrow Jet] Prompt Phase's Cocoon [Wide Jet] Extended Phase's Cocoon [Narrow Jet] Extended Phase's Cocoon [Wide Jet] Plateau Phase's Cocoon [Narrow Jet] Plateau Phase's Cocoon [Wide Jet]

R-Band

Page 22: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

The Cocoon outshining R-process (preliminary)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

13

15

17

19

21

23

25

27

29

31

0 1 2

MA

B

mA

B (D

=40M

pc)

Time since GW170817 [day]

GW170817 R-process [Kisaka+15] Prompt [1e51 erg/s ×~2s] Narrow Prompt [1e51 erg/s ×~2s] Wide EE [1e49 erg/s ×~100s] Narrow EE [1e49 erg/s ×~100s] Wide Plateau [1e46 erg/s ×~1e4s] Narrow Plateau [1e46 erg/s ×~1e4s] Wide

U-Band

HH+19 in prep

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

13

15

17

19

21

23

25

27

29

31

0 1 2

MA

B

mA

B (D

=40M

pc)

Time since GW170817 [day]

GW170817 [Kasliwal+17 & Drout+17] R-process Emission [Kisaka+15] Prompt Phase's Cocoon [Narrow Jet] Prompt Phase's Cocoon [Wide Jet] Extended Phase's Cocoon [Narrow Jet] Extended Phase's Cocoon [Wide Jet] Plateau Phase's Cocoon [Narrow Jet] Plateau Phase's Cocoon [Wide Jet]

U-Band

Page 23: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

Temperature & Color (preliminary)

1.E+03

1.E+04

1.E+05

0 1 2 3

T [K

]

Time since GW170817 [day]

GW170817 Prompt [1e51 erg/s ×~2s] Narrow Prompt [1e51 erg/s ×~2s] Wide EE [1e49 erg/s ×~100s] Narrow EE [1e49 erg/s ×~100s] Wide Plateau [1e46 erg/s ×~1e4s] Narrow Plateau [1e46 erg/s ×~1e4s] Wide

HH+19 in prep

1.E+03

1.E+04

1.E+05

0 1 2 3

T [K

]

Time since GW170817 [day]

GW170817 [Kasliwal+17 & Drout+17]

Prompt Phase's Cocoon [Narrow Jet]

Prompt Phase's Cocoon [Wide Jet]

Extended Phase's Cocoon [Narrow Jet]

Extended Phase's Cocoon [Wide Jet]

Plateau Phase's Cocoon [Narrow Jet]

Plateau Phase's Cocoon [Wide Jet]

Page 24: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

The Prediction

HH+19 in prep

Page 25: The Cocoon emission in the early macronova in …Beyond r-process: The Cocoon emission in the early macronova in GW170817 Hamid Hamidani, Kunihito Ioka, & Kenta Kiuchi 2019年5月22日

SummaryThe Cocoon outshines r-process likely to have contaminated the early macronova in GW170817

Large Opening Angles for the central engine are excluded

Prediction of A Bright Early Counterparts to peak and outshine r-process in the first a few hours (if powered by the EE/PL emission of the engine)