The case for High energy neutrino astronomy

25
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL

description

The case for High energy neutrino astronomy. Eli Waxman Weizmann Institute, ISRAEL. High energy n ’ s: A new window. MeV n detectors: Solar & SN1987A n ’ s Stellar physics (Sun ’ s core, SNe core collapse) n physics >0.1 TeV n detectors: Extend n horizon to extra-Galactic scale - PowerPoint PPT Presentation

Transcript of The case for High energy neutrino astronomy

Page 1: The case for High energy neutrino astronomy

The case forHigh energy neutrino astronomy

Eli WaxmanWeizmann Institute, ISRAEL

Page 2: The case for High energy neutrino astronomy

High energy’s: A new windowMeV detectors:• Solar & SN1987A ’s• Stellar physics (Sun’s core, SNe core collapse) physics

>0.1 TeV detectors:• Extend horizon to extra-Galactic scale MeV detectors limited to local (Galactic)

sources [10kt @ 1MeV1Gton @ TeV , TeV/MeV~106

]• Study “Cosmic accelerators” [p, pp ’s’s] physics

Page 3: The case for High energy neutrino astronomy

The 1020eV challengeR

B eBRBRRBR

ccV p c

vcv

v/1~1 2

cec

BRL p22

2

v/21v

84

v

v

sun122

20,

2

L10/v

pcL

2R

tRF=R/c)

l =R/

2 2

[Waxman 95, 04, Norman et al. 95]

• AGN (Steady): ~ 101 L>1014 LSun few brightest ~1/100 Gpc3 d >> 100Mpc ?? AGN flares

• GRB (transient): ~ 102.5 L>1017 LSun L~ 1018LSun

[Farrar & Gruzinov 08]

[Blandford 76; Lovelace 76]

[Waxman 95, Vietri 95, Milgrom & Usov 95]

Page 4: The case for High energy neutrino astronomy

• GRB: 1020LSun, MBH~1Msun, M~1Msun/s, ~102.5

• AGN: 1014 LSun, MBH~109Msun, M~1Msun/yr, ~101

• MQ: 105 LSun, MBH~1Msun, M~10-8Msun/yr, ~100.5

Source physics

Energy extraction

Jet acceleration

Jet content (kinetic/Poynting)

Particle acceleration

Radiation mechanisms

Page 5: The case for High energy neutrino astronomy

Clues: CR phenomenology

Cosmic-ray E [GeV]

log [dJ/dE]

1 106 1010

E-2.7

E-3

Heavy Nuclei

Protons

Flattening,Near isotropy,Heavy light (?)

Galactic heavy(“hypernovae” Z~10 to 1019eV)

X-Galactic, ?Light

[Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]

Page 6: The case for High energy neutrino astronomy

%23.

sysEE

Constraints: Flux & Spectrum

[Waxman 1995;

Bahcall & Waxman 03]

[Kashti & Waxman 08]

Esys/E~20%

3344

5.192

)1()(,0,yrerg/Mpc10)3.0(7.0

)(0,eV10

zzfx

zfEzdEndE x

Particle acc.; SFR , AGN, GRB

1)(,eV)10cutoff(7.0,yrerg/Mpc103.1 18344

zfx

[Berezinsky et al. 08]

Page 7: The case for High energy neutrino astronomy

Clues: AnisotropyGalaxy density integrated to 75MpcCR intensity map (source~gal)

[Waxman, Fisher & Piran 1997]

Biased (source~gal for gal>gal )

[Kashti & Waxman 08]

• Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Few fold increase >99% CL, but not 99.9% CL• Correlation with AGN ? VCV catalogue: 99% CL Swift catalogue: 84% (98% a posteriori) CL low-luminosity AGN? Simply trace LSS!

[Auger collaboration 07]

[George et al. 08]

Page 8: The case for High energy neutrino astronomy

>1019eV cosmic rays: Clue summary• Spectrum (+Xmax) likely X-Galactic protons• Anisotropy + Spectrum likely “Conventional” sources• L constraint likely Transient sources

• Ep2dN/dEp~ 0.7x1044 erg/Mpc3 yr

• What next for Auger?

Identify (narrow spectrum) point source(s)?

Page 9: The case for High energy neutrino astronomy

HE Astronomy• p + N + 0 2 ; + e+ + e + + Identify UHECR sources Study BH accretion/acceleration physics

• E2dn/dE=1044erg/Mpc3yr + p<1:

• If X-G p’s:

Identify primaries, determine f(z)

3

282

)1(,1)(for5,1

srscmGeV10

zzf

ddj

[Waxman & Bahcall 99; Bahcall & Waxman 01]

srscmGeV10)eV10( 2

8192

ddj

Page 10: The case for High energy neutrino astronomy

AGN models??

BBR05

Page 11: The case for High energy neutrino astronomy

Experiments• Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km3

IceCube: +660/yr OM (05/06, 06/07) 4800 OM=1 km3s - Mediterranean Antares: 10 lines (Nov 07), 750 OM 0.05 km3

Nestor: (?) 0.1 km3

km3Net: R&D 1 km3

•UHE: Radio Air shower Aura, Ariana (in Ice) Auger () ANITA (Balloon) EUSO (?) LOFAR

Page 12: The case for High energy neutrino astronomy

Generic GRB fireball ’s• If: Baryonic jet, internal shocks

(Weak dependence on model parameters)

• Background free:

2GeV3.0// peV10,eV1010,MeV1 5.14165.2 p

yrkm/20

eV10,srscm

GeV102.0

2

5.142

82

J

WB

2.0pf

[Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]

;yrkm/TeV1005.0

104~ 22

3

EJ oA

TeV1005.2TeV1007.1

EE

Page 13: The case for High energy neutrino astronomy

The current limit[Achterberg et al. 07 (The IceCube collaboration)]

Page 14: The case for High energy neutrino astronomy

- physics & astro-physics• decay e:: = 1:2:0 (Osc.) e:: =

1:1:1 appearance experiment

• GRBs: - timing (10s over Hubble distance) LI to 1:1016; WEP to 1:106

• EM energy loss of ’s (and ’s) e:: = 1:1:1 (E>E0) 1:2:2 GRBs: E0~1015eV

• Combining E<E0, E>E0 flavor measurements may constrain CPV [Sin13 Cos]

[Waxman & Bahcall 97]

[Rachen & Meszaros 98; Kashti & Waxman 05]

[Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07]

[Blum, Nir & Waxman 05]

Page 15: The case for High energy neutrino astronomy

Outlook• Particle+Astro-phys. Open Q’s - >1011GeV particles: primaries, f(z), origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ…) Energy extraction from BH accretion Relativistic plasma physics - “Conventional” astrophysics (starburst ISM) - appearance Timing LI to 1:1016; WEP to 1:106

Flavor ratios CPV

• New HE , CR and detectors >103 km2 hybrid >1019eV CR detectors~1 km3 (=1Gton) 1-1000TeV detectors>>1 km3 [radio,…] >>1000TeV detectors

10MeV—10GeV -ray satellite (AGILE, GLAST) >0.1TeV (ground based) -ray telescopes (Milagro, HESS, MAGIC, VERITAS)

Identified point so

urces

Diffuse

Page 16: The case for High energy neutrino astronomy

Composition cluesHiRes 2005

Page 17: The case for High energy neutrino astronomy

GRB proton/electron accelerationElectrons

• MeV ’s:

• <1:

• e- () spectrum:

• e- ()energy production

erg/s1052L

5.210

2/ eee ddn

yrMpcerg10erg10

yrGpc5.0

3445.53

32

e

ee dnd

[Waxman 95, 04]

Protons• Acceleration/expansion:

• Synchrotron losses:

• Proton spectrum:

• p energy production:

erg/s10/1025.22

20,5.50 pL

4/14/320,

2 ms10/10 tp

2/ ppp ddn

yrMpcerg10)3.0(6.0 3

442 p

pp dnd

Page 18: The case for High energy neutrino astronomy

The GRB “GZK sphere”• LSS filaments: D~1Mpc, fV~0.1, n~10-6cm-3, T~0.1keV B=(B2/8nT~0.01 (B~0.01G), B~10kpc

• Prediction:

p

D

B

few~)eV103( 20GRBsN[Waxman 95; Miralda-Escude &

Waxman 96, Waxman 04]

BBVGRBs

GRB

BBVp

DelaySpread

BBVp

fDN

R

fDdcd

fDd

2220

3

2

2

2052

2/120

2/10

10~)eV10(

yrGpc/5.0~

eV10/Mpc100/yr10~~~

eV10/Mpc100/3.0

Page 19: The case for High energy neutrino astronomy

GRB Model Predictions

[Miralda-Escude & Waxman 96]

Page 20: The case for High energy neutrino astronomy
Page 21: The case for High energy neutrino astronomy

AMANDA &IceCube

Page 22: The case for High energy neutrino astronomy

The Mediterranean effort• ANTARES (NESTOR, NEMO) KM3NeT

Page 23: The case for High energy neutrino astronomy

Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA

Robert Gendler

M82 M81

Page 24: The case for High energy neutrino astronomy

A lower bound: Star bursts• Star burst galaxies: - Star Formation Rate ~103Msun/yr >> 1 Msun/yr “normal” (MW) - Density ~103/cc >> 1/cc “normal” - B ~1 mG >> 1G “normal”

• Most stars formed in (z>1.5) star bursts

• High density + B: CR e-’s lose all energy to synchrotron radiation CR p’s lose all energy to production

[Loeb & Waxman 06]

[Quataert et al. 06]

Page 25: The case for High energy neutrino astronomy

eepnpp ,

Synchrotron radio calibration

[Loeb & Waxman 06]