tema 7, ceramicas y fibras [Modo de compatibilidad] · de materiales son el cáñamo, yute,...

37
7. Cerámicas, fibras y materiales compuestos 7.1. Cerámicas 7.1.1. Algunas estructuras cerámicas 7.1.2. Métodos de fabricación 7.1.3. Aplicaciones de las cerámicas 7.2. Fibras 7.2.1. Tipos de Fibras 7.2.2. Métodos de Fabricación 7.2.2. Celulosa. Caracterización estructural 7.2.3. Propiedades mecánicas de las fibras. 7.3. Materiales compuestos 7.3.1. Matrices 7.3.2. Refuerzos 7.3.3. Espumas o materiales celulares

Transcript of tema 7, ceramicas y fibras [Modo de compatibilidad] · de materiales son el cáñamo, yute,...

7. Cerámicas, fibras y materiales compuestos 7.1. Cerámicas

7.1.1. Algunas estructuras cerámicas 7.1.2. Métodos de fabricación 7.1.3. Aplicaciones de las cerámicas

7.2. Fibras 7.2.1. Tipos de Fibras7.2.2. Métodos de Fabricación7.2.2. Celulosa. Caracterización estructural7.2.3. Propiedades mecánicas de las fibras.

7.3. Materiales compuestos 7.3.1. Matrices 7.3.2. Refuerzos 7.3.3. Espumas o materiales celulares

Cerámicas

Los materiales cerámicos constituyen un amplio conjunto de compuestos cuya característica fundamental es estar formados por la unión de elementos atómicos (metales, no metales) mediante enlaces de carácter predominantemente iónico o covalente , es decir, uniones interatómicas fuertes y estables. Nos centraremos en los materiales con enlace iónico

Hasta hace aproximadamente 40 años, los materiales más importantes de esta clase eran las denominadas cerámicas tradicionales , compuestos en los que la materia prima es la arcilla; los productos considerados dentro de esta familia son la porcelana fina, porcelana para aislantes eléctricos, ladrillos, tejas, baldosas y también vi drios y cerámicas refractarias

En los años 60-70 surge una nueva generación, las cerámicas avanzadas . Desde un punto de vista químico se trata de óxidos, carburos o nitruros, de gran pureza química, constituidos con diferentes elementos, tales como Al, Si o B. Estas nuevas cerámicas poseen unas propiedades físicas muy interesantes que conducen a aplicaciones en las que se requieren especificaciones muy exigentes. Abrasivos, motores, blindajes, materiales supercond uctores

PROPIEDADES GENERALES (debidas a su fuertes enlaces inter-atómicos)

Alta dureza y rigidez (elevado módulo de Young), Aislantes térmicos y eléctricosPoseen una importante inercia química frente ambientes hostiles (elevada durabilidad) Altos puntos de fusión.Relativamente resistentes a las acciones de compres ión .Pequeño contenido en dislocaciones dificulta su deformación plástica, de manera que las Cerámicas sonmuy frágiles y tienen un débil comportamiento frent e a los esfuerzos de tracción o impacto (se rompen fácilmente).

ESTRUCTURA

Son materiales cristalinos en su mayor parte (salvo los vidrios que se consideran cerámicos) por tanto son válidos todos los conceptos estudiados en los temas 2 y 3.

Existe la red y la base estructuralAdemás se debe considerar la presencia de defectos como claves en las propiedades (defectos puntuales, dislocaciones, límites de grano, defecto s volumétricos (porosidad), etc)

estableestable no estable

Disposiciones estables y no estables en función del contacto entre cationes y aniones:

Catión prefiere tener a su alrededor tantos aniones vecinos como sea posible, para minimizar las repulsiones electrostáticas.Los aniones también desean un número máximo de cationes como vecinos más próximos.

Así, las estructuras estables de los materiales cerámicos se forman cuando los aniones que rodean un catión están todos en contacto con él, tal como se ilustra en la figura

Algunas estructuras cerámicas (compuestos iónicos):

Condicionadas por:

1) Neutralidad de carga eléctrica. Por ejemplo, en el fluoruro de calcio, cada ion de calcio tiene una carga de +2 (Ca2+) mientras que cada ion de flúor tiene asociada una sola carga negativa (F- ) Por consiguiente, el número de iones F- debe ser el doble del de iones Ca2+, lo cual se refleja en la fórmula química CaF2.

2) Cociente entre los radios del catión y del anión: La segunda característica se refiere al tamaño de los radios iónicos de los cationes y aniones, rC y rA, respectivamente. Puesto que los elementos metálicos ceden electrones al ser ionizados, los cationes son generalmente de menor tamaño que los aniones, por tanto el cociente rC/rA es menor que la unidad

geometría de coordinación

cociente entre los radios del catión

y del anión

< 0.155

0.155 – 0.225

0.225 – 0.414

0.414 – 0.732

0.732 –1.0

número de coordinación

2

3

4

6

8

Valores de rC/rA para lo cuales se establece el contacto entre cationes y

aniones, en función del número de coordinación. Por tanto el cociente rC/rA es clave en la estructura final del compuesto

nombre de la estructura

fórmula química

red de Bravais números de coordinación

ejemplos

catión anión

cloruro sódico AX f.c.c. 6 6 NaCl, MgO, FeO

cloruro de cesio AX c.s. 8 8 CsCl

blenda AX f.c.c. 4 4 ZnS, SiC

fluorita AX2 c.s. 8 4 CaF2, ZrO2

perovsquita ABX3 f.c.c. 12(A)6(B)

6 BaTiO3, SrZrO3

espinela AB2X4 f.c.c. 4(A)6(B)

4 MgAl2O4, FeAl2O4

Algunas estructuras iónicas típicas de los materiales cerámicos, redes de Bravais, números de

coordinación y algunos ejemplos

perovsquita Ca Ti O

YBaCuO Ba,Y Cu O

A B X

Estructura ideal de la perovsquita

Este tipo de ordenamiento es punto de partida de compuestos no estequiométricos con propiedades superconductoras hasta altas temperaturas críticas (YBa2Cu3O7-x).

De la misma manera que en metales, aislantes y semiconductores, en los materiales cerámicos también existen algunas imperfecciones cristalinas, en especial defectos puntuales.

En estos citados superconductores la existencia de vacantes de oxígeno y la especial disposición de los iones cobre les confiere unas propiedades especiales, a temperaturas superiores a los 100K, que se traducen en tener una resistividad eléctrica prácticamente nula

Nobel

Nobel

La superconductividad fue descubierta por Kammerling Ones en 1911. fue un descubrimiento no esperado

Nobel

A día de hoy no existe aún una teoría aceptada universalmente que explique el fenómeno de la supercondutividad de alta temperatura crítica

Un gran descubrimiento fueron los superconductores de alta Tc:

Aplicaciones reales de la superconductividad

Los superconductores de alta temperatura crítica so n cerámicos (no son metales)

Levitación Magnética

Otra de las características que define a un supercondutor es que el campo magnético inducido por un campo magnético externo débil es cero en su interior cuando éste es enfriado por debajo de su temperatura de transición superconductora. Este efecto es llamado Meissner-Ochsenfel y es el que permite que los imanes leviten sobre un superconductor (diamagnético perfecto).

En la levitación magnética se utiliza nitrógeno líq uido en ebullición, que mantiene al superconductor en un estado de resistencia nula, al aproximar su temp eratura al cero absoluto. Cuando el imán desciende hacia el superconductor, induce una corriente eléct rica, que a su vez crea un campo magnético opuesto al del imán. Como el superconductor no tiene resist encia eléctrica, la corriente inducida sigue fluyen do y mantiene el imán suspendido indefinidamente

Ejemplo de imán levitando sobre un superconductor a temperaturas por debajo de la críitica.

La ausencia de contacto físico entre el carril y el tren hace que la única fricción sea la del aire, por lo que se pueden conseguir muy altas velocidades con un consumo de energía razonable, el 40% del consumo normal para un vehículo, y a un bajo nivel de ruido. La línea que une Shanghai con su aeropuerto tarda 7 minutos y 20 segundos en recorrer los 30 kilómetros a una velocidad máxima de 431 km/h y una media de 250 km/h. En Alemania se lleva a cabo la construcción del Transrapid, un maglev que unirá las ciudades de Berlín y Hamburgo, con una velocidad máxima de 500 km/h.

Tren de levitación Magnética

O 2-Fe 3+Fe 2+

ab

coordinación tetraédrica

coordinación octaédrica

Estructura tipo espinela: a) espinela normal, b) es pinela inversa

Espinelas: su estructura base es la del aluminato de magnesio (MgAl2O4), cuya arquitectura atómica aparece en la figura. Entre los compuestos químicos derivados de esta configuración citar el óxido ferroso-férrico o magnetita (FeO.Fe2O3) con estructura de espinela inversa. Este oxido doble es el producto de partida para la fabricación de las denominadas ferritas. Se aplican en materiales magnéticos duros (imanes permanentes, electroimanes) o blandos (núcleos de alternadores, antenas, transformadores, etc.).

Métodos de fabricación de las cerámicas

a

b

Métodos de fabricación de las cerámicas: a) compresión uniaxial, b) compresión isostática

Cerámicas avanzadas: Se parte de polvo cerámico

El método de preparación de un material cerámico es complejo ; esto se debe a sus particulares características: temperatura de fusión elevada, dureza y fragilidad. En otros términos, son compuestos difíciles de fundir, no son plásticos y se rompen fácilmente al ser golpeados. Todo ello limita las posibilidades de fabricación de piezas a un casí un único procedimiento; la sinteriación

Fase 1: Mezcla de componentes: se suele usar un ligante

Fase 2: Se compacta la mezcla usando prensado uniaxial o isostático (1000 bares). Temperaturas por debajo de la de fusión.

a bc

migración atómica

cuellos

Fase 3. Proceso de sinterización. Calentamiento por debajo de la temperatura de fusión

La fuerza motriz para la sinterización es la reducción del ár ea total de las superficies de laspartículas por un efecto de tensión superficial: la energía superficial de la muestra inicial essuperior a la energía correspondiente al estado sinterizad o. Objetivo del procedimiento es reducirla porosidad y por tanto incrementar las propiedades mecáni cas

La reproducibilidad en las propiedades de piezas cerámicas no es tan buena como la que se consigue con otro tipo de materiales, lo que se debe en muchas ocasiones a la presencia de porosidad residual (defecto

volumétrico)

Acero 1480ºC 11,5

Polietileno 110ºC 200

Elevados puntos de fusión, bajas expansiones térmicas.

Acero 7,8 56000 psi 42000 psi 28x 10 6 psi 120

Polietileno 0,9 1820 psi 1680 psi 28000psi 5

Excelentes propiedades de rigidez y resistencia, muy baja resistencia al impacto

Aplicaciones de las cerámicas

Cerámicas tradicionales: composición básica tres elementos: la arcilla, la sílice y el feldespato.

La arcilla está constituida principalmente por óxidos dobles hidratados del tipo Al2O3.SiO2.H2O. La sílice (SiO2) es un material que funde a temperaturas muy altas y suele otorgar las propiedades refractarias. Los feldespatos con formula K2O.Al2O3.6SiO2 son materiales que funden a bajas temperaturas y su papel es hacer de aglutinantes de los distintos constituyentes

Sectores de aplicación: construcción de edificios, refrac tarios (compuestos cerámicasresistentes a altas temperaturas son empleados, por ejempl o en el revestimiento interno de loshornos de obtención del acero) y en decoración (porcelanas) .

Aplicaciones de las cerámicas

Material cerámico Aplicaciones

hidroxiapatito sustitución de hueso y dentina

carbonos parcialmentecristalinos

válvulas cardiacas, ligamentos, implantes dentales

zirconita materiales dentales y ortopedia

vidrios bioactivos ortopedia

alúmina prótesis de cadera, componentes dentales

Materiales cerámicos usados en dispositivos biomédi cos

En concreto, el uso de materiales cerámicos está particularmente indicado en odontología, en ortopedia y en medicina cardiovascular. Esto es debido a su inercia química en contacto con los fluidos biológicos, su alta resistencia a la compresión, su bajo coeficiente de fricción, su potencial biocompatibilidad y a veces, su bioactividad . Su mayor inconveniente es, una vez más, su fragilidad

Cerámicas Avanzadas para motores de combustión (Si 3N4; SiC; ZrO 2)

Mayores resistencias a altas temperaturas implican que es posible conseguir mayores rendimientos en la combustión

Mejor resistencia mecánica a fricción. Mayor durabilidad.

Menor corrosión.

Baja densidad; implica menor peso

pistones, coronas de pistón, alabes de turbinas , camisas

MATERIAL DENSIDAD TM(K) E EXPANSIÓN CONDUCTIVIDAD TENACIDAD

Combinación de materiales para cubrir todas las propiedades, materiales compuestos

de matriz cerámica

Fibras

Clasificación de las fibras

Se conoce con el nombre genérico de fibras a un amplio conjunto de materiales que tienen encomún la característica de poseer un alto valor de la relación longitud/diámetro (l/d).

Naturales, de origen vegetal o animal. Su procesado es de tipo físico (hilado, trenzado, etc.), de forma que durante su ejecución no se cambia la composición química de la fibra. Ejemplos de este tipo de materiales son el cáñamo, yute, algodón, lino, seda o lana, con aplicaciones en cuerdas y similares, industria textil, etc.

Naturales modificadas, de origen vegetal o animal. El procesado es de tipo químico, con el cual se consigue cambiar la composición y configuración, para así tener un nuevo compuesto procesable en forma de fibra. Un ejemplo es la celulosa regenerada (rayón, viscosa, etc.), con aplicaciones básicamente textiles.

Artificiales, o simplemente fibras sintéticas, como las macromoléculas sintéticas. Ejemplos de este tipo son los poliésteres y las poliamidas, también con aplicaciones textiles.

De alta resistencia. Macromoléculas sintéticas u otro tipo de cadenas que por su estructura química o procesado físico tienen resistencias mecánicas muy elevadas. Materiales típicos son la aramida, y las fibras de vidrio, carbono y boro, con aplicaciones como fibras resistentes (cuerdas, chalecos antibala, etc.) y refuerzos en materiales compuestos.

Cerámicas. Cadenas inorgánicas resistentes a altas temperaturas. Ejemplos son las fibras de carburo y nitruro de silicio. Su uso se centra principalmente en refuerzos de materiales compuestos de idéntica naturaleza química.

CH

CHCH

O

CHCH

CH2

OH

O

OH

O

OH

CH

OCH

CH

CHCH

OHCH2OH

OH

O

10.3 Å

b =10.3 Å

a =8.35 Å

c =7.9 Å

a

b

a) Estructura de la celulosa (monómero) y b) uniones tridimensionales de las cadenas

Fibras naturales: El ejemplo mas significativo son las fibras de algodón. Esta fibra, que aparece en los tallos y frutos de ciertas plantas, está constituida básicamente por la especie química denominada celulosa, la macromolécula orgánica natural más abu ndante sobre la Tierra . Se trata de un polímero cuyo monómero está formado por dos núcleos de glucosa, unidos entre sí por eliminación de una molécula de agua

Estructura de tipo ortorrómbico

La existencia de grupos OH permite formar enlaces tipo hidrogeno lo que favorece la resistencia de la fibra

a

b

a) Diagrama de difracción de rayos X de una fibra de celulosa y b) diagrama de difracción de un hilo de aluminio estirado

Fibras: A nivel molecular su característica fundam ental es que existe una orientación molecular de las cadenas en la dirección de la fibr a…….. Esto implica propiedades

anisotrópicas, en el caso partícular de las propied ades mecánicas se tienen mejoras muy significativas en la dirección de la fibra.

sección de estiradohilera

cámara de solidificación bobina

alimentador

Representación esquemática del proceso de fabricación de fibras por hilado

Esquema general del proceso de fabricación de fibra s

El material de partida, fundido o disuelto en un di solvente adecuado, se hace para por una hilera que le da la forma y se estira en la dirección de la fibra para

dar lugar a la orientación, tras salir de la hilera se enfría para solidificarlo

Fibras para aplicaciones textiles

Requerimientos: Grandes deformaciones entracción y torsión sin romperse (dúctiles)

Elevada resistencia a la abrasión

Resistencia a la temperatura (para poder ser lavadas)

Elevada estabilidad química (para el lavado, detergentes….)

No inflamabes (hasta cierto punto)

Consecuente estructura: (estas fibras tanto las naturales como las sintéticas (poliester o poliamidas (nylons)) son poliméricas, por tanto debemos hacer referencia a las características definidas en el tema cinco)

Alto peso molecular,

Elevada cristalinidad (estructuras moleculares poco ramificadas)

Adecuadas Tg y Tm, para poder ser lavadas y que el procesado no se deba realizar a muy elevada temperatura.

Enlaces laterales en las cadenas para mejorar las propiedades mecánicasPoliamidas o nylons

-NH-(CH2)-CO-; los grupos NH y CO forman enlaces intercaden as como en la celulosa

Temperatura de fusión (Tm): Si es mayor de unos 300 ºC la fibra se procesa muy mal; por otra parte, si es menor de unos 200 ºC, aunque el procesado sería más barato, pueden aparecer problemas en el uso del producto acabado, por ejemplo durante el planchado de los tejidos fabricados con estas fibras, no sólo porque se llegue a la Tm, sino porque se supere la Tg y se deforme el material.

Solubilidad : Mejor solubilidad significa un procesado más fácil, de forma que puestos a simplificar las cosas, lo ideal sería que el material fuese soluble en agua, que es un disolvente barato. Sin embargo, esto implicaría, por ejemplo, que se disolviese un traje cuando le cayese un poco de agua. También hay que evitar que sea soluble en tetracloruro de carbono o éteres, que son compuestos que se utilizan para limpieza en seco de trajes.

Peso molecular : Cuanto mayores sean las macromoléculas, más resistentes resulta la fibra, pero también se procesa peor. En poliésteres se utilizan valores de peso molecular entre 10000 y 20000 u.m.a.

Cristalinidad : Mejora la tenacidad, pero dificulta el procesado. Lo normal es que en el diseño y fabricación de la fibra se actúe de manera que se obtenga un producto que combine zonas cristalinas y amorfas.

Rigidez de cadena : Si la macromolécula es rígida, además de simétrica, se empaqueta mejor y da fibras más resistentes, pero se procesa peor. Un ejemplo curioso es el Nilón, que es una poliamida alifática con una cadena muy simétrica y muy flexible; la fibra se procesa bien y es barata. En cambio, el Kevlar es también una poliamida, pero con residuos aromáticos en lugar de alifáticos; la cadena es simétrica pero rígida, y la fibra resulta muy resistente pero extraordinariamente cara por su dificultad de fabricación.

Relación entre parámetros de fabricación de la fibr a y de sus propiedades finales

Valores de la resistencia (R) , densidad (d) y resistencia específica (R/ρ) de algunas fibras sintéticas, comparándolas con los valores correspondientes en fibras metálicas

Fibra resistencia a la rotura (10 7N/m2)

densidad relativa (g/cm 3)

resistencia específica

(R/ρρρρ)

rayón 30 1.56 19

nilón 100 1.15 87

aluminio 17 2.7 8

acero 200 7.8 26

Propiedades específicas de la fibras: Su interés en la fabricación de materiales compuestos

Las fibras (en la dirección de la fibra) tienen mayores

resistencias específicas que metales y polímeros

material densidad (g/cm 3)

módulo de Young (GPa)

resistencia a la tracción (MPa)

FIBRAS

carbono 1.80 235 3599

boro 2.65 300 – 400 3000 - 3700

kevlar 1.45 130 3620

alúmina 3.95 500 2000

vidrio E 2.54 72 3450

vidrio S 2.48 84 4585

SiC 3.20 480 2300

OTROS MATERIALES

aluminio 2.7 69 483

acero 7.8 200 1724

SiC 3.2 400 310

Distintas fibras y sus propiedades, comparadas con algunos otros materiales

2-3 euros/kg

Estudio comparativo de las propiedades de las fibra s usadas en materiales compuestos

65 euros/kg

100 euros/kg

60 euros/kg

38 euros/kg

Fibras de vidrio: Usadas desde 1930, son las más usadas, bajo coste y fácil procesado (ver tema 4 para características generales del vidrio)

Diámetros de las fibras de 7 a 12 micras

Longitud: fibras cortas (mm) y largas (varios cm)

Las hay de dos calidades vidrio E y S

a) Vidrio de sílice

b) Vidrio de alumino silicato sodico (SiO2 Al2O3 y Na2O)

Aplicaciones en aeronáutica

Partes interiores del fuselaje

Estructuras aviones deportivos

Palas helicópteros

Están muy presentes en automoción (multitud de piezas de plástico) y en la industria eólica, palas de aerogeneradores.

Se incorpora un aditivo que protege a la fibra y sirve de agente de acoplamiento

Fibras de carbono

Se parte de PAN, realizándose proceso de oxidación,

carbonización y grafitización

El resultado son fibras de diámetros 7 -8 micras y con estructura tipo grafito en las láminas que las conforman, esto aporta al material excelentes propiedades en la dirección de la fibra

Aplicaciones:

Aeronautica

Bicicletas, palos de golf, raquetas

Al ser la fibra anisotropica también puede serlo el material fabricada con ella, como se puede observar en los datos que siguen

Fibras de Kevlar (1970) Dupont, Se fabrican a partir de poliaramida

Fibras de polietileno (Spectra), (1980) Applied Chemical Company. Se fabrican a partir de polietilenos de ultra alto peso molecular.

Fabricación de fibras de KevlarFibras de Kevlar, ordenamiento de las cadenas poliméricas, estructura de la fibra

Aplicaciones: Protección balística, chalecos antiba las

Industrias aeronáuticas y naval