Tema 4. Cálculo deductivo en lógica proposicional

12
Tema 4. Cálculo deductivo en lógica proposicional b) Deducibilidad, teorema, interdeducibilidad

description

Tema 4. Cálculo deductivo en lógica proposicional. b) Deducibilidad, teorema, interdeducibilidad. Deducible. Una fórmula  es deducible de una fórmula  si es posible obtener  desde  aplicando una serie de reglas de inferencia. Ejemplos: - PowerPoint PPT Presentation

Transcript of Tema 4. Cálculo deductivo en lógica proposicional

Page 1: Tema 4. Cálculo deductivo en lógica proposicional

Tema 4. Cálculo deductivo en lógica proposicional

b) Deducibilidad, teorema, interdeducibilidad

Page 2: Tema 4. Cálculo deductivo en lógica proposicional

Deducible

• Una fórmula es deducible de una fórmula si es posible obtener desde aplicando una serie de reglas de inferencia.

• Ejemplos:

q es deducible de (p q) (Eliminación de conyuntor)

(r s) es deducible de r (Introducción de disyuntor)

p no es deducible de (p q)

r no es deducible de (q r)

Page 3: Tema 4. Cálculo deductivo en lógica proposicional

Deducible

• En general, una fórmula es deducible de un conjunto de fórmulas{1... n} si es posible obtener desde {1... n} aplicando una serie de reglas de inferencia.

• Ejemplos:

q es deducible de {(p q), p} (Modus ponens)

r es deducible de {(r p), (q ¬p) (Eliminación de conyuntor, Eliminación de disyuntor por negación)

Page 4: Tema 4. Cálculo deductivo en lógica proposicional

Teorema• Las reglas de Reducción al Absurdo e Introducción del

Condicional permiten empezar una deducción sin utilizar ninguna premisa.

• Si podemos cerrar la RA o la ICd con la que hemos comenzado, la fórmula así obtenida será una que no requiere de premisa alguna para su demostración.

• Ejemplo:

1. p (hipótesis) 2. ¬q p ID 1 3. q p DCD 24. p (q p) ICd 1-3

Page 5: Tema 4. Cálculo deductivo en lógica proposicional

Teorema• Este tipo de fórmula demostrable sin premisas se llama

TEOREMA.• Dado que un teorema es demostrable sin premisa alguna, eso

significa que un teorema es deducible desde cualquier otra fórmula. El papel de esta fórmula es en realidad irrelevante:

1. r premisa 2. ¬(p (q p)) (hipótesis) 3. p ¬ (q p) NCC 1 Como se ve, la 4. ¬(q p) EC 2 fórmula de la 5. q ¬p NCC 3 premisa no

desempeña 6. p EC 2 papel alguno. 7. ¬p EC 4 8. p ¬p IC 5,69. ¬¬(p (q p)) RA 1-710. p (q p) DN 8

Page 6: Tema 4. Cálculo deductivo en lógica proposicional

Teorema• Los teoremas no tienen por qué ser más difíciles de

demostrar que las derivaciones con premisas. La dificultad depende de la complejidad de la fórmula a obtener, no del hecho de que empleemos premisas o no.

• De hecho, demostrar un teorema plantea una restricción en relación al modo de comenzar el ejercicio: necesariamente debe empezar con la introducción de un supuesto, bien con vistas a una Reducción o a una Introducción de Condicional.

Page 7: Tema 4. Cálculo deductivo en lógica proposicional

Teorema• Cualquier fórmula demostrable desde un teorema,

debe ser a su vez un teorema.• Supongamos que es un teorema y que es

demostrable desde . Entonces existe la secuencia siguiente de pasos:

1. Demostramos sin premisas2. Aplicamos reglas de inferencia3. Obtenemos

• Como se ve, ha sido obtenida sin utilizar tampoco premisa alguna; por tanto, es también un teorema

Page 8: Tema 4. Cálculo deductivo en lógica proposicional

Interdeducibilidad• Si una fórmula es deducible desde y a su vez es

deducible desde , decimos de ellas que son INTERDEDUCIBLES.

• Por ejemplo, ¬(p (q r)) y ¬((¬q ¬p) r) lo son:

1. ¬(p (q r)) Pr 10. ¬(¬q ¬p) ¬r IC 8,9 2. p ¬(q r) NCC1 11. ¬((¬q ¬p) r) NDC 103. p EC 24. ¬¬p DN 45. ¬(q r) EC 26. ¬q ¬r NDC 57. ¬q ¬¬p IC 6, 48. ¬(¬q ¬p) NCC 79. ¬r EC 6

Page 9: Tema 4. Cálculo deductivo en lógica proposicional

Interdeducibilidad• Si una fórmula es deducible desde y a su vez es

deducible desde , decimos de ellas que son INTERDEDUCIBLES.

• Por ejemplo, ¬(p (q r)) y ¬((¬q ¬p) r) lo son:

1. ¬((¬q ¬p) r) Pr 12. ¬p ¬¬p IC 10,11 2. p (q r) hip 13. ¬(p (q r)) RA 2-12 3. ¬(¬q ¬p) ¬r NDC 1 4. ¬(¬q ¬p) EC 3 5. ¬q ¬¬p NCC 4 6. ¬q EC 5 7. ¬r EC 38. ¬q ¬r IC 6,79. ¬(q r) NDC 810. ¬p EDN 2, 911. ¬¬p EC 5

Page 10: Tema 4. Cálculo deductivo en lógica proposicional

Paralelismo sintáctico-semántico• Hay un paralelismo entre la tríada de propiedades

que acabamos de ver y las nociones semánticas estudiadas el tema anterior:

SEMÁNTICO SINTÁCTICO

Consecuencia lógica Deducibilidad

Verdad lógica Teorema

Equivalencia Interdeducibilidad

Page 11: Tema 4. Cálculo deductivo en lógica proposicional

Paralelismo sintáctico-semántico• En otras palabras, da la impresión de que:

a) Las consecuencias lógicas de son deducibles desde y, a la inversa, lo que es deducible desde es consecuencia lógica de .

b) Toda verdad lógica constituye un teorema y, a la inversa, todo teorema es una verdad lógica

c) Dos fórmulas y equivalentes son interdeducibles y, a la inversa, dos fórmulas interdeducibles son equivalentes

Page 12: Tema 4. Cálculo deductivo en lógica proposicional

Paralelismo sintáctico-semántico• Esta impresión es correcta: (a), (b) y (c) se cumplen.

Pero decir que da la impresión no es suficiente: demostrar que (a), (b) y (c) se cumplen es tarea de la METALÓGICA.

• Esta disciplina se encarga de investigar qué

propiedades tienen los sistemas lógicos.

• En virtud de cumplir (a), por ejemplo, diremos que el cálculo de la lógica proposicional es COMPLETO y CORRECTO

• No todo sistema lógico tiene estas propiedades.