Tank700kl 150530040421-lva1-app6891

41
Page 1 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:42 AM ETANK FULL REPORT - Quote Rekadaya-700 KL ETank2000 MU 1.9.14 (26 Oct 2010) TABLE OF CONTENTS PAGE 1 ETANK SETTINGS SUMMARY PAGE 2 SUMMARY OF DESIGN DATA AND REMARKS PAGE 3 SUMMARY OF RESULTS PAGE 5 ROOF DESIGN PAGE 8 SHELL COURSE DESIGN PAGE 13 BOTTOM DESIGN PAGE 22 SEISMIC CALCULATIONS PAGE 27 ANCHOR BOLT DESIGN PAGE 34 CAPACITIES AND WEIGHTS PAGE 40 MAWP & MAWV SUMMARY PAGE 41

Transcript of Tank700kl 150530040421-lva1-app6891

Page 1: Tank700kl 150530040421-lva1-app6891

Page 1 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:42 AM

ETANK FULL REPORT - Quote Rekadaya-700 KLETank2000 MU 1.9.14 (26 Oct 2010)

TABLE OF CONTENTS PAGE 1

ETANK SETTINGS SUMMARY PAGE 2

SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

SUMMARY OF RESULTS PAGE 5

ROOF DESIGN PAGE 8

SHELL COURSE DESIGN PAGE 13

BOTTOM DESIGN PAGE 22

SEISMIC CALCULATIONS PAGE 27

ANCHOR BOLT DESIGN PAGE 34

CAPACITIES AND WEIGHTS PAGE 40

MAWP & MAWV SUMMARY PAGE 41

Page 2: Tank700kl 150530040421-lva1-app6891

Page 2 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

ETANK SETTINGS SUMMARY

To Change These ETank Settings, Go To Tools->Options, Behavior Tab.---------------------------------------------------------------------- No 650 Appendix F Calcs when Tank P = 0 -> Default : False -> This Tank : False Show MAWP / MAWV Calcs : True Enforce API Minimum thicknesses : True Enforce API Maximum Roof thickness : True Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True Force Non-Annular Btm. to Meet API-650 5.5.1 : False Set t.actual to t.required Values : False Maximum 650 App. S or App. M Multiplier is 1 : True Enforce API Maximum Nozzle Sizes : True Max. Self Supported Roof thickness : 0.5 in. Max. Tank Corr. Allowance : 0.5 in. External pressure calcs subtract C.A. per V.5 : False Use Gauge Material for min thicknesses : False Enforce API Minimum Live Load : True Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : True

Page 3: Tank700kl 150530040421-lva1-app6891

Page 3 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

SUMMARY OF DESIGN DATA and REMARKS

Job : Quote Rekadaya-700 KLDate of Calcs. : 4/29/2015 , 11:40 AMMfg. or Insp. Date : 4/11/2015Designer : WidiProject : Gorontalo PeakerTag Number : 01Plant : 01Plant Location : Area TankSite : GorontaloDesign Basis : API-650 11th Edition, Addendum 2, Nov 2009

----------------------------------------------------------------------- TANK NAMEPLATE INFORMATION

----------------------------------------------------------------------- Operating Ratio: 0.4- Design Standard:- API-650 11th Edition, Addendum 2, Nov 2009 -- (None) -- Roof : A-36: 0.315in. -- Shell (6): A-36: 0.315in. -- Shell (5): A-36: 0.315in. -- Shell (4): A-36: 0.315in. -- Shell (3): A-36: 0.315in. -- Shell (2): A-36: 0.315in. -- Shell (1): A-36: 0.315in. -- Bottom : A-36: 0.3937in. -- Annular Ring : A-36: 0.3937in. -

----------------------------------------------------------------------

Design Internal Pressure = 0 PSI or 0 IN. H2ODesign External Pressure = 0 PSI or 0 IN. H2O

MAWP = 0.3832 PSI or 10.62 IN. H2OMAWV = -0.2521 PSI or -6.99 IN. H2O

OD of Tank = 31.16 ftShell Height = 35.43 ftS.G. of Contents = 1Max. Liq. Level = 35.43 ft

Design Temperature = 104 °FTank Joint Efficiency = 0.85

Ground Snow Load = 0 lbf/ft^2Roof Live Load = 20 lbf/ft^2Design Roof Dead Load = 0 lbf/ft^2

Page 4: Tank700kl 150530040421-lva1-app6891

Page 4 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

Basic Wind Velocity = 100 mphWind Importance Factor = 1Using Seismic Method: API-650 11th Ed. - ASCE7 Mapped (Ss & S1) Seismic Use Group: III Site Class: D T_L = 12 sec Ss = 150 %g S1 = 50 %g S0 = 60 %g Av = 0 %g Q = 1 Importance Factor = 1.5

DESIGN NOTES

NOTE 1 : Tank is not subject to API-650 Appendix F.7

Page 5: Tank700kl 150530040421-lva1-app6891

Page 5 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

SUMMARY OF RESULTS

Shell Material Summary (Bottom is 1)------------------------------------------------------------------------Shell Width Material Sd St Weight CA# (ft) (psi) (psi) (lbf) (in)------------------------------------------------------------------------6 5.43 A-36 23,200 24,900 6,825 0.1185 6 A-36 23,200 24,900 7,541 0.1184 6 A-36 23,200 24,900 7,541 0.1183 6 A-36 23,200 24,900 7,541 0.1182 6 A-36 23,200 24,900 7,541 0.1181 6 A-36 23,200 24,900 7,541 0.118------------------------------------------------------------------------Total Weight 44,530

Shell API 650 Summary (Bottom is 1)----------------------------------------------------------------------Shell t.design t.test t.external t.seismic t.required t.actual# (in.) (in.) (in.) (in.) (in.) (in.)----------------------------------------------------------------------6 0.1362 0.017 N.A. 0.1476 0.1875 0.3155 0.1608 0.0399 N.A. 0.1768 0.1875 0.3154 0.1855 0.0629 N.A. 0.2034 0.2034 0.3153 0.2101 0.0859 N.A. 0.2265 0.2265 0.3152 0.2348 0.1088 N.A. 0.2474 0.2474 0.3151 0.2594 0.1318 N.A. 0.2682 0.2682 0.315----------------------------------------------------------------------

Structurally Supported Conical Roof Plate Material = A-36, Struct. Material = A-36

t.required = 0.3055 in. t.actual = 0.315 in. Roof Joint Efficiency = 0.7

Plate Weight = 9,802 lbf

Rafters: 14 Rafters at Rad. 15.58 ft.: UNP 150 x 75 x6.5

Rafters Weight = 227 lbf

Girders:

Girders Weight = 0 lbf

Columns: 1 Column at Center:

Columns Weight = 0 lbf

Page 6: Tank700kl 150530040421-lva1-app6891

Page 6 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

Bottom Type: Flat Bottom: Annular Bottom Floor Material = A-36 t.required = 0.354 in. t.actual = 0.3937 in. Bottom Joint Efficiency = 0.85

Annular Bottom Plate Material : A-36 Minimum Annular Ring Thickness = 0.354 in. t_Annular_Ring = 0.3937 in. Minimum Annular Ring Width = 24 in. W_Annular_Ring = 53 in.

Total Weight of Bottom = 12,511 lbf

ANCHOR BOLTS: (12) 1.75in. UNC Bolts, A-193 Gr B7

TOP END STIFFENER: L80x80x8, A-36, 640. lbf

Page 7: Tank700kl 150530040421-lva1-app6891

Page 7 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

SUPPORTED CONICAL ROOF (from Brownell & Young)

Roof Plate Material: A-36, Sd = 23,200 PSI, Fy = 36,000 PSI (API-650 Table « 5-2b)Structural Material: A-36, Sd = 23,200 PSI, Fy = 36,000 PSI (API-650 Table « 5-2b)

R = 15.58 ft pt = 0.75 in/ft (Cone Roof Pitch)

Theta = ATAN(pt/12) = ATAN(0.0625) = 3.5763 degrees

Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 0.75*31.16^2/48 = 15.171 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*31.16 = 15.58 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*15.58^2 = 762.579 ft^2

S = Ground Snow Load = 0 lbf/ft^2 Sb = Balanced Design Snow Load = 0 lbf/ft^2 Su = Unbalanced Design Snow Load = 0 lbf/ft^2

Dead_Load = Insulation + Plate_Weight + Added_Dead_Load = (8)(0/12) + 12.8505 + 0 = 12.8505 lbf/ft^2

Roof Loads (per API-650 Appendix R)

Pe = PV*144 = 0*144 = 0 lbf/ft^2

e.1b = DL + MAX(Sb,Lr) + 0.4*Pe = 12.8505 + 20 + 0.4*0 = 32.851 lbf/ft^2

e.2b = DL + Pe + 0.4*MAX(Sb,Lr) = 12.8505 + 0 + 0.4*20 = 20.851 lbf/ft^2

T = Balanced Roof Design Load (per API-650 Appendix R) = MAX(e.1b,e.2b) = 32.851 lbf/ft^2

e.1u = DL + MAX(Su,Lr) + 0.4*Pe = 12.8505 + 20 + 0.4*0 = 32.851 lbf/ft^2

e.2u = DL + Pe + 0.4*MAX(Su,Lr) = 12.8505 + 0 + 0.4*20 = 20.851 lbf/ft^2

Page 8: Tank700kl 150530040421-lva1-app6891

Page 8 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

U = Unbalanced Roof Design Load (per API-650 Appendix R) = MAX(e.1u,e.2u) = 32.851 lbf/ft^2

Lr_1 = MAX(T,U) = 32.851 lbf/ft^2

P = Max. Design Load = Lr_1 = 32.851 lbf/ft^2 = 0.2281 PSI

l = Maximum Rafter Spacing (Per API-650 5.10.4.4) = (t - ca) * SQRT(1.5 * Fy / P) = (0.315 - 0.118)*SQRT(1.5*36,000/0.2281) = 95.85 in.

MINIMUM # OF RAFTERS

< FOR OUTER SHELL RING >

l = 84 in. since calculated l > 84 in. (7 ft)

N_min = 2*PI*R/l = 2*PI*(15.58)(12)/84 = 13.98

N_min = 14

Actual # of Rafters = 14

Minimum roof thickness based on actual rafter spacing

l = 83.91 in. (actual rafter spacing)

t-Calc = l/SQRT(1.5*Fy/p) + CA = 83.91/SQRT(1.5*36,000/0.2281) + 0.118 = 0.2905 in. NOTE: Governs for roof plate thickness.

RLoad_Max = Maximum Roof Load based on actual rafter spacing

RLoad_Max = 216(Fy)/(l/(t - ca))^2 = 216(36,000)/(83.91/(0.315 - 0.118))^2 = 57.15 lb/ft^2

Let Max_T1 = RLoad_Max

P_ext_1 (Vacuum limited by actual rafter spacing) = -[Max_T1 - DL - 0.4 * Max(Snow_Load,Lr)]/144 = -[57.15 - 12.8505 - 0.4 * Max(0,20)]/144 = -0.2521 PSI or -6.99 IN. H2O

Pa_rafter_1 = P_ext_1 = -0.2521 PSI or -6.99 IN H2O.

t.required = MAX(t-Calc, 0.1875 + 0.118) = MAX(0.2905,0.3055) = 0.3055 in.

Page 9: Tank700kl 150530040421-lva1-app6891

Page 9 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

RAFTER DESIGN

Maximum Rafter Span = 15.58 ft Average Rafter Spacing on Shell = 6.934 ft Average Plate Width = (6.934)/2 = 3.467 ft

Mmax = Maximum Bending Moment Mmax = wl^2/8 where, w = (0.2281)(3.467)*12 + 1.043/12 = 9.58 lbf/in l = (15.58)(12) = 186.96 in. Mmax = (9.58)(186.96)^2/8 = 41857. in-lbf

Z req'd = Mmax/23,200 = 41857./23,200 = 1.8 in^3 Actual Z = 5.22 in^3 using UNP 150 x 75 x6.5

W_Max (Max. stress allowed for each rafter in ring 1) = Z * Sd * 8 / l^2 = 5.22 * 23,200 * 8 / 186.96^2 = 27.7173 lbf/in.

Max_P (Max. Load allowed for each rafter in ring 1) = (W_Max - W_Rafter/12)/(Average Plate Width*12) = (27.7173 - 1.043/12)/(3.467*12) = 0.6641 PSI

Let Max_T1 = Max_P * 144

P_ext_2 (Vacuum limited by Rafter Type) = -[Max_T1 - DL - 0.4 * Max(Snow_Load,Lr)]/144 = -[95.6304 - 12.8505 - 0.4 * Max(0,20)]/144 = -0.5193 PSI or -14.39 IN. H2O Pa2_rafter_1 = P_ext_2 (limited by Rafter Type)

Page 10: Tank700kl 150530040421-lva1-app6891

Page 10 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

COLUMN DESIGN

* * * NOTE * * * NO COLUMN DESIGN CALCS PEFORMED BECAUSE COLUMN TYPE NOT SELECTED.

Roof_Area = 36*PI*OD^2/COS(Theta) = 36*PI*(31.16)^2/COS() = 110,026 in^2

ROOF WEIGHT

Weight of Roof Plates = (density)(t)(PI/4)(12*OD - t)^2/COS(Theta) = (0.2833)(0.315)(PI/4)(373.92 - 0.315)^2/COS(3.5763) = 9,802 lbf (New) = 6,130 lbf (Corroded)

Weight of Roof Plates supported by shell = 9,802 lbf (New) = 6,130 lbf (Corroded)

Weight of Rafters = 227 lbf (New) Weight of Girders = 0 lbf (New) Weight of Columns = 0 lbf (New)

Total Weight of Roof = 10,029 lbf (New) = 6,357 lbf (Corroded)

<Actual Participating Area of Roof-to-Shell Juncture>

(From API-650 Figure F-2) Wc = 0.6 * SQRT[Rc * (t-CA)] (Top Shell Course) = 0.6 * SQRT[186.645 * (0.315 - 0.118)] = 3.6383 in.

(From API-650 Figure F-2) Wh = 0.3 * SQRT[R2 * (t-CA)] (or 12", whichever is less) = 0.3 * SQRT[2,997 * (0.315 - 0.118)] = MIN(7.2897, 12) = 7.2897 in.

Top End Stiffener: L80x80x8 Aa = (Cross-sectional Area of Top End Stiffener) = 1.906 in^2

Using API-650 Fig. F-2, Detail b End Stiffener Detail

Ashell = Contributing Area due to shell plates = Wc*(t_shell - CA) = 3.6383 * (0.315 - 0.118) = 0.717 in^2

Aroof = Contributing Area due to roof plates = Wh*(t_roof - CA) = 7.2897 * (0.315 - 0.118) = 1.436 in^2

Page 11: Tank700kl 150530040421-lva1-app6891

Page 11 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

A = Actual Part. Area of Roof-to-Shell Juncture (per API-650) = Aa + Aroof + Ashell = 1.906 + 1.436 + 0.717 = 4.059 in^2

< Uplift on Tank > (per API-650 F.1.2)

NOTE: This flat bottom tank is assumed supported by the bottom plate. If tank not supported by a flat bottom, then uplift calculations will be N.A., and for reference only.

For flat bottom tank with structural roof, Net_Uplift = Uplift due to design pressure less Corroded weight of shell and corroded roof weight.

= P * PI / 4 * D ^ 2 * 144 « - Corr. shell - [Corr. roof weight + Structural weight] = 0 * 3.1416 / 4 * 970.9456 * 144 « - 27,860 - [6,130 + 227 + 0 + 0] = -34,217 lbf

< Uplift Case per API-650 1.1.1 >

P_Uplift = 0 lbf W_Roof_Plates (corroded) = 6,130 lbf W_Roof_Structure = 227 lbf W_Shell (corroded) = 27,860 lbf Since P_Uplift <= W_Roof, Tank Roof does not need to meet App. F requirements.

< API-650 App. F >

Fy = Min(Fy_roof,Fy_shell,Fy_stiff) = Min(36,000,36,000,36,000) = 36,000 psi

A_min_a = Min. Participating Area due to full Design Pressure. (per API-650 F.5.1, and Fig. F-2)

(using API assumption internal P of 1/32 PSI)

= [OD^2(P - 8*t)]/[0.962*36,000*TAN(Theta)] = [31.16^2(0.0313 - 8*0.315)]/[0.962*36,000*0.0625] = -0.74 in^2 = 0 in^2 (since can't be negative)

P_F51 = Max. Design Pressure, reversing A_min_a calculation. = A * [0.962*36,000*TAN(Theta)]/OD^2 + 8*t_h = 4.059 * [0.962*36,000*0.0625]/31.16^2 + 8*0.197 = 0.3832 PSI or 10.62 IN. H2O

P_Std = Max. Pressure allowed (Per API-650 App. F.1.3 & F.7) = 2.5 PSI or 69.28 IN. H2O

Page 12: Tank700kl 150530040421-lva1-app6891

Page 12 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

P_max_internal = MIN(P_F51, P_Std) = MIN(10.62, 69.28) = 0.3832 PSI or 10.62 IN. H2O

P_max_external = -0.2521 PSI or -6.99 IN. H2O

Page 13: Tank700kl 150530040421-lva1-app6891

Page 13 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:55 AM

SHELL COURSE DESIGN (Bottom Course is #1)

VDP Criteria (per API-650 5.6.4.1) L = (6*D*(t-ca))^0.5 = (6*31.16*(0.315-0.118))^0.5 = 6.0689 H = Max Liquid Level =35.43 ft L / H <= 2

Course # 1 Material: A-36; Width = 6 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85

API-650 ONE FOOT METHOD

Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress)

DESIGN CONDITION G = 1 (per API-650)

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 35.43 + 2.31*0/1 = 35.43ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(35.43 - 1)*1/(23,200*0.85) + 0.118 = 0.2594 in.

hMax_1 = E*Sd*(t_1 - CA_1)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft.

Pmax_1 = (hMax_1 - H) * 0.433 * G = (48.9515 - 35.43) * 0.433 * 1 = 5.8548 PSI

Pmax_int_shell = Pmax_1

Pmax_int_shell = 5.8548 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 35.43 + 2.31*0/1 = 35.43ft

t.test = 2.6*31.16*(35.43 - 1)/(24,900*0.85) = 0.1318 in.

Course # 2 Material: A-36; Width = 6 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85

Page 14: Tank700kl 150530040421-lva1-app6891

Page 14 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

API-650 ONE FOOT METHOD

Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress)

DESIGN CONDITION G = 1 (per API-650)

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 29.43 + 2.31*0/1 = 29.43ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(29.43 - 1)*1/(23,200*0.85) + 0.118 = 0.2348 in.

hMax_2 = E*Sd*(t_2 - CA_2)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft.

Pmax_2 = (hMax_2 - H) * 0.433 * G = (48.9515 - 29.43) * 0.433 * 1 = 8.4528 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(5.8548, 8.4528)

Pmax_int_shell = 5.8548 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 29.43 + 2.31*0/1 = 29.43ft

t.test = 2.6*31.16*(29.43 - 1)/(24,900*0.85) = 0.1088 in.

Course # 3 Material: A-36; Width = 6 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85

API-650 ONE FOOT METHOD

Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress)

DESIGN CONDITION G = 1 (per API-650)

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 23.43 + 2.31*0/1 = 23.43ft

Page 15: Tank700kl 150530040421-lva1-app6891

Page 15 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(23.43 - 1)*1/(23,200*0.85) + 0.118 = 0.2101 in.

hMax_3 = E*Sd*(t_3 - CA_3)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft.

Pmax_3 = (hMax_3 - H) * 0.433 * G = (48.9515 - 23.43) * 0.433 * 1 = 11.0508 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(5.8548, 11.0508)

Pmax_int_shell = 5.8548 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 23.43 + 2.31*0/1 = 23.43ft

t.test = 2.6*31.16*(23.43 - 1)/(24,900*0.85) = 0.0859 in.

Course # 4 Material: A-36; Width = 6 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85

API-650 ONE FOOT METHOD

Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress)

DESIGN CONDITION G = 1 (per API-650)

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 17.43 + 2.31*0/1 = 17.43ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(17.43 - 1)*1/(23,200*0.85) + 0.118 = 0.1855 in.

hMax_4 = E*Sd*(t_4 - CA_4)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft.

Pmax_4 = (hMax_4 - H) * 0.433 * G = (48.9515 - 17.43) * 0.433 * 1 = 13.6488 PSI

Page 16: Tank700kl 150530040421-lva1-app6891

Page 16 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

Pmax_int_shell = Min(Pmax_int_shell, Pmax_4) = Min(5.8548, 13.6488)

Pmax_int_shell = 5.8548 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 17.43 + 2.31*0/1 = 17.43ft

t.test = 2.6*31.16*(17.43 - 1)/(24,900*0.85) = 0.0629 in.

Course # 5 Material: A-36; Width = 6 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85

API-650 ONE FOOT METHOD

Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress)

DESIGN CONDITION G = 1 (per API-650)

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 11.43 + 2.31*0/1 = 11.43ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(11.43 - 1)*1/(23,200*0.85) + 0.118 = 0.1608 in.

hMax_5 = E*Sd*(t_5 - CA_5)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft.

Pmax_5 = (hMax_5 - H) * 0.433 * G = (48.9515 - 11.43) * 0.433 * 1 = 16.2468 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_5) = Min(5.8548, 16.2468)

Pmax_int_shell = 5.8548 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 11.43 + 2.31*0/1 = 11.43ft

Page 17: Tank700kl 150530040421-lva1-app6891

Page 17 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

t.test = 2.6*31.16*(11.43 - 1)/(24,900*0.85) = 0.0399 in.

Course # 6 Material: A-36; Width = 5.43 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85

API-650 ONE FOOT METHOD

Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress)

DESIGN CONDITION G = 1 (per API-650)

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 5.43 + 2.31*0/1 = 5.43ft

t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(5.43 - 1)*1/(23,200*0.85) + 0.118 = 0.1362 in.

hMax_6 = E*Sd*(t_6 - CA_6)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft.

Pmax_6 = (hMax_6 - H) * 0.433 * G = (48.9515 - 5.43) * 0.433 * 1 = 18.8448 PSI

Pmax_int_shell = Min(Pmax_int_shell, Pmax_6) = Min(5.8548, 18.8448)

Pmax_int_shell = 5.8548 PSI

HYDROSTATIC TEST CONDITION

< Design Condition G = 1 >

H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 5.43 + 2.31*0/1 = 5.43ft

t.test = 2.6*31.16*(5.43 - 1)/(24,900*0.85) = 0.017 in.

Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2.5

Transforming Courses (1) to (6)

Page 18: Tank700kl 150530040421-lva1-app6891

Page 18 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

Wtr(1) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(2) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(3) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(4) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(5) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(6) = 5.4038*[ 0.315/0.315 ]^2.5 = 5.4037 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 35.4037 ft

INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7) V (Wind Speed) = 100 mph Ve = vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0.6944 Design PV = 0 PSI, OR 0 In. H2O

<TOP END STIFFENER CALCULATIONS> Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e) = 0.27 in^3,

For Structural Roof and OD <= 35 ft, Minimum Required Angle is 2 x 2 x 3/16 in. Actual Z = 0.971 in^3 Using L80x80x8, Wc = 4.6054

<INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7)

* * * NOTE: Using the thinnest shell course, t_thinnest, instead of top shell course.

* * * NOTE: Not subtracting corrosion allowance per user setting.

ME = 28,799,999/28,799,999 = 1

Hu = Maximum Height of Unstiffened Shell = {ME*600,000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve) = {1*600,000*0.315*SQRT[0.315/31.16]^3} / 0.6944 = 276.6266 ft

Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2.5

Transforming Courses (1) to (6)

Wtr(1) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(2) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(3) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(4) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(5) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(6) = 5.4038*[ 0.315/0.315 ]^2.5 = 5.4037 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 35.4037 ft

L_0 = Hts/# of Stiffeners + 1 = 35.4037/1 = 35.4 ft.

No Intermediate Wind Girders Needed Since Hu >= L_0

Page 19: Tank700kl 150530040421-lva1-app6891

Page 19 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

SHELL COURSE #1 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.2594, 0, 0.2682) = 0.2682 in.

t-650min = 0.236 in. (per API-650 Section 5.6.1.1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.2682 in. t.actual = 0.315 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315 = 7,541 lbf (New) = 4,718 lbf (Corroded)

SHELL COURSE #2 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.2348, 0, 0.2474) = 0.2474 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.2474 in. t.actual = 0.315 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315 = 7,541 lbf (New) = 4,718 lbf (Corroded)

SHELL COURSE #3 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.2101, 0, 0.2265) = 0.2265 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.2265 in. t.actual = 0.315 in.

Page 20: Tank700kl 150530040421-lva1-app6891

Page 20 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315 = 7,541 lbf (New) = 4,718 lbf (Corroded)

SHELL COURSE #4 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1855, 0, 0.2034) = 0.2034 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.2034 in. t.actual = 0.315 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315 = 7,541 lbf (New) = 4,718 lbf (Corroded)

SHELL COURSE #5 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1608, 0, 0.1768) = 0.1768 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)

t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.315 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315 = 7,541 lbf (New) = 4,718 lbf (Corroded)

SHELL COURSE #6 SUMMARY-------------------------------------------

t.seismic governs. See E.6.2.4 table in SEISMIC calculations.

t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1362, 0, 0.1476) = 0.1476 in.

t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)

Page 21: Tank700kl 150530040421-lva1-app6891

Page 21 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.315 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*5.43*0.315 = 6,825 lbf (New) = 4,270 lbf (Corroded)

Page 22: Tank700kl 150530040421-lva1-app6891

Page 22 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

FLAT BOTTOM: ANNULAR PLATE DESIGN

Bottom Plate Material : A-36 Annular Bottom Plate Material : A-36

<Weight of Bottom Plate>

Bottom_Area = PI/4*(OD - 2*t_course_1 - 2*AnnRing_Width)^2 = PI/4*(373.92 - 2*0.315 - 2*53)^2 = 56,112 in^2

Annular_Area = PI/4*(Bottom_OD)^2 - Bottom_Area = PI/4*(377.92)^2 - 56,112 = 56,061 in^2

Weight = Btm_Density * t.actual * Bottom_Area + Ann_Density * t-AnnRing * « Annular_Area) = 0.2833 * 0.3937*56,112 + 0.2833 * 0.3937*56,061 = 12,511 lbf (New) = 8,761 lbf (Corroded)

< API-650 >

Calculation of Hydrostatic Test Stress & Product Design Stress (per API-650 Section 5.5.1)

t_1 : Bottom (1st) Shell Course thickness.

H'= Max. Liq. Level + P(psi)/(0.433) = 35.43 + (0)/(0.433) = 35.43 ft

St = Hydrostatic Test Stress in Bottom (1st) Shell Course = (2.6)(OD)(H' - 1)/t_1 = (2.6)(31.16)(35.43 - 1)/(0.315) = 8,855 PSI

Sd = Product Design Stress in Bottom (1st) Shell Course = (2.6)(OD)(H' - 1)(G)/(t_1 - ca_1) = (2.6)(31.16)(35.43 - 1)(1)/(0.197) = 14,159 PSI

--------------------------

<Non-Annular Bottom Plates>

t_min = 0.236 + CA = 0.236 + 0.118 = 0.354 in. (per Section 5.4.1)

t-Calc = t_min = 0.354 in.

t-Actual = 0.3937 in.

<Annular Bottom Plates> (per API-650 5.5.3 TABLE 5-1b),

t_Min_Annular_Ring = 0.236 + 0.118 = 0.354 in.

t_Annular_Ring = Actual Annular Ring Thickness = 0.3937 in.

Page 23: Tank700kl 150530040421-lva1-app6891

Page 23 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

W_Annular_Ring = Actual Annular Ring Width = 53 in.

<Annular Bottom Plates> (per API-650 Section 5.5.2),

W_int = Minimum Annular Ring Width (from Shell ID to Any Lap-Welded Joint) (t_Min_Annular_Ring exclusive of corrosion) = 390*t_Min_Annular_Ring/SQRT(H*G) = 390(0.236)/SQRT(35.43*1) = 15.46 in.

W_int = 24 in.

< FLAT BOTTOM: ANNULAR SUMMARY >

Bottom Plate Material : A-36 t.required = 0.354 in. t.actual = 0.3937 in.

Annular Bottom Plate Material : A-36 Minimum Annular Ring Thickness = 0.354 in. t_Annular_Ring = 0.3937 in. Minimum Annular Ring Width = 24 in. W_Annular_Ring = 53 in.

Page 24: Tank700kl 150530040421-lva1-app6891

Page 24 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -34,217 lbf Anchorage NOT required for internal pressure.

WIND MOMENT (Per API-650 SECTION 5.11)

vs = Wind Velocity = 100 mph vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0.6944

Wind_Uplift = Iw * 30 * vf = 1 * 30 * 0.6944 = 20.8333 lbf/ft^2

API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0.962*Fy*A*TAN(Theta)/D^2 + 8*t_h) P_F41 = WCtoPSI(0.962*36,000*4.059*0.0625/31.16^2 + 8*0.197) = 0.3832 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 0.1447 PSI 1.6*P_F41 = 0.6131 PSI

Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(20.8333,88.2893) = 20.8333 lbf/ft^2

Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 0.75*31.16^2/48 = 15.171 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*31.16 = 15.58 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*15.58^2 = 762.579 ft^2

M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (20.8333)(762.579)(15.58) = 247,520 ft-lbf

Xs (Moment Arm of Wind Force on Shell) = H/2 = (35.43)/2 = 17.715 ft

As (Projected Area of Shell) = H*(OD + t_ins / 6) = (35.43)(31.16 + 0/6) = 1,104 ft^2

M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(0.6944)(18)(1,104)(17.715) = 244,467 ft-lbf

Page 25: Tank700kl 150530040421-lva1-app6891

Page 25 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

Mw (Wind moment) = M_roof + M_shell = 247,520 + 244,467 = 491,987 ft-lbf

W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates less 40% of F.1.2 Uplift force.)

= W_shell + W_roof - 0.4*P*(PI/4)(144)(OD^2) = 27,860 + 6,130 - 0*(PI/4)(144)(31.16^2) = 33,990 lbf

RESISTANCE TO OVERTURNING (per API-650 5.11.2)

An unanchored Tank must meet these two criteria: 1) 0.6*Mw + MPi < MDL/1.5 2) Mw + 0.4MPi < (MDL + MF)/2

Mw = Destabilizing Wind Moment = 491,987 ft-lbf

MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design « Pressure. = P*(PI*OD^2/4)*(144)*(OD/2) = 0*(3.1416*31.16^2/4)*(144)*(15.58) = 0 ft-lbf

MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and « Roof weight supported by the Shell. = (W_shell + W_roof)*OD/2 = (27,860 + 6,130)*15.58 = 529,564 ft-lbf

tb = Annular Bottom Ring thickness less C.A. = 0.2757 in.

Lb = Minimum bottom annular ring width

Lb = greater of 18 in. or 0.365*tb*SQRT(Sy_btm/H_liq) = 18 in.

wl = Circumferential loading of contents along Shell-To-Bottom Joint. = 4.67*tb*SQRT(Sy_btm*H_liq) = 4.67*0.2757*SQRT(36,000*35.43) = 1,454 lbf/ft

wl = 0.9 * H_liq * OD (lesser value than above) = 0.9*35.43*31.16 = 993.6 lbf/ft

MF = Stabilizing Moment due to Bottom Plate and Liquid Weight. = (OD/2)*wl*PI*OD = (15.58)(993.6)(3.1416)(31.16) = 1,515,397 ft-lbf

Criteria 1 0.6*(491,987) + 0 < 529,564/1.5 Since 295,192 < 353,043, Tank is stable.

Page 26: Tank700kl 150530040421-lva1-app6891

Page 26 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

Criteria 2 491,987 + 0.4 * 0 < (529,564 + 1,515,397)/2 Since 491,987 < 1,022,481, Tank is stable.

RESISTANCE TO SLIDING (per API-650 5.11.4)

F_wind = vF * 18 * As = 0.6944 * 18 * 1,104 = 13,800 lbf

F_friction = Maximum of 40% of Weight of Tank = 0.4 * (W_Roof_Corroded + W_Shell_Corroded + W_Btm_Corroded + RoofStruct + W_min_Liquid) = 0.4 * (6,130 + 27,860 + 8,761 + 227 + 0) = 17,191 lbf

No anchorage needed to resist sliding since

F_friction > F_wind

<Anchorage Requirement>Anchorage NOT required since Criteria 1, Criteria 2, and SlidingARE acceptable.

Page 27: Tank700kl 150530040421-lva1-app6891

Page 27 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

SEISMIC CALCULATIONS PER API-650 11TH ED., ADDENDUM 2

< Mapped ASCE7 Method >

WEIGHTSWs = Weight of Shell (Incl. Shell Stiffeners & Insul.) = 45,170 lbfWf = Weight of Floor (Incl. Annular Ring) = 12,511 lbfWr = Weight Fixed Roof, framing and 10% of Design Live Load & Insul. = 11,557 lbf

SEISMIC VARIABLESSUG = Seismic Use Group (Importance factor depends on SUG) = IIISite Class = DT_L = Regional Dependent Transition Period for Long Period Ground Motion (per ASCE 7-05, Fig. 22-15) = 12 sec.Ss = Design Spectral Response Param. (5% damped) for Short Periods (T=0.2 sec)(per ASCE7 Fig. 22-1) = 1.5 Decimal %gS1 = Design Spectral Response Param. (5% damped) for 1-Second Periods (T=1.0 sec)(per ASCE7 Fig. 22-2) = 0.5 Decimal %gS0 = Design Spectral Response Param. (5% damped) for 0-Second Periods (T=0.0 sec) = 0.6 Decimal %gAv = Vertical Earthquake Acceleration Coefficient = 0 Decimal %gQ = Scaling factor from the MCE to design level spectral accelerations = 1

Page 28: Tank700kl 150530040421-lva1-app6891

Page 28 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

LOOKUP OR OTHER VARIABLESFa = Acceleration-based site coefficient (at .2 sec period)(Table E-1) = 1Fv = Velocity-based site coefficient (at 1 sec period)(Table E-2) = 1.5I = Importance factor defined by Seismic Use Group = 1.5Ci = Coefficient for impulsive period of tank system (Fig E-1) = 6.36tu = Equivalent uniform thickness of tank shell = 0.315 in.Density = Density of tank product. SG*62.4 = 62.4 lbf/ft^3E = Elastic modulus of tank material (bottom shell course) = 28,799,999 PSIRwi = Force reduction factor for the impulsive mode using allowable stress design methods (Table E-4) = 4Rwc = Force reduction factor for the convective mode using allowable stress design methods (Table E-4) = 2Sds = The design spectral response acceleration param. (5% damped) at short periods (T = 0.2 sec) based on ASCE7 methods. = Q*Fa*Ss = 1*1*1.5 = 1.5 decimal %gSd1 = The design spectral response acceleration param. (5% damped) at 1 second based on ASCE7 methods. = Q*Fv*S1 = 1*1.5*0.5 = 0.75 decimal %g

E.4.5 STRUCTURAL PERIOD OF VIBRATIONE.4.5.1 Impulsive Natural PeriodTi = (1/27.8)*(Ci*H)/((tu/D)^0.5)*(Density^0.5/E^0.5) = (1/27.8)*(6.36*35.43/((0.315/31.16)^0.5)*(62.4^0.5/28,799,999^0.5) = 0.12 sec.E.4.5.2 Convective (Sloshing) PeriodKs = 0.578/SQRT(TANH(3.68*H/D)) = 0.578/SQRT(TANH(3.68/0.879)) = 0.5781Tc = Ks*SQRT(D) = 0.5781*SQRT(31.16) = 3.23 sec.E.4.6.1 Spectral Acceleration CoefficientsAi = Impulsive spectral acceleration parameter = MAX(Sds*I/Rwi,0.007) = MAX(1.5*1.5/4,0.007) = MAX(0.5625,0.007) = 0.5625 decimal %gK = Coefficient to adjust spectral acceleration from 5% - 0.5% damping = 1.5Ac = Convective spectral acceleration parameter = K*Sd1/Tc*I/Rwc = 1.5*0.75/3.23*1.5/2 = 0.2612 decimal %g

Page 29: Tank700kl 150530040421-lva1-app6891

Page 29 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

E.6.1.1 EFFECTIVE WEIGHT OF PRODUCTD/H = Ratio of Tank Diameter to Design Liquid Level = 0.879Wp = Total Weight of Tank Contents based on S.G. = 1,686,366 lbfWi = Effective Impulsive Portion of the Liquid Weight = [1 - 0.218*D/H]*Wp = [1 - 0.218*0.879]*1,686,366 = 1,363,221 lbfWc = Effective Convective (Sloshing) Portion of the Liquid Weight = 0.23*D/H*TANH(3.67*H/D)*Wp = 0.23*0.879*TANH(3.67/0.879)*1,686,366 = 340,772 lbfWeff = Effective Weight Contributing to Seismic Response = Wi + Wc = 1,703,993 lbfWrs = Roof Load Acting on Shell, including 10% of Live Load = 11,444 lbf

E.6.1 DESIGN LOADSVi = Design base shear due to impulsive component from effective weight of tank and contents = Ai*(Ws + Wr + Wf + Wi) = 0.5625*(45,170 + 11,557 + 12,511 + 1,363,221) = 805,758 lbfVc = Design base shear due to convective component of the effective sloshing weight = Ac*Wc = 0.2612*340,772 = 89,016 lbfV = Total design base shear = SQRT(Vi^2 + Vc^2) = SQRT(805,758^2 + 89,016^2) = 810,660 lbf

E.6.1.2 CENTER OF ACTION for EFFECTIVE LATERAL FORCESXs = Height from Bottom to the Shell's Center of Gravity = 17.715 ftRCG = Height from Top of Shell to Roof Center of Gravity = 0.243 ftXr = Height from Bottom of Shell to Roof Center of Gravity = h + RCG = 35.43 + 0.243 = 35.673 ft

E.6.1.2.1 CENTER OF ACTION for RINGWALL OVERTURNING MOMENTXi = Height to Center of Action of the Lateral Seismic force related to the Impulsive Liquid Force for Ringwall Moment = (0.5 - 0.094*D/H)*H = (0.5 - 0.094*0.879)*35.43 = 14.79 ftXc = Height to Center of Action of the Lateral Seismic force related to the Convective Liquid Force for Ringwall Moment = (1-(COSH(3.67*H/D)-1)/((3.67*H/D)*SINH(3.67*H/D)))*H = (1-(COSH(4.1752)-1)/((4.1752)*SINH(4.1752)))*35.43 = 27.2 ft

Page 30: Tank700kl 150530040421-lva1-app6891

Page 30 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

E.6.1.2.2 CENTER OF ACTION for SLAB OVERTURNING MOMENTXis = Height to Center of Action of the Lateral Seismic force related to the Impulsive Liquid Force for the Slab Moment = [0.5 + 0.06*D/H]*H = [0.5 + 0.06*0.879]*35.43 = 19.58 ftXcs = Height to Center of Action of the Lateral Seismic force related to the Convective Liquid Force for the Slab Moment = (1-(COSH(3.67*H/D)-1.937)/((3.67*H/D)*SINH(3.67*H/D)))*H = (1-(COSH(4.1752)-1.937)/((4.1752)*SINH(4.1752)))*35.43 = 27.45 ft

E.6.1.4 Dynamic Liquid Hoop Forces0.75 * D = 23.37D/H = 0.879SHELL SUMMARY Width Y Ni Nc Nh SigT+ SigT- ft ft lbf/in lbf/in lbf lbf/in lbf/inShell #1 6 34.43 759.16 7.624 3377 20996 13288Shell #2 6 28.43 759.16 10.309 2805 18093 10385Shell #3 6 22.43 755.2 18.39 2233 15170 7500Shell #4 6 16.43 689.72 36.098 1661 11937 4926Shell #5 6 10.43 524.52 72.703 1089 8216 2840Shell #6 5.43 4.43 259.6 147.366 518 4145 1114

E.6.1.5 Overturning MomentMrw = Ringwall moment—Portion of the total overturning moment that acts at the base of the tank shell perimeterMrw = ((Ai*(Wi*Xi+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xc)^2)^0.5 = ((0.5625*(1,363,221*14.79+45,170*17.715+11,557*35.673))^2 + (0.2612*340,772*27.2)^2)^0.5 = 12,264,530 lbf-ftMs = Slab moment (used for slab and pile cap design)Ms = ((Ai*(Wi*Xis+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xcs)^2)^0.5 = ((0.5625*(1,363,221*19.58+45,170*17.715+11,557*35.673))^2 + (0.2612*340,772*27.45)^2)^0.5 = 15,885,240 lbf-ft

E.6.2 RESISTANCE TO DESIGN LOADSE.6.2.1.1 Self-AnchoredFy = Minimum yield strength of bottom annulus = 36,000 psiGe = Effective specific gravity including vertical seismic effects = S.G.*(1 - 0.4*Av) = 1*(1 - 0.4*0) = 11.28*H*D*Ge = 1,413 lbf/ft

wa = Force resisting uplift in annular region = 7.9*ta*(Fy*H*Ge)^0.5 <= 1.28*H*D*Ge = 7.9*0.2757*(36,000*35.43*1)^0.5 = 2,460 lbf/ft

wa = 1,413 lbf/ft (reduced to 1.28*H*D*Ge because that is the max allowable per E.6.2.1.1)

wt = Shell and roof weight acting at base of shell = (Wrs + Ws)/(PI*D) = (11,444 + 45,170)/(PI*31.16) = 578.3274 lbf/ft

Page 31: Tank700kl 150530040421-lva1-app6891

Page 31 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

wint = Uplift Load due to design pressure acting at base of shell = 0.4*P*144*(PI*D^2/4)/(PI*D) = 0.4*0*144*(PI*31.16^2/4)/(PI*31.16) = 0 lbf/ft

E.6.2.1.1.2 Annular Ring RequirementsL = Required Annular Ring Width = 12*0.216*ta*(Fy/(H*Ge))^0.5 = 12*0.216*0.2757*(36,000/(35.43*1))^0.5 = 22.7792 in.L = MIN(0.035*D*12,L) = MIN(13.0872,22.7792) = 13.0872 in.Ls = Actual Annular Plate Width = 53 in.

E.7.3 Piping FlexibilityE.7.3.1 Estimating tank upliftAnnular Plate: A-36Fy = 36,000 PSIyu = Estimated uplift displacement for self-anchored tank = Fy*L^2/(83300*ta) = 36,000*1.0906^2/(83300*0.2757) = 1.8645 in.

E.6.2.1.1.1 Anchorage RatioJ = Mrw/(D^2*[wt*(1-0.4*Av)+wa-0.4*wint]) = 12,264,530/(31.16^2*[578.3274*(1-0.4*0)+1,413-0.4*0]) = 6.3433The tank not stable and cannot be self anchored for design load.

E.6.2.2 Maximum Longitudinal Shell-Membrane Compressive StressE.6.2.2.1 Shell Compression in Self-Anchored Tanksts1 = Thickness of bottom shell course minus C.A. = 0.197 in.SigC = Maximum longitudinal shell compression stress = ((Wt*(1+0.4*Av) + wa)/(0.607-0.1867*J^2.3) - wa)/(12*ts1) = ((578.3274*(1+0.4*0) + 1,413)/(0.607-0.1867*6.3433^2.3) - « 1,413)/(12*0.197) = -665 psi

E.6.2.2.3 Allowable Longitudinal Shell-Membrane Compression StressFty = Minimum specified yield strength of shell course = 36,000 psiG*H*D^2/ts1^2 = 886,408Fc = Allowable longitudinal shell-membrane compressive stress = 10^6*ts1/(2.5*D) + 600*(G*H)^0.5 = 10^6*0.197/(2.5*31.16) + 600*(1*35.43)^0.5 = 6,100 psiShell Membrane Compressive Stress OK

Page 32: Tank700kl 150530040421-lva1-app6891

Page 32 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

E.6.2.4 Hoop StressesShell Summary SigT+ Sd*1.333 Fy*.9*E Allowable t-Min Shell OK Membrane StressShell #1 20996 30926. 27540. 27540. 0.2682 YesShell #2 18093 30926. 27540. 27540. 0.2474 YesShell #3 15170 30926. 27540. 27540. 0.2265 YesShell #4 11937 30926. 27540. 27540. 0.2034 YesShell #5 8216 30926. 27540. 27540. 0.1768 YesShell #6 4145 30926. 27540. 27540. 0.1476 Yes

Shell Membrane Hoop Stress OK? True

Tank Adequate with No Anchors? FalseUsing 10 ft spacing, Min. # of Anchor Bolts = 10

E.6.2.1.2 Mechanically-AnchoredNumber of Anchors = 12Max Spacing = 10 ftActual Spacing = 8.16 ftMinimum # Anchors = 10Wab = Design Uplift Load on Anchors per unit circumferential length = (1.273*Mrw)/D^2 - wt*(1-0.4*Av) + wint = (1.273*12,264,530)/31.16^2 - 578.3274*(1-0.4*0) + 0 = 15,502 lbf/ftPab = Anchor seismic design load = Wab*PI*D/Na = 15,502*PI*31.16/12 = 126,460 lbfPa = Anchorage chair design load = 3 * Pab = 3*126,460 = 379,380 lbf

E.6.2.2.2 Shell Compression in Mechanically-Anchored TanksSigC_anchored = Maximum longitudinal shell compression stress = (Wt*(1+0.4*Av) + 1.273*Mrw/D^2)/(12*ts1) = (578.3274*(1+0.4*0) + 1.273*12,264,530/31.16^2)/(12*0.197) = 7,047 psiFc = longitudinal shell-membrane compression stress = 6,100 psi * * Warning * *Shell Membrane Compressive stress exceeds allowable

Shell Membrane Hoop Stress OK? True

Tank Adequate with Anchors? False

E.7 Detailing RequirementsE.7.1 AnchorageSUG = IIISds = 1.5 decimal %gE.7.1.1 Self AnchoredNOTE: Butt-welded annular plates are required. Annular plates exceeding 3/8 in. thickness shall be butt-welded The weld of the shell to annular plate shall be checked for the design uplift load.

E.7.1.2 Mechanically AnchoredMinimum # anchors OK = True

Page 33: Tank700kl 150530040421-lva1-app6891

Page 33 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

E.7.2 Freeboard - SloshingTL_sloshing = 12 sec.I_sloshing = 1Tc = 3.23K = 1.5Sd1 = 0.75Af = K*Sd1/Tc = 1.5*0.75/3.23 = 0.3483Delta_s = Height of sloshing wave above max. liquid level = 0.5*D*Af = 0.5*31.16*0.3483 = 5.4265 ft0.7*Delta_s = 3.7985 ftPer Table E-7,A freeboard equal to Delta_s is required unless one of the following alternatives are provided:1. Secondary containment is provided to control product spill.2. The roof and tank shell are designed to contain sloshing liquid.

E.7.6 Sliding Resistancemu = 0.4 Friction coefficientV = 810,660 lbfVs = Resistance to sliding = mu*(Ws + Wr + Wf + Wp)*(1 - 0.4*Av) = 0.4*(45,170+11,557+12,511+1,686,366)*(1-0.4*0) = 702,242 lbf

E.7.7 Local Shear TransferVmax = 2*V/(PI*D) = 2*810,660/(PI*31.16) = 16,562 lbf/ft

Page 34: Tank700kl 150530040421-lva1-app6891

Page 34 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

ANCHOR BOLT DESIGN

Bolt Material : A-193 Gr B7 Sy = 105,000 PSI

< Uplift Load Cases, per API-650 Table 5-21b >

D (tank OD) = 31.16 ft P (design pressure) = 0 INCHES H2O Pt (test pressure per F.4.4) = P = 0 INCHES H2O Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below) t_h (roof plate thickness) = 0.315 in. Mw (Wind Moment) = 491,987 ft-lbf Mrw (Seismic Ringwall Moment) = 12,264,530 ft-lbf W1 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. other than Roof Plate Acting on Shell)

W2 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. including Roof Plate minus C.A. Acting on Shell)

W3 (Dead Load of New Shell and Any Dead Load other than Roof Plate Acting on Shell)

For Tank with Structural Supported Roof, W1 = Corroded Shell + Shell Insulation = 27,860 + 0 = 27,860 lbf W2 = Corroded Shell + Shell Insulation + Corroded Roof Plates Supported by Shell + Roof Dead Load Supported by Shell = 27,860 + 0 + 6,130 * [1 + 110,026*0.0000116/(144 * 6,130)] = 33,990 lbf W3 = New Shell + Shell Insulation = 44,530 + 0 = 44,530 lbf

Uplift Case 1: Design Pressure Only U = [(P - 8*t_h) * D^2 * 4.08] - W1 U = [(0 - 8*0.315) * 31.16^2 * 4.08] - 27,860 = -37,843 lbf bt = U / N = -3,154 lbf

Sd = 15,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

Uplift Case 2: Test Pressure Only U = [(Pt - 8*t_h) * D^2 * 4.08] - W1 U = [(0 - 8*0.315) * 31.16^2 * 4.08] - 27,860 = -37,843 lbf bt = U / N = -3,154 lbf

Sd = 20,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

Page 35: Tank700kl 150530040421-lva1-app6891

Page 35 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

Uplift Case 3: Failure Pressure Only Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A.

Uplift Case 4: Wind Load Only PWR = Wind_Uplift/5.208 = 20.8333/5.208 = 4.0003 IN. H2O PWS = vF * 18 = 0.6944 * 18 = 12.5 lbf/ft^2 MWH = PWS*(D+t_ins/6)*H^2/2 = 12.5*(31.16+0/6)*35.43^2/2 = 244,467 ft-lbf U = PWR * D^2 * 4.08 + [4 * MWH/D] - W2 = 4.0003*31.16^2*4.08+[4*244,467/31.16]-33,990 = 13,239 lbf bt = U / N = 1,103 lbf

Sd = 0.8 * 105,000 = 84,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 1,103/84,000 = 0.013 in^2

Uplift Case 5: Seismic Load Only U = [4 * Mrw / D] - W2*(1-0.4*Av) U = [4 * 12,264,530 / 31.16] - 33,990*(1-0.4*0) = 1,540,404 lbf bt = U / N = 128,367 lbf

Sd = 0.8 * 105,000 = 84,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 128,367/84,000 = 1.528 in^2

Uplift Case 6: Design Pressure + Wind Load U = [(0.4*P + PWR - 8*t_h) * D^2 * 4.08] + [4 * MWH / D] - W1 = [(0.4*0+4.0003-8*0.315)*31.16^2 * 4.08]+[4*244,467 / 31.16] - 27,860 = 9,386 lbf bt = U / N = 782 lbf

Sd = 20,000 = 20,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 782/20,000 = 0.039 in^2

Uplift Case 7: Design Pressure + Seismic Load U = [(0.4*P - 8*t_h)*D^2 * 4.08] + [4*Mrw/D] - W1*(1-0.4*Av) U = [(0.4*0-8*0.315)*31.16^2*4.08]+[4*12,264,530/31.16]-27,860*(1-0.4*0) = 1,536,551 lbf bt = U / N = 128,046 lbf

Sd = 0.8 * 105,000 = 84,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 128,046/84,000 = 1.524 in^2

Page 36: Tank700kl 150530040421-lva1-app6891

Page 36 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:56 AM

Uplift Case 8: Frangibility Pressure Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A.

< ANCHOR BOLT SUMMARY >

Bolt Root Area Req'd = 1.528 in^2

d = Bolt Diameter = 1.75 in. n = Threads per inch = 5 A_s = Actual Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1.75 - 1.3 / 5)^2 = 1.7437 in^2

Exclusive of Corrosion, Bolt Diameter Req'd = 1.655 in. (per ANSI B1.1)

Actual Bolt Diameter = 1.750 in.

Bolt Diameter Meets Requirements.

<ANCHORAGE REQUIREMENTS>

Seismic calculations require anchorage, Minimum # Anchor Bolts = 10 per API-650 E.6.2.2.

Actual # Anchor Bolts = 12Anchorage Meets Spacing Requirements.

Page 37: Tank700kl 150530040421-lva1-app6891

Page 37 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:57 AM

ANCHOR CHAIR DESIGN(from AISI 'Steel Plate Engr Data' Dec. 92, Vol. 2, Part VII)

Entered Parameters

Chair Material: A-36 Top Plate Type: DISCRETE Chair Style: VERT. TAPERED

a : Top Plate Width = 8.000 in. b : Top Plate Length = 6.000 in. k : Verical Plate Width = 4.850 in.

m : Bottom Plate Thickness = 0.3937 in. t : Shell Course + Repad Thickness = 1.3050 in.

r : Nominal Radius to Tank Centerline = 187.298 in.

Design Load per Bolt: P = 192.55 KIPS (1.5 * Maximum from Uplift Cases)

d = Bolt Diameter = 1.75 in. n = Threads per unit length = 5 TPI A_s = Computed Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1.75 - 1.3 / 5)^2 = 1.74 in^2

Bolt Yield Load = A*Sy/1000 (KIPS) = 1.74*105,000/1000 = 182.7 KIPS

Seismic Design Bolt Load = Pa = 3*Pab = 379.38 KIPS

Anchor Chairs will be designed to withstand Design Load per Bolt.

Anchor Chair Design Load, P = 192.5505 KIPS

For Anchor Chair material: A-36 Per API-650 Table 5-2b, Sd_Chair = 20 KSI

Since bottom t > 3/8 in.,

h_min = 6 in.

For Discrete Top Plate, Max. Chair Height Recommended : h <= 3 * a h_max = 3 * 8 = 24 in.

h = 6 in.

e_min = 0.886 * d + 0.572 = 2.123 in. e = e_min = 2.123 in.

g_min = d + 1 = 2.75 in. g = g_min = 2.75 in.

Page 38: Tank700kl 150530040421-lva1-app6891

Page 38 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:57 AM

f_min = d/2 + 0.125 = 1 in. f = f_min = 1 in.

c_min = SQRT[P / Sd_Chair / f * (0.375 * g - 0.22 * d)] = SQRT[192.5505 / 28.8 / 1 * (0.375 * 2.75 - 0.22 * 1.75)] = 2.079 in. c >= c_min = 2.079 in.

j_min = MAX(0.5, [0.04 * (h - c)]) = MAX(0.5, [0.04 * (6.000 - 2.079)]) = 0.5 in. j = j_min = 0.5 in.

b_min = e_min + d + 1/4 = 2.123 + 1.75 + 1/4 = 4.123 in.

<Stress due to Top Plate Thickness> S_actual_TopPlate = P / f / c^2 * (0.375 * g - 0.22 * d) = 192.55/1/2.079^2 * (0.375 * 2.75 - 0.22 * 1.75) = 28.79 KSI

<Repad>

ClearX = Minimum Clearance of Repad from Anchor Chair = MAX(2, 6*Repad_t, 6*t_Shell_1) = MAX(2, 6*0.99, 6*0.315) = 5.94 in.

Minimum Height = h + ClearX = 11.94 in. Minimum Width = a + 2*ClearX = 19.88 in.

<Shell Stress due to Chair Height> (For Discrete Top Plate) S_actual_ChairHeight = P * e / t^2 * F3 where F3 = F1 + F2,

now F1 = (1.32 * z) / (F6 + F7) where F6 = (1.43 * a * h^2) / (r * t) and F7 = (4 * a * h^2)^(1/3) and z = 1 / (F4 * F5 + 1) where F4 = (0.177 * a * m) / SQRT(r * t) and F5 = (m / t)^2

yields F5 = (0.3937 / 1.305)^2 = 0.091 yields F4 = (0.177 * 8. * 0.3937) / SQRT(187.2975 * 1.305) = 0.0357 yields z = 1 / (0.0357 * 0.091 + 1) = 0.9968 yields F7 = (4 * 8. * 6.^2)^(1/3) = 10.483 yields F6 = (1.43 * 8. * 6.^2) / (187.2975 * 1.305) = 1.6849 yields F1 = (1.32 * z) / (1.6849 + 10.483) = 0.1081

Page 39: Tank700kl 150530040421-lva1-app6891

Page 39 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:57 AM

now F2 = 0.031 / SQRT(r * t) yields F2 = 0.031 / SQRT(187.2975 * 1.305) = 0.002 yields F3 = 0.1081 + 0.002 = 0.1101 yields S_actual_ChairHeight = 192.5505 * 2.123 / 1.305^2 * 0.1101 = 26.4312 KSI

Maximum Recommended Stress is 25 KSI for the Shell (per API-650 E.6.2.1.2) Sd_ChairHeight = 25 KSI

< ANCHOR CHAIR SUMMARY >

S_actual_TopPlate Meets Design Calculations (within 105% of Sd_Chair) S_actual_TopPlate/Sd_Chair = 28.79/30.856 = 93.3% S_actual_ChairHeight/Sd_ChairHeight = 26.4312/25 = 105.7% * * Warning * * S_actual_ChairHeight Exceeds 105% of Sd_ChairHeight Use Anchor Chair Repad ( t = 1.000).

Page 40: Tank700kl 150530040421-lva1-app6891

Page 40 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:57 AM

CAPACITIES and WEIGHTS

Maximum Capacity (to upper TL) : 201,431 gal Design Capacity (to Max Liquid Level) : 201,429 gal Minimum Capacity (to Min Liquid Level) : 0 gal NetWorking Capacity (Design - Min.) : 201,429 gal

New Condition Corroded ----------------------------------------------------------- Shell 44,530 lbf 27,860 lbf Roof Plates 9,802 lbf 6,130 lbf Rafters 227 lbf 227 lbf Girders 0 lbf 0 lbf Columns 0 lbf 0 lbf Bottom 12,511 lbf 8,761 lbf Stiffeners 640 lbf 640 lbf Nozzle Wgt 0 lbf 0 lbf Misc Roof Wgt 0 lbf 0 lbf Misc Shell Wgt 0 lbf 0 lbf Insulation 0 lbf 0 lbf ----------------------------------------------------------- Total 67,710 lbf 43,618 lbf

Weight of Tank, Empty : 67,710 lbfWeight of Tank, Full of Product (SG=1): 1,748,732 lbfWeight of Tank, Full of Water : 1,748,732 lbfNet Working Weight, Full of Product : 1,748,716 lbfNet Working Weight, Full of Water : 1,748,716 lbf

Foundation Area Req'd : 763 ft^2

Foundation Loading, Empty : 88.74 lbf/ft^2Foundation Loading, Full of Product (SG=1) : 2,292 lbf/ft^2Foundation Loading, Full of Water : 2,292 lbf/ft^2

SURFACE AREASRoof 764 ft^2Shell 3,468 ft^2Bottom 763 ft^2

Wind Moment 491,987 ft-lbfSeismic Moment 15,885,241 ft-lbf

MISCELLANEOUS ATTACHED ROOF ITEMS

MISCELLANEOUS ATTACHED SHELL ITEMS

Page 41: Tank700kl 150530040421-lva1-app6891

Page 41 of 41PT Hydro Raya - Quote Rekadaya-700 KL

TANK REPORT: Printed - 4/29/2015 11:40:57 AM

MAWP & MAWV SUMMARY FOR Quote Rekadaya-700 KL

MAXIMUM CALCULATED INTERNAL PRESSURE

MAWP = 2.5 PSI or 69.28 IN. H2O (per API-650 App. F.1.3 & F.7)

MAWP = Maximum Calculated Internal Pressure (due to shell) = 2.5 PSI or 69.28 IN. H2O

MAWP = Maximum Calculated Internal Pressure (due to roof) = 0.3832 PSI or 10.62 IN. H2O

TANK MAWP = 0.3832 PSI or 10.62 IN. H2O

MAXIMUM CALCULATED EXTERNAL PRESSURE

MAWV = -1 PSI or -27.71 IN. H2O (per API-650 V.1)

MAWV = Maximum Calculated External Pressure (due to shell) = -0.3617 PSI or -10.03 IN. H2O

MAWV = Maximum Calculated External Pressure (due to roof) = -0.2521 PSI or -6.99 IN. H2O

MAWV = N.A. (not calculated due to columns)

TANK MAWV = -0.2521 PSI or -6.99 IN. H2O