TALLER 7 EJE X v1

download TALLER 7 EJE X v1

of 8

Transcript of TALLER 7 EJE X v1

  • 8/18/2019 TALLER 7 EJE X v1

    1/8

     ANALISIS: EJE X 

    Matrices de rigidez y matriz de masa:

    ≔m1   ――197.70

    981

    ≔m2   ――192.65

    981

    ≔m3 m2   ≔m4 m2   ≔m5 m2

    ≔m6 m2   ≔m7   ―148.6

    981⋅ton   ― s

    2

    cm

    ≔k1   4067.4536653≔k2   5263.2244944   ≔k3 k2   ≔k4 k2   ≔k5 k2   ≔k6 k2≔k7   5067.3929296

    ≔K

    +k1 k2   −k2   0 0 0 0 0−k2   +k2 k3   −k3   0 0 0 0

    0   −k3   +k3 k4   −k4   0 0 0

    0 0   −k4   +k4 k5   −k5   0 00 0 0   −k5   +k5 k6   −k6   00 0 0 0   −k6   +k6 k7   −k70 0 0 0 0   −k7 k7

    ⎡⎢⎢⎢

    ⎢⎢⎢⎣

    ⎤⎥⎥⎥

    ⎥⎥⎥⎦

    =K

    9330.678   −5263.224 0 0 0 0 0−5263.224 10526.449   −5263.224 0 0 0 0

    0   −5263.224 10526.449   −5263.224 0 0 00 0   −5263.224 10526.449   −5263.224 0 00 0 0   −5263.224 10526.449   −5263.224 00 0 0 0   −5263.224 10330.617   −5067.3930 0 0 0 0   −5067.393 5067.393

    ⎡⎢⎢⎢⎢⎢⎢⎣

    ⎤⎥⎥⎥⎥⎥⎥⎦

    ―ton

    cm

    ≔ M

    m1   0 0 0 0 0 0

    0   m2   0 0 0 0 0

    0 0   m3   0 0 0 0

    0 0 0   m4   0 0 0

    0 0 0 0   m5   0 0

    0 0 0 0 0   m6   0

    0 0 0 0 0 0   m7

    ⎡⎢⎢⎢⎢⎢

    ⎤⎥⎥⎥⎥⎥

    = M

    0.202 0 0 0 0 0 0

    0 0.196 0 0 0 0 0

    0 0 0.196 0 0 0 0

    0 0 0 0.196 0 0 0

    0 0 0 0 0.196 0 0

    0 0 0 0 0 0.196 0

    0 0 0 0 0 0 0.151

    ⎡⎢⎢⎢⎢⎢

    ⎤⎥⎥⎥⎥⎥

    Cálculo de Frecuencias angulares y periodos de vibración

    ≔K1   ⋅ M−1

    K

    =K1

    46299.42   −26116.46 0 0 0 0 0−26801.05 53602.11   −26801.05 0 0 0 0

    0   −26801.05 53602.11   −26801.05 0 0 00 0   −26801.05 53602.11   −26801.05 0 00 0 0   −26801.05 53602.11   −26801.05 00 0 0 0   −26801.05 52604.91   −25803.850 0 0 0 0   −33452.98 33452.98

    ⎡⎢⎢⎢⎢⎢⎢

    ⎤⎥⎥⎥⎥⎥⎥

  • 8/18/2019 TALLER 7 EJE X v1

    2/8

    ≔evp   eigenvals   K1

    =evp

    ⋅1.025 105

    ⋅8.919 104

    ⋅6.978 104

    ⋅4.76 104

    ⋅2.649 104

    ⋅1.008 104

    ⋅1.151 103

    ⎡⎢⎢

    ⎢⎢⎢⎢⎢⎣

    ⎤⎥⎥

    ⎥⎥⎥⎥⎥⎦

    ≔ Freq   sort   evp   = Freq

    ⋅1.151 103

    ⋅1.008 104

    ⋅2.649 104

    ⋅4.76 104

    ⋅6.978 104

    ⋅8.919 104

    ⋅1.025 105

    ⎡⎢⎢

    ⎢⎢⎢⎢⎢⎣

    ⎤⎥⎥

    ⎥⎥⎥⎥⎥⎦

    ≔i   ‥0 6

    ≔w+i   1

     ‾‾‾‾ Freqi

    ≔T +i   1

    2 ―w

    +i   1

    =w1

    33.934 =T 1

    0.185

    =w2

    100.418 =T 2

    0.063

    =w3

    162.749 =T 3

    0.039

    =w4

    218.172 =T 4

    0.029

    =w5

    264.153 =T 5

    0.024

    =w6

    298.652 =T 6

    0.021

    =w7

    320.117 =T 7

    0.02

    Cálculo de Modos de vibración

    ≔v   eigenvecs   K1

    =v

    −0.163 −0.311 −0.43 0.498 0.483 −0.357 −0.1320.35 0.511 0.387 −0.025 0.366 −0.495 −0.229

    −0.476 −0.368 0.197 −0.504 −0.112 −0.447 −0.3150.517 −0.023 −0.506 −0.088 −0.48 −0.23 −0.388

    −0.467 0.398 0.108 0.484 −0.373 0.073 −0.4450.335 −0.506 0.44 0.197 0.102 0.348 −0.482

    −0.163 0.303 −0.406 −0.465 0.491 0.498 −0.499

    ⎡⎢⎢⎢⎢⎢

    ⎤⎥⎥⎥⎥⎥

  • 8/18/2019 TALLER 7 EJE X v1

    3/8

    Normalizando los modos de vibración

    ≔V 1

      ―v

    6

    v ,0 6

    =V 1

    11.7292.3832.935

    3.3613.6433.773

    ⎡⎢⎢⎢

    ⎢⎢

    ⎤⎥⎥⎥

    ⎥⎥

    ≔V 2

      ―v

    5

    v ,0 5

    =V 2

    11.3871.2520.646

    −0.203−0.976−1.397

    ⎡⎢⎢⎢

    ⎢⎢

    ⎤⎥⎥⎥

    ⎥⎥

    ≔V 3

      ―v

    4

    v,0 4

    =V 3

    10.759

    −0.233−0.994−0.773

    0.212

    1.017

    ⎡⎢⎢⎢⎢⎢

    ⎤⎥⎥⎥⎥⎥

    ≔V 4

      ―v

    3

    v,0 3

    =V 4

    1−0.05−1.011−0.177

    0.9720.394

    −0.933

    ⎡⎢⎢⎢⎢⎢

    ⎤⎥⎥⎥⎥⎥

    ≔V 5

      ―v

    2

    v,0 2

    =V 5

    1−0.899−0.457

    1.175−0.252−1.023

    0.942

    ⎡⎢⎢⎢⎢⎢

    ⎤⎥⎥⎥⎥⎥

    ≔V 6

      ―v

    1

    v,0 1

    =V 6

    1−1.642

    1.1810.074

    −1.2791.625

    −0.975

    ⎡⎢⎢⎢⎢⎢

    ⎤⎥⎥⎥⎥⎥

    ≔V 7

      ―v

    0

    v,0 0

    =V 7

    1−2.151

    2.922−3.178

    2.873−2.061

    0.999

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    Matriz de modos de vibración normalizados

    ≔ϕ

    V 1

    ,0 0

    V 2

    ,0 0

    V 3

    ,0 0

    V 4

    ,0 0

    V 5

    ,0 0

    V 6

    ,0 0

    V 7

    ,0 0

    V 1,1 0

    V 2,1 0

    V 3,1 0

    V 4,1 0

    V 5,1 0

    V 6,1 0

    V 7,1 0

    ⎛V 1⎞

    ,2 0

    ⎛V 2⎞

    ,2 0

    ⎛V 3⎞

    ,2 0

    ⎛V 4⎞

    ,2 0

    ⎛V 5⎞

    ,2 0

    ⎛V 6⎞

    ,2 0

    ⎛V 7⎞

    ,2 0

    V 1

    ,3 0

    V 2

    ,3 0

    V 3

    ,3 0

    V 4

    ,3 0

    V 5

    ,3 0

    V 6

    ,3 0

    V 7

    ,3 0

    ⎛V 1⎞

    ,4 0

    ⎛V 2⎞

    ,4 0

    ⎛V 3⎞

    ,4 0

    ⎛V 4⎞

    ,4 0

    ⎛V 5⎞

    ,4 0

    ⎛V 6⎞

    ,4 0

    ⎛V 7⎞

    ,4 0

    V 1

    ,5 0

    V 2

    ,5 0

    V 3

    ,5 0

    V 4

    ,5 0

    V 5

    ,5 0

    V 6

    ,5 0

    V 7

    ,5 0

    ⎛V 1

    ⎞,6 0

    ⎛V 2

    ⎞,6 0

    ⎛V 3

    ⎞,6 0

    ⎛V 4

    ⎞,6 0

    ⎛V 5

    ⎞,6 0

    ⎛V 6

    ⎞,6 0

    ⎛V 7

    ⎞,6 0

    ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

    ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

  • 8/18/2019 TALLER 7 EJE X v1

    4/8

    1 1 1 1 1 1 11.729 1.387 0.759 −0.05 −0.899 −1.642 −2.1512.383 1.252 −0.233 −1.011 −0.457 1.181 2.9222.935 0.646 −0.994 −0.177 1.175 0.074 −3.178

    3.361 −0.203 −0.773 0.972 −0.252 −1.279 2.8733.643 −0.976 0.212 0.394 −1.023 1.625 −2.0613.773 −1.397 1.017 −0.933 0.942 −0.975 0.999

    ⎡⎢⎢⎢

    ⎢⎢

    ⎤⎥⎥⎥

    ⎥⎥

    Cálculo de Me y Ke

    ≔ Me   ⋅⋅T

    ϕ M ϕ

    = Me

    10.576 0 0 0 0 0 0

    0 1.459 0 0 0 0 00 0 0.802 0 0 0 00 0 0 0.757 0 0 00 0 0 0 1.025 0 00 0 0 0 0 1.99 00 0 0 0 0 0 7.376

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    ≔ Ke   ⋅⋅T

    ϕ K ϕ

    = Ke

    12178.086 0 0 0 0 0 00 14714.682 0 0 0 0 00 0 21243.257 0 0 0 00 0 0 36012.716 0 0 00 0 0 0 71520.608 0 00 0 0 0 0 177513.885 00 0 0 0 0 0 755893.806

    ⎡⎢

    ⎢⎢⎢⎢

    ⎤⎥

    ⎥⎥⎥⎥

     Vector de masas participantes

    ≔ I 

    1

    111111

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    ≔L   ⋅⋅T

    ϕ M I    =L

    3.532

    0.4030.1540.0850.0580.0460.04

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

  • 8/18/2019 TALLER 7 EJE X v1

    5/8

    Masas Efectivas:

    ≔Le,1 1

      ――

    L,0 0

    2

     Me,0 0

    =Le,1 1

    1.18

    ≔Le,2 1

      ――

    ⎛L,1 0

    ⎞2

     Me,1 1

    =Le,2 1

    0.111

    ≔Le,3 1

    ⎛L,2 0

    ⎞2

     Me,2 2

    =Le,3 1

    0.029

    ≔Le ,4 1

    ⎛L,3 0

    ⎞2

     Me,3 3

    =Le ,4 1 0.01

    ≔Le,5 1

    ⎛L,4 0

    ⎞2

     Me,4 4

    =Le,5 1

    0.003

    ≔Le,6 1

    ⎛L,5 0

    ⎞2

     Me,5 5

    =Le,6 1

    0.001

    ≔Le,7 1

      ――⎛L ,6 0⎞

    2

     Me,6 6

    =Le,7 1

    ⋅2.136 10−4

    Masas Efectiva Total:

    ≔ Mtotal   ∑=i   1

    7

    Le,i   1

    = Mtotal   1.335

  • 8/18/2019 TALLER 7 EJE X v1

    6/8

    Factor de Participación Modal (FPMi)

    ≔r1

      ――

    L,0 0

     Me,0 0

    =r1

    0.334

    ≔r2

      ――

    L,1 0

     Me,1 1

    =r2

    0.276

    ≔r3

    L,2 0

     Me,2 2

    =r3

    0.191

    ≔r4

    L,3 0

     Me,3 3

    =r4 0.113

    ≔r5

    L,4 0

     Me,4 4

    =r5

    0.057

    ≔r6

    L,5 0

     Me,5 5

    =r6

    0.023

    ≔r7

      ――L

    ,6 0

     Me,6 6

    =r7

    0.005

    Sumatoria de participación de modos

    =∑=i   1

    7

    ri

    1

  • 8/18/2019 TALLER 7 EJE X v1

    7/8

    Factor de Participación Masas

    ≔ P 1

      ―――

    ⋅⎛Le,1 1

    ⎞   100

     Mtotal

    = P 1

    88.379

    > %90}≔ P 2   ―――⋅⎛Le ,2 1⎞   100 Mtotal = P 2 8.352≔ P 

    3  ―――

    ⋅⎛Le,3 1

    ⎞   100

     Mtotal= P 

    32.203

    ≔ P 4

      ―――⋅Le ,4 1 100

     Mtotal= P 

    40.723

    ≔ P 5

      ―――

    ⋅Le,5 1

    100

     Mtotal= P 

    50.248

    ≔ P 6

      ―――

    ⋅Le,6 1

    100

     Mtotal= P 

    60.078

    Sumatoria de participación efectiva

    ≔ P 7

      ―――

    ⋅Le,7 1

    100

     Mtotal= P 

    70.016 ≔Suma   ∑

    =i   1

    7

     P i

    =Suma   100

  • 8/18/2019 TALLER 7 EJE X v1

    8/8