Structural Design

7
1-way Continuous Floor Slab Component 25 1.25 150 mm Length of slab, l = 5000 mm Exposure class XC1 Fire resisting period REI 60 20 mm 0 mm 0 mm 0 mm 10 mm l Assumptions: - 1 1m-width floor slab 2 1-way continuous slab 3 4 50-year design life, S4 5 Separated rebar 6 Nominal maximum aggregate size equal or less A) Loading (i) Permanent Load 3.75 1.25 5 (ii) Variable Load Imposed 2.5 Partitions 0.8 3.3 11.7 Specific weight of reinforced concre kN/m 3 Weight per unit area of finishes, Wf kN/m 2 Thickness of slab, hs = Rebar size, φbar = Additive safety element, Δcdur,γ = Reduction of min. cover for use of stainless steel, Δcdur,st = Reduction of min. cover for use of additional protection, Δcdur,add = Allowance in design for deviation, Δ Support moment allows 20% redistribution and moment should equal or greather than 0.04nl Self-weight, γRChs = kN/m 2 Floor finishes, γfhs = kN/m 2 gk = kN/m 2 kN/m 2 kN/m 2 qk = kN/m 2 Ultimate design load, nMAX 1.35gk+1.5qk = kN/m 2

description

d

Transcript of Structural Design

Page 1: Structural Design

1-way Continuous Floor SlabComponent

25

1.25

150 mmLength of slab, l = 5000 mmExposure class XC1Fire resisting period REI 60

20 mm

0 mm

0 mm

0 mm10 mm

l

Assumptions: -1 1m-width floor slab2 1-way continuous slab

34 50-year design life, S45 Separated rebar6 Nominal maximum aggregate size equal or less than 32 mm

A) Loading(i) Permanent Load

3.75

1.25

5

(ii) Variable Load

Imposed 2.5

Partitions 0.8

3.3

11.7

Specific weight of reinforced concrete, γRC = kN/m3

Weight per unit area of finishes, Wf = kN/m2

Thickness of slab, hs =

Rebar size, φbar =

Additive safety element, Δcdur,γ =

Reduction of min. cover for use of stainless steel, Δcdur,st =

Reduction of min. cover for use of additional protection, Δcdur,add =Allowance in design for deviation, Δcdev =

hs

Support moment allows 20% redistribution and end support moment should equal or greather than 0.04nl

Self-weight, γRChs = kN/m2

Floor finishes, γfhs = kN/m2

gk = kN/m2

kN/m2

kN/m2

qk = kN/m2

Ultimate design load, nMAX = 1.35gk+1.5qk = kN/m2

Page 2: Structural Design

58.5 kN per m

B) Analysis

Location End Span

Moment Formula -0.04nl 0.075nl -0.086nl 0.063nl -0.063nl

-11.70 21.94 -25.16 18.43 -18.43Shear Formula 0.46n - 0.6n - 0.5n

26.91 - 35.10 - 29.25

C) Durability and Fire Resistance

25 mm

80 mm OK!

Min. cover required for fire resistance,

15 mm

Min. cover required for durability,

15 mm

Min. cover required for bonding,

= 20 mm

Min. cover required,

20 mm

Nominal cover required,

= 30 mm

Total design load, n = nMAXl =

End Support

First Interior Support

Interior Span

Other Interior Support

Moment (kNm per m)

Shear (kN per m)

Min. axis distance, amin =

Min. slab thickness, hs,min =

cmin,fi ≤ a - 0.5φbar

cmin,fi ≤

cmin,dur =

cmin,b = φbar

cmin = max {cmin,b; cmin,dur+Δcdur,γ-Δcdur,st-Δcdur,add; cmin,fi; 10}

cmin =

cnom = cmin+Δcdev

Page 3: Structural Design

Component Reference Documentation

MS EN 1991-1-1 Table A.1

Exposure Class

X0XC1

MS EN 1992-1-1 Table 4.1 XC2/XC3MS EN 1992-1-2 Table 5.11 XC4

XD1/XS1

MS EN 1992-1-1 4.4.1.2 (6) XD2/XS2

MS EN 1992-1-1 4.4.1.2 (7) XD3/XS3

MS EN 1992-1-1 4.4.1.2 (8)

Standard Fire ResistanceREI 30REI 60REI 90REI 120REI 180

MS EN 1992-1-2 4.4.1.2 (5) REI 240MS EN 1992-1-2 Table 4.2MS EN 1992-1-2 Table 4.2

Unknowns

NA to MS EN 1991-1-1 Table NA2 & NA3

MS EN 1991-1-1 6.3.1.2 (8)

MS EN 1990-1-1 Table A1.2 (A)

Page 4: Structural Design

BS 8110 Table 3.12

MS EN 1992-1-2 Table 5.11

MS EN 1992-1-2 Table 5.11

MS EN 1992-1-1 Table 4.4N

MS EN 1992-1-1 Table 4.2

MS EN 1992-1-1 Equation 4.2

MS EN 1992-1-1 Equation 4.1

Page 5: Structural Design
Page 6: Structural Design

Documentation

10152530

35

40

45

Standard Fire Resistance10 8025 8035 10045 12060 15070 175

Minimum Cover, cmin,dur

Min. Axis Distance, a (mm) Min. Slab Thickness, hs (mm)