Stress Distribution and Fault Development Around...

41
Title Stress Distribution and Fault Development Around Nepal Himalaya by Means of Finite Element Method Author(s) Alam, Md. Mahmudul; Hayashi, Daigoro Citation 琉球大学理学部紀要 = Bulletin of the College of Science. University of the Ryukyus(73): 15-54 Issue Date 2002-03 URL http://hdl.handle.net/20.500.12000/2621 Rights

Transcript of Stress Distribution and Fault Development Around...

Page 1: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

Title Stress Distribution and Fault Development Around NepalHimalaya by Means of Finite Element Method

Author(s) Alam, Md. Mahmudul; Hayashi, Daigoro

Citation 琉球大学理学部紀要 = Bulletin of the College of Science.University of the Ryukyus(73): 15-54

Issue Date 2002-03

URL http://hdl.handle.net/20.500.12000/2621

Rights

Page 2: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

BulLFELc・Sci.,Univ、Ryukyus,No.73815-鼬(2002) 15

StressDistributionandFaultDevelopmentAroundNepal

HimalayabyMeansofFiniteElementMethod

Md・MahmudulAlamandDaigoroHayashi

oftheRyukyusINishihara。DepartmentofPhysicsandEarthSciences,Universityofthe

Okinawa,903-0213,Japan

Abstract

Thereareanumberofmethodstoanalysegeologicalstructures・Fmiteelement

methodisoneofthem・Numericalmodelingbasedonfiniteelementanalysisisan

effectivetoolforstudyingtheelasticbehaviorsofearth,Bcrustduetotectonicmove‐

ment・Thisstudydescribeshowtouseanadvancednumericalmodelingtechnique,thefiniteelementmethod,tocomputerockdeformationandtopredictstressand

faultdevelopmentasafunctionofmaterialpropertieB,cohesionandfrictionangle・Stressdistributionandfaultdevelopmentof2dimenBionalplanestrainFEMmodB1s

offourHimEL1ELyancrosssectionsaredescribed・SW(southwest)toNE(northeast)horizontalshorteninguptomaximum375m(equivalentdisplacementat7、5

cm/yrof5000yr)isappliedatthesouthwesternendofthecrosB-Bections・ProposedmodelsshowthatthedirectionofmaximumprincipalstressBs(o,)arehorizontal

alongtheshallowerpartofallthemodelB・Variationofthevelocityboundarycon-ditionindicatesthechangesofdirectionofprincipalstressesalongthedeeperpart

whilethatalongtheshallowerpartmmainunchangBd

AccordmgtotheMohr‐Coulombcriterion,failureisobservedalongtheBhal-lowerpartofSiwalik,TethysandGraniticlByer,andaveryfewnearthesurfaceofMBT,MCTandSTDS,FailurehasnotoccurredinthedeeperpartcfHigher

HimalayaandLesserHimalaya,inspiteofchangingphysicalparametersofrockformations,becauseofthehydrostaticconditionthatisobsewedalongthemodels・PreviousstudiesonfocalmechanismBolutionBofearthquakeBintheHimalBLyan

regionprovidethBexistenceofthrustfaultsalongitBEWBtretchingwithoneplanedippinggBntlynorthbeneaththeHimalaya,SimulationBhowsthesamedistributionofthrustfaultBalongtheupperpartofthemodelsasshownbythefocalmecha‐niRmsolutions.

AbbreviationsandNotations

Sub-Himalaya

LesserHimalaya

LesserHimalayanThrust

LesserHimalayanSequence

HigherHimalayas

HigherHimBulayasSequence

MainBoundaryThrust

MainBoundaryFront

MainCentralThrust

●●O■O●●●●●ロロGC●●甲●

Sm”⑪

顕、血蠅躯叩MMM

Page 3: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

16 MdMahmudulA1amandDaigoroHayashi

M2inDetRchmentTbnugt

M且inFront21Thrust

SouthTibetanDet2chment

SouthTibetanDetachmentSystem

Tethys-Himalayas

TibetanTethysseries

lndusTsangpo

lndusTsangpoSuture

Sedim⑨nt

Gneig巳

Normnlfflln1t

Fini他F1②mentMethod

MaximumPrincipalStress

lntermediatePrincipalStress

MinimumPrincipalStress

MDT3

MFT:

STD:

STDa

TH:

TTS:

IT:

ITS8

Sed.:

Gn8

NF:

FBM:

ぴ1:

。2:

◎3:

Introduction

TheNepalHimalayas,withanextensionof800km,coverthemountainrangeslying

withintheKingdomofNepaLSincel949,whenNepalopenGditsbordertotheforeigners,

anintensegBologicalinvestigationhastakenplace,andinaShorttimeNepalhasbecome

oneofthegeologicallywellknowntractsoftheHimalayanrange,Theearliestreported

visitorwasHooker,whoinl848crossedtheTamurVallyineasternNepal(Hooker,1854).

HewasfollowGdbyMedlicott,whoinvestigatedtheKatmandureg1onandtheTriSuliGanga

(Medlicott,1875).ThefirstcomprehensiveaccountofNepalesegeologyhasbeeng1ven

byAuden(1935).HeimandGanSSer(1939)enterednorthwestemNepalinl939・Inl950

HagenbeganhisfieldworkfortheGovemmentofNepaLDuringlOyearsofintensive

investigationsinpracticallyallpartsofthenowaccessiblekingdomheaccumulateda

wealthofgeologicalfacts,unequalinthehistoryofgeologicalexplorationintheHimalayas、

TheexcellentgeologicalresultsbyLombard(SwissEverestexpedition)andBordet's

(FrenchascentsofMakalu)expeditionsareEwaluablecontributionofthehighestmountain

group・Inl962theDutchgeologistsEgelerandDeBoy,inearlyl963G・FuchsofAustralian

expedition,inlatel963BordetwithReymandandKrummenachercoveredtheThakkhola

reglon

HimalayasiStheworl。'shighestmountainchain,itconstitutesthegreatestattraction

toclimbersandtrekkersthroughouttheworld・Butmorethananythingelse,theHimalayas

representtheawe-inspiringpower,beauty,andgrandeurofnature・Formingadistinct

geographicaldividethatseparatesthelndiansubcontinentfromCentralAsia,theHimalayas

extendfromwesttoeastinELmassivearc(Fig.1)forabout2500kilometersterminating

attheYunnanandthePamirsyntaxes・Coveringanastoundingareaof612,O21sq.km,

Page 4: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAmundNepalHimalayabyMeansofFimiteElementMethodl7

TTBnBonlm■lpyBB■tholith

I■。、-醜angpo.&N⑨r0h$r■SlDqnrezone35.

蕊!;蕊liiLiih義liilllllliⅢ●可

F●□

Tl

F1

30.

CD 200hm

KGlibman

90。80。 E

SimplifiedgeologicmapoftheHimalayashowingthemajortectonostratigrELphicdivisions・ModifiedfromGansser(1964),LeFort(1975),BarnicotandTreloar,ParrishandHodges,Kaneko(1997).

Fig.1.

thevastmountainchainpassesthroughthelIDdianStateSofJammuandKashmir,

HimachalPradesh,UttarPradesh,SikkimandthoHimalayankingdomsofNepaland

Bhutan、TheTibetanP1ateau‐theroofoftheworld‐formsthenorthernboundaryof

thismagnificentmountainsystemwhilelowerextensionsoftheHimalayasbranchoff

fromeasternandwesternfrontiersofthesemountains・

Thecontinent‐ContinentcollisionmodelfortheupliftoftheTibeteLnPlateauhas

beentreatednumericallybyEnglandandothers(EngalandandMcKenzie,1982,1983;

EnglandandHousemanl985,1986).Inthisstudies,theyassumedthelndianandAsian

cruststobeincompressiblenon-Newtonianfluidsandanalysedthecollisionin3-dimension

bymeansofathinviscoussheetanalysisandhadtheintentionofexplainingthestructure

oftheinterioroftheAsianContinent、Itisimpossible,howcver,tounderstandtheuplift

oftheHimalayasdirectlyfromtheirmodel,althoughitmayrepresentsoneofthemost

reasonablecollisionmodel&

ThelargestnegativegravityanomEL1iesovertheGangaBasinandtheHimalayaare

reproducedbyamodelwherethelndiancrustunderthrustsHimalayaatshallowangles

ofl5。±5.alongvariousthrustzones(IndusSutureZone,MCTandMBT).Inthis

modeltheHimalayaregionisisostaticallyuncompensatedandthecrustalshorteningof

300to400kmiscalculatedtohaveoccurredacrossthemountain(Warsi&Molnar,1977).

Hayashi(1987,1988,1992)numericallysimulatedtheupliftoftheTibetanplateau

andtheHimalayasassumingthatthenortherlymigrationofthelndianplatedeforms

theoverlyingAsiancontinentalcrustwhichbehavesasanincompressibleNewtonianfluid

ofAsiaabovetherigiduppermantle・Inthesemode1s,theuppermantlelithosphereis

Page 5: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

18 Md・MahmudulA1amandDaigoroHayashi

arigidbodyforthefirstapproximationandthedeformablecrustoverliestheupper

mantle・ThedeformationofthecrustisthenexpectedtoformplateausELndmountain

ranges・Undersuchanassumption,isostaticreadjustmentbeComesimpossibleandthe

calculatedvaluesofsurfaceuplifttendtobeoverestimated、Further,therigidplate

assumptionprohibitssimulationforaperiodlongerthan0.1Ma・Thenumericaltechnique

usedinsimulationpurposeisbasedonthewellknownfiniteelementmethod・

TheHimalayas,theworld'syoungestandhighestmountai、range,aremorphogenetically

stillactivetodayandup-going、Therearebasicallytwocausesforthis:(i)activefault-

ingintheSiwalikhillsinthesouthernfrontalpartan。(ii)1ongwEwelengthchromcup-

heavalinthecentralHigherHimalayaTheupnftoftheSiwalikhillsisquitearecent

eventresultingfromintermittenteELrthquakessincethelateP1eistocene,whereasthe

HigherHimalayastartedtoupliftinassociationwiththeMCTactivefromthemiddle

MioceneandcontinuestodosoatpresentwithepisodicrapidrisesduringthespELn.

TheriseofthemountainsshiftedsuccessivelyfromtheTibetanMarginalMountains

inthenorthintheO1igocenetotheHigherHimalayaintheMiocene,theMahabharat

RangeintheearlyP1eistoceneinassociationwiththesouthwardjumpofthethrustfaults

(IT1S→MCT-全l1fBT-受MFT).

Numericalmodelingbasedonfiniteelementanalysisisaneffectivetoolforstudying

theelasticbehaviorsofearth,scrustduetotectonic(epirogenicandorganic)movement・

Generally,thedeformationthatoccurswithintheearth'scrustisinhomogeneousfinite

deformation・Thegeologicaldeformationishowevertoocomplextobeanalyzed・

Thestrainmarkerswithintherocksandtheirstrainanalysisgenerallyprovides

valuablemessagesaboutthenatureoftectonicmovementwhichtherockexperiencedin

thepast・

HimalayainNepalisacomplexfieldwhererocksequencearefolded,faultedand

thrustedinresponsetoaseriesofupliftmentoftheHimalayaduetosubductionoflndian

platebeneaththeEurasiaplate・Thesedimentaryandmetamorphicrocksarefolded,

faulted,jointedandthrusteddifferentlyaccordingtotheintensityofstressdeveloped

withinit・Thestudyoftheserocksequencesandstructurescertainlymayprovidesvarious

cluestoanalysethestress,elasticbehELvioroftherocksandtectonichistoryoftheregion・

Theaimofthestudyistoanalysethefollowings:

(i)TheintensityanddirectionofprincipalstressesalongtheNepalHimalayaarecom‐

putedinvariousboundaryconditions.

(、)Developmentoffaults

(iii)Comparisonthesimulatedstressdistributionwiththefocalmechanismsolution

happenedwithintheregion.

Page 6: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimalayabyMean8ofFiniCoE1ementMethodl9

1.GeologicalSetting

ThegreatHimalayasextendforabout2500kmfromthePunjabHimalayainthewest

totheArnachalHimaIayaintheeastalongtheWNWdirectionlikeaborderingwallalong

thesouthernedgeoftheTibetanPlateau・

ThegeomorphiccrosssectionintheN-Sdirectionisalmostsimilarthroughoutthe

Himalayas・AtypicalsectionfromtheNepalHimalayaisshowninFi9.2.Fromnorth

H唾TDmTMCr

Fig、2.SimplifiedcrosssectionoftheHimEL1ayas、MFT:MainFrontalThrust,MBT:MainBoundaryThrustiMCT:MainCentralThruBt・

tosouth,theTibetanHimalaya(5000m),theHigherHimalaya(70006000m),theLesser

Himalaya(1500-2000m)withtheMahabharatRange(3000m)atthesouthernborder,

theSiwalikhillsintheSub-Himalaya(1000m)andtheTeraiP1ainarezonallyarranged

Thegeomorphicdivisionsarewellcorrelatedwiththezonaldistributionofthegeologic

formationsandstructuralarrangementsalongtheHimalayantrend

lntheTibetanHimalayazonemthenorth,theTethyssedimentsofthePalaeozoic

totheearlyCenozoicagespreadovertheareawhichisunderlainbyavastamountof

granitebodies・TheHigherHimalayanzoneisoccupiedbythehighmountainscovered

withsnowandglaciersincludingpeakshigherthan8000msuchasKanchanjangha,

Makalu,Everest,Cho-Oyu,Manaslu,AnnapurnaandDhaulagiri・Theupperpartsof

thesemountainsareformedbytheTethyssedimentswhichareunderlainbytheCentral

Crystallinescomposedofhighgrademetamorphics・Boththesedimentsandgneisses

thrustuptheLesserHimalayansedimentsalongtheMCT(MainCentralThrust),which

appearstobeoneofthesignificanttectonicboundariesthroughouttheHimalayas・The

lesserHimalayanzoneintheMidlandisadiSSectedhighlandborderedbytheMahabharat

Rangetothesouth,madeupoftheLesserHimalayansedimentsandtheGondwana

NS

■”四

岬鉈l》

面岳

悪、 ̄

I丘e■ndSnoWZo正

----------SnowL1Jue

AlPlneZone

Sub-AIplneZmhe

TempernteZone

Subtropl亜lZone

1℃ralsub・皿、血my、 Ⅱ紀霞erH迩白lay■、 I、ゆcrmmala” rIbemnHimnmya Geom⑨rphMoglc山Di7.

GangEsA1lv. SIW曰llkSed. u-ZU-Scd n.Gn. TeOhysSed. GeoUcgicaIDlv.

Page 7: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

20 Md、MahmudulA1amandDaigoroHayashi

sedimentsaswelLThelesserHimalayansedimentsofthePrecambriantotheearly

Palaeozoicageshowmonotonousdepositionsandarebarreninfossilsexceptforafew

occurrencesofstromatolites・TheSub-HimalayanzoneislimitedbytheMBT(Main

BoundaryThrust)tothenorthalongthesouthernfootoftheMahabharatRange,and

theMFT(MainFrontalThrust)tothesouthatthesouthemedgeoftheSiwalikGroup・

TheLesserHimalayansedimentsthrustuptheSiwalikGroupoftheSub-HimalayGLThe

sedimentsoftheGrouprepresentmolassedepositsresultedfromtherapidupheavalof

theHigherHimalayafromthelateTertiarytotheearlyQuaternary・Thegrouphasalso

thrustoverthealluvialformationoftheGangeticsedimentsalongtheMFTwhichis

presentlyactivealongtheMBT.

1.1EUC山tioJzq/Himalqyq

Overtwohundredfiftymillionyearsago,India,Africa,Australia,andSouth

AmericawereallonecontinentcalledPangea・OverthenextseveraImillionyears,this

giantsoutherncontinentproceededtobreakup,formingthecontinentsweknowtoday・

Pangeaessentiallyturnedinsideout,theedgesoftheoldcontinentbecomingthecollision

zonesofnewcontinents・Africa,SouthAmerica,andAntarcticabegantofragment・

About60minionyearsago,wasthempidmovementofIndianorthwardtowardthe

contmentofEurasia,Indiachargedacrosstheequatoratratesofuptol5cm/yr.,inthe

processclosinganoceannamedTethysthELthadseparatedfragmentsofPangea・This

oceanisentirelygonetoday,althoughthesedimentaryrocksthatsettledonitsocean

floorandthevolcanoesthatfringeditsedgesremaintotenthetaleofitsexistence・

ThelndiansubcontinentiSmovingtowardtherestofEurasiancontinentatarate

ofabout50mm/yr.(LePichon,1968,MinsteretaL,1974).Therelativemotionof

thesetwocontinentalmassesduringthepast40m.y・apparentlyhascauseddeformation

throughoutmuChofcentralandeasternAsia,andthecreationoftheHimalayaareonly

oneconsequenceofthisconvergence(MolnarandTapponnier,1975).Intheearlytertiary

andoceanbasinIaybetweenlndiaandtherestofEumsiaandwaspartofthelndian

plate、SubductionofthelndianplateoccurredalongthesouthernmarginoftheEurasian

continent,untilapproximately40to50m.y・ago,whenthetwocontinentalmassescollided

witheachother(DeweyandBird,1970,LeFort,1975,PowellandConaghan,1973).The

lowdensityofcrustalrockstogetherwiththemuchgreaterthicknessofcontinentalthan

oceaniccrustpresumablyrenderssimplesubductionofcontmentalcrustimpossible(Isacks

eta1.,1968,McKenzie,1969).AsaresulttheconvergEnceofthetwocontinentalmasses

mustoccurbyprocessesotherthansubduction‐suchascrustalshorteningandmountain

buildingasintheHimalayaorbylatera1movementsoflargeblocksalongstrikeslip

faultsandoutofthewayoftheimpingingcontinentsasinmuchoftheregionnorthof

theHimalaya(MolnarandTapponnier,1975,TapponnierandMolnar,1977).

Foratleast80millionyearstheoceaniclndianP1atecontinueditsinexorablecollision

Page 8: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimaLByabyMeansofFiniteElementMethod21

withsouthernAsia,includingTibet・Theheavyoceanfloornorthoflndiaactedlikea

giantanchor,plungingrapidlyintothemantle,anddraggingthelndiancontinentalong

withit,northward,towardsTibet、

Astheplatescollided,thesinkingoceanfloorgeneratedvolcanoesinsouthernTibet

becausetherockatthetopofthedescendingplatemelted,fromfrictionandthehuge

pressuresofcollision・However,by25millionyearsagothefastmovinglndiancontinent

hadalmostentirelyclosedovertheinterveningocean,squeezmgthesedimentsonthe

oceanfloor・Sincethesedimentswerelightweight,insteadofsinkingalongwiththe

plate,theycrumpledintomountainranges-theHimalayas・

BylOmillionyearsagothetwocontinentswereindirectcollisionandthelndian

continent,becauseofitsenormousquantityoflightquartz-richrocks,wasunableto

descendalongwiththerestofthelndianplate・Itwasataboutthistimethatthe

anchorchainmusthavebroken;thedescendinglndianplELtemayhavefallenoffand

foundereddeepintothemantle・A1thoughwedon'tfullyunderstandthemechanismof

whathappenednext,it,sclearthatthelndiancontinentbegantobedrivenhorizontally

beneathTibetlikeagiantwedge,forcingTibetupwards・Tibet,meanwhile,isbehaving

likeagiantroadblockthatpreventstheHimalayafrommovingnorthward

TheHimalayanorganicbelthaslongbeenregardedastheworldstandardofanor-

ganicbeltformedbythecollisionoftwolargecontinents(DeweyandBird,1970,

Windley,1984,1995).Forthisreason,theHimalayanorganicbelthasbeeninvestigated

bymanyearthscientists,includinggeologists(Gansser,1964,Hashimotoeta1.,1972,Le

Fort,1975,Stocklin,1980,Sakai,1983,1985,ColchenetaL,1986,Searleeta1.,1987,

BurchfieletaL,1992).AfterthecollisionbetweenthelndianandEurasiancontinents

duringtheEocene,thelargecrustalshorteningcausedbyconvergencewastakenupin

majorintercontinentalsubductionwhichleadtotheformationoftheHimalayanchain

(Pecher,1989).AseriesofschematicdiagramBinFi9.3showingthetectonicevolution

oftheHimalayanMetamorphicbeltinNepaL

BasedonfieldandlaboratoryStudies,numericalmodelingofvariousaspectsof

continentalcollisionandensuingBubductionhasbeenachieved(EnglandandThompson,

1984,MolnarandTapponier,1975,Chemendaeta1.,1995).Nevertheless,theorganic

processoftheHimalayamountainrangearenotyetfullyunderstood.

HLmreqノォノZeHimqZqo'α

Overperiodsof5-10millionyears,theplateswillcontinuetomoveatthesame

rate,whichanowsustoforecastfairlyreliablyhowtheHimalayawindevelop・InlO

millionyearslndiawillplowintoTibetafurtherl80km、Thisisaboutthewidthof

Nepal・BecauseNepal,sboundariesaremarksontheHimalayanpeaksandontheplains

oflndiawhoseconvergencewearemeasuring,Nepalwilltechnicallyceasetoexist・But

themountainrangeweknowastheHimalayawillnotgoaway・Thisisbecausethe

Page 9: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

Md・MahmudulA1amandDaigoroHayashi22

(A)Ca、60Ma:Pre-colliSionstage

lndianplate…正dionaTymmpIex EumsianpIate

(B)Ca、20

Bb

5-11Ma:MountainBuildingstageに)

■■

ロロ

Present(D)

SchematicdiagramsshowingthetectonicevolutionoftheHimalayanMetamorphicbeltinNepal.(A)sub-ductionofthelndiancontinent;(B)subhorizontalextrusionoftheHHSandtheLHSmetamorphicunitsbysynchronouspairednormalfaultingonthetopandreversefaulting(MCT)atthebottom・Tectonicjuxtapositionofthesemetamorphicunitsatmid-crustalleveL(C)&(D)domingofallthesethreeunits,byjacking-upduetounderthrustingofthesub-Himalayas,andrelatedBecondaryhigh-anglenormalfaulting、ModifiedfromKaneko(1997).

Fig.3.

Page 10: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepaIHimalayabyMeansofFiniteElementMethod23

Himalayawillprobablylookmuchthesameinprofilethenasitdoesnow・Therewill

betallmountainsinthenorth,smalleronesinthesouth,andthenorth/Southwidthof

theHimalayawillbethesame・WhELtwillhappenisthattheHimELlayawillhave

advancedacrossthelndianplateandtheTibetanplateauwillhavegrownbyaccretion・

OneofthefewcluesabouttherateofcollisionbetweenlndiHandTibetbeforetheGPS

measurementsweremadewastherateofadvanceofHimalayansedimentsacrossthe

Gangesplain・Thereisanorderlyprogressionofsedimentsinfrontofthefoothills・

Largerbouldersappearfirst,followedbypebbles,andfurthersouth,sand-grains,siltS,

andfinallyveryfinemuds・ThisiBwhatyouseewhenyoudrivefromthelasthillsof

theHimalayasouthwardlOOkm、Thepresentisobvious,butthehistoricalrecordcannot

beseenonthesurfacebecausethesedimentsburyallformertracesofearliersediments

However,indrillholesintheGangesplain,thecoarserrocksarealwaysonthetopand

thefinerpebblesandmudsareonthebottom,showingthattheHimalayaarerelentlessly

advancingonlndia.

L2ZO"atioJLq/theHZmqJqyaS

Foraproperstudy,itisnecessarytoclassifythevastareacoveredbythemountains

intosmallersub-sections・ThegeometriccrosssectionintheN-Sdirectionisalmost

similarthroughouttheHimalayas・

TheHimalayascanbeclassifiedinavarietyofways・Fromsouthtonorth,the

mountainscanbegroupedintofourparallel,longitudinalmountainbelts(Gansser,1964),

eachwithitsuniquefeaturesanddistinctivegeologicalhistory:

(i)TheSubHimalayas

(ii)TheLesserHimalayas

(iii)TheHigherHimalayas

(iv)TheTethysHimalayas

1.2.IZ1heSuhHZmaZqyas

FormingthesouthernmostbeltoftheHimalayanrange,theSiwaliksarealsothe

lowestandnarrowestrangeintheentireHimalayansystem,havinganaverageelevation

ofabout900‐1200mandinplaces,awidthofonlyl6km・TheSiwaliksrisesteeply

fromthegreatnorthemplainsoflndiaandPakistanandrunparalleltothemainranges

oftheHimalayastowardsthenorth,fromwhichtheyareseparatedbyhighmountains

anddeepvalleys・TheSub-HimalayanzoneislimitedbytheMainBoundaryThrust

(MBT)tothenorthalongthesouthernfootoftheMahabharatRangeandtheMain

FrontalThrust(MFT)tothesouthatthesouthernedgeoftheSiwalik(Churia)Group・

TheLesserHimalayansedimentsthrustuptheSiwalikGroupoftheSub-Himalaya,The

sedimentsoftheGrouprepresentmolassedepositsresultedfromtherapidupheavalof

theHigherHimalayafromthelateTertiarytoearlyQuaternary、TheGrouphasalso

Page 11: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

Md・MahmudulA1amandDaigoroHayashi24

thrustoverthealluvialformationoftheGangeticsedimentsalongtheMFTwhichis

presentlyactivealongwiththeMBT.

1.2.2mheLesseF・HZmajCqyas

TheLesserHimalayashasbeenvariouslynamedtheMaincentralthrust(MCT)zone

andMidlandsedimentaryzone(Arita,1983),MidlandFormation(LeFord,1975),Lesser

Himalaya(Brunel,1986)andLesserHimalayanSequence(Kaneko,1994,1995).Lying

betweentheHigherHimalayasregioninthenorthandtheSiwalikstothesouth,the

LesserHimalayaregionformsthemiddlesectionoftheHimalayanmountainchain・

LowerthantheHigherHimalayasortheGreatHimalayas,thisregionhasanaverage

altitudeof3700‐4500mabovesealeveLItextendssoutheastfromPakistanandextends

throughlargepartsofthelndianstatesofJammuandKashmir,HimachalPradesh,

WesternUttarPradesh,NepalEmdtheNorth-EastemHimalayas・TheLesserHimalayan

zoneintheMidlandisadissectedhighlandborderedbytheMahabharatrangetothe

south,madeupoftheLesserHimalayansedimentsandtheGondwanasedimentsaswelL

TheLesserHimalayansedimentsofthePrecambraintotheEarlyPalaeozoicageshow

monotonousdepositionsandarebarrenmfossilsexceptforafewoccurrencesof

stromatolites,whiletheGondwanasedimentsofthePalaeozoictotheEarlyTertiaryage

haveabundantfossilswhicharescatteredandexhibitanarrowdistributionalongfaults

insomeplaces・

TheupperpartoftheLesserHimalayanSequencerocksaremyloniticwithlocalized

foliation-parallelbandsofhighstrain・Therocktypesincludingpsammiticschist,augen

gneiss,phyllite,peliticschist,calc-silicateschist,marbel,siliceousschistandamphibolite.

L2.3T1heHiglb”Himalqyas

TheHigherHimalayasisboundedtothesouthbytheMaincentralthrust(which

separatesitfromtheLesserHimalayansequence)andtothenorthbytheSouthTibetan

detachmentsystem・TheSouthTibetandetachmentsystem,aseriesofnormalfaultson

thenorthernflankoftheHimalaya,formsthecontactbetweentheTibetanTetyessediment

andunderlyingHigherHimalayanSequence(Burchfieleta1.,1992,BurgChen,1984,Richard

andJeffrey,1993,HashimotoetaL,1973).TheHigherHimalayahasbeenvariously

namedHimalayanGneisszone(Arita,1983),Tibetanslab(LeFord,1975,Bordeteta1.,

1971),andHigherHimalayanSequence(Kaneko,1994,1995),UpperCrystallineNappe

(Fuchs&Frank,1970),KathmanduNappesandKhunbuNappes(Hagenl969).The

northernmost,longestandthemostcontinuousbeltintheHimalayansystem,theHigher

HimalayanbeltformsthebackboneoftheHimalayas・Lyingwellabovethesnowline

withanaverageelevationofabout6100m(20,000ft),theHigherHimalayadominates

theextremenorthernfrontiersoflndiaandtheentirenorthernboundaryofNepaLIt

risestoitsmaximumheightinNepalcontainingnineofthefourteenhighestpeaksin

Page 12: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimaIayabyMeansofFiniteElememtMethod25

theworld,allabove8000mabovesealeveLTheupperpartsofthesemountainsare

formedbytheTethyssedimentswhichareunderlainbytheCentralCrystallinec⑨mposed

ofhighgrademetamorphicrock・BoththesedimentsandgneissesthrustuptheLesser

HimalayansedimentsalongtheMainCentralThrust(MCT),whichappearstobeoneof

thesignificanttectonicboundariesthroughouttheHimalayas・Bothgroupshaveslipped

andspreadovertheMCTtothesouthproducingnappeandklippeontheLesserHimalayan

sedimentsintheMidlnnd

1.2.4TノieLthysHZmcMqycLs

lntheTibetanHimalayanzone,theTethyssedimentsofthePalaeozoictotheearly

CenozoicagearedistributedalongthesouthemmostmarginofthehugeTibetanTethys

basin,suchastheSagarmatharegion,theLangu-Manangbasin,theSaipal‐Amlangbasin,

theSpitibasinandtheKashimirbasinwhichisunderlainbyavastamountofgranite

bodies・ThenorthernborderoftheTethyssedimentsisrepresentedbyafaultzonewhich

stretchesalongthelndusandTsangporiversIreferredtoasthelndus-TsangpoSuture,

whichsignifiesthecollisiontraceofthelndiansubcontinentwithEurasia・Sometime

ago,theGondwanasedimentsattributedtothelndiansubcontinentwerereportedfrom

thearealyingtothenorthofthesuturezone・Iti8possiblethatanothercollisiontrace

ofthecontinentsolderthanthelndus-TsangpoSutureexists.

L3Lithostmtigmpノiyq/1VbpaZHjmalqya

Accordingtothegeologistandgeophysiciststhosewhosuweyedandtillnow

engagedindifferentpartsofNepalHimalaya,suchasArita,HayashiandYoshida

(1982),Sakoetal.(1968),Hashimotoetal.(1973),Hagen(1969),Fuchs&Frank

(1970),Gansser(1964),Bordetetal.(1971),surveyedthePokhara-Piuthanarea,Central

Nepal;Kano(1977,1980&1982),PecherandLeFort(1977),surveyedthemaincentral

thrustzoneoftheAnnapumaRange,CentralNepal;Arita&Yoshida(1982),SakoetaL

(1968),Hashimotoetal.(1973),Hagen(1969),Fuchs&Frank(1970),surveyedthe

Ramdighat,CentralNepal;Yoshida&Arita(1982),Wadia(1975),Tandon(1976),Tandon

andNarayan(1981),Opdykeetal.(1979),JohnsonetaL(1979),Gill(1952),Gansser

(1964),Powel&Conaghan(1973),Siwalikrange,CentralNepal;Iwata,Yamanaka&

Yoshida(1982),Hazen(1968),Bordetetal.(1971),LeFort(1976),Takkholaregion,

CentralHimalaya;Yamanaka&Iwata(1982),Hiroshima(1976),SharmaetaL(1980),

Hagen(1969),LeFort(1976),MiddleKaliGandakiandMarsyandikhola,CentralNepal;

Yamanaka,Yoshida&Arita(1982),Horman(1974),Hagen(1969),PokharaVally,Central

Nepal;Yokoyama&Omura(1982),DanaandKerabari,CentralNepal;Kamada,Arita

&Yoshida(1982),Reed(1908),Arkell(1965),Hagen(1968),Bordetetal.(1971),Gansser

(1964)andRyf(1962),Muktinathregion,CentralNepal;thelithostatigraphyoftheNepal

Himalayacanbesummarizedinthefollowingtable‐

Page 13: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

26 Md、MahmudulA1amandDaigoroHayashi

TableLGeologicalunitsandageofrocksinNepalHimalELya(Gansser,1964,1983,Valdia,1980,SinhiandRoy,1982).

Zone

1.3.JSiu,aZih(Churm)GroUp

TheChuriagroupcanbedividedonthebasisoflithologicnatureintothreeparts,

i、e、,thelower,themiddleandtheupperformations・ThreedivisionsoftheChuria

groupwerealsoattemptedbyltiharaetaL(1972),Hagen(1969),Wadia(1975),West

etal.,(1978&1981),GlennieandZiegler(1964)dividedtheSiwaliksinNepalintothe

lower“sandstoneFacies,,andtheupper“ConglomerateFacies"、

Thelowerformationconsistsofirregularlyalternatingbedsofmuddy,finesand‐

stoneandsiltstone、Variegatedsiltstonesandcoaly,blacksiltstonesareintercalated

frequently.Sandstoneismoderatelyindurated

Themiddleformationconsistsmainlyofthickbeddedmassivesandstoneand

subordinatelyofsiltstoneandthin-beddedalternationofsandstoneandsiltstone、

Variegatedsiltstone,irregular-bedded,aresometimesintercalated・Sandstoneisless

indurated,me。iumtosometimescoarse-grainedwhiterockwithblackspecks(mostlyof

biotite),showingasalt-and-pepperappearance・Therearealsofoundwell-consolidated

calcareoussandstonebedswhichexhibitsomeconcretionarystructures・Sandstoneis

abundantinmica,rareinclaymatrixandpartlycalcite-cemented,belongingtolithic

arenite・

Theupperformationiscomposedpredominantlyofgravelbedsandsubordinatelyof

sandandsiltlayersMostlytheyareunconsolidated・Wellconsolidatedcalcareoussand‐

stonebedsarerarelyfoundintheupperpart・Gravelsrangeinsizefrompebbletoboulder

andcobblegravelsarecommonAccordingtoAritaetaL(1984,ArjunKhola,Jajarkot-

Piuthanarea)thelowerpartoftheChuriaGroupconsistsmainlyof“brickcolored',

fine‐tomedium-grainedsandstoneandcontainssomeintercalationsofmuscovite-bearing

coarsed-grainedsandstone・Themiddlepartismadeupofthefine‐tomedium-grained

calcareoussandstoneinthelowerportionandtofine-tomedium-gramedbrickcolored

mottledsandstoneintheupperportion・Theupperpartislargelycomposedofconglomerate.

Himalaya Zone Group Geologicalageofrocks

SubHimalaya MainBoundaryThrust

Siwalik TertiarytoQuarternarymolasgesedimentS

LesserHimalaya MninCentral

Thrust

MidIHnd MainlyEocambrianclasticsedimentswithlimestoneandquartzite,mostlyalteredtophylliteandmetasandstone

HigherHimalaya Unconformity HimalayanGneiss RejuvenatedPrecambrianbasement,

mostlypolymetamorphosedandmigmatizedattheA1pinestagebytheintrusionoftourmalinegranites

TibetanHimalaya Indus-TsangpoSuture

TibetanTethys MainlylowerPaleozoictoMesozoicclasticandc2lcareoussediments

Page 14: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimB1ayabyMeBnBoIFiniteElementMethod27

Sub-angulartosub-roundandpebUe‐tocobble-sizegravelsconsistsofbrick,greyand

whitechertyquartziteconsistsofgreylimestoneandcalcareoussandstoneandblack

shalyslate・

IntheKarnali-Bherireglon,sandstone,mudstone,conglomirateandlimestoneare●

found(Hayashi,FujiilYoneshiro,&Kizaki,1984,Va1diya,1977-78,1982,Fuchs&FrBLnk,

1970,Fuchs,1977,80,andBashya,1981).

1.3.2MicJZcmdgmup

Thegroupisroughlydividedintotwosub-groups;thequartziteandsandstonesub‐

groupandthesandstoneandphyllitesubgroup(Kawamitsu&Hayashi,1991,Annapuma

region).

Thequartziteandsandstonesubgroupismainlycomposedofquartzitewithsand‐

stoneinterbeds・Thequartziteiswhiteincolor,includingmuscovite,biotiteandplagio‐

clase、Crenulationcleavagesa”shownonbeddingplanea

ThesandstoneandphyllitesubgroupismainlyexposedintheMidlandarea・The

groupconsistsmainlyofbiotitebearingblackphyllitewithquartzveinS,Crenulation

cleavagesandkinkfoldsareseenonbeddingplBLnes,

AccordingtoAritaetaL(1984,Jajarkot-Piuthanarea),Sakai(1982-84,Tansenarea),

Gansser,1964,Hagen,1969,Hashimotoeta1.,1973andFuchs&Frank,1970(Jajarkot

area),Garnet-mica-chloritephylliteschist,black-greenphyllite,crystallinelimestone,

blastomyloniticaugengneiss,1imestone,dolomite,calcareoussandstonearefoundinthe

JajarkotCrystallineklippe・Quartz,sand8tone,greenphyllite,blackphyllite,slate,shale,

dolomite,limestoneandcalcareousshale,conglomerateandamphibolitearefoundinthe

Dunaihi,MaikotandRoli-Sallyanarea、AndQuartz,sandstone,shale,dolomite,lime‐

stoneandvariegatedrocksarefoundinthePiuthan,Musikot,DalliandDhorpatanzone・

BlastomyloniticaugengneissesalsoobsewedontheBheririverjustsouthofJajarkot

(HayashietaL,1984).

Phyllite,quartzite/quartz-conglomerate,siliceoussandstone,amphibolite,1imestone

andslatearefoundintheKarnali-Bheriregion(Hayashi,Fujii,Yoneshiro,andKizaki,

1984,Valdiya,1977-78,1982,FuchsandFrank,1970,Fuchs,1977,80,andBashya,1981).

1.a3MbzmOe"tmJZVimstGmUp(MCTGmUp)

Thegrouphasinsertedandconsistsoftheblackandgreenphynitesubgroup,augen

gneisslsubgroup,amphibolitesubgroup,quartzitesubgroupandcalcariousphylliteschist

subgroup(Kawamitsu&Hayashi,1991,Annapurnaregion).

Theblackandgreenphyllitesubgroupiscommonlyexposedintheareaandiscom‐

posedofbiotite-graphite-phyllite,wavygreenphylliteandbiotite-chloritephylliticschist

withorwithoutgamet,Thephylliticschistischaracterizedbywavymicaceouslayers

withirregularfoldedlenticularquartzaggregates・Thetypicalmineralassemblageis

Page 15: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

MdMahmudulA1amandDaigoroHayashi28

garnet-biotite-muscovite-Kfeldspar-plagioclase-quartz・

TheaugengneisslsubgroupisseenatUnerialongtheKaliGondakiriver・The

augengneissconsistsofmediumtocoarse-grainedminerals・Theaugenstructurecom‐

prisesKfeldspar-porphyroblastsand/orporphyroclasts、ThegneisswascalledUlleri

augengneissbyLeFort・Therepresentativemineralassemblageisbiotite-muscovite-K‐

feldspar-plagioclase-quartz・Theamphibolitesubgroup;severalamphibolitesheetsareplaced

betweenthelowerandmiddlepartsoftheMCTgroup、Typicalmineralassemblageis

hornblend-biotite-quartz-Kfeldspar・

Thequartzitesubgroup;afewquartzitelayersareplacedbetweenthemiddlehori‐

zonsoftheMCTgroupalongtheKaliGandakiandModiKholarivers・Thecolorsofthe

quartzitesarewhite,bluishgreyandgreen・Thesequartzitearefinetomedium-grained

sandsize,includingthinmicaceouslayers・Thecalcareousphyllite-schistsubgroupis

exposedclosetotheupperMCT・

Limestone,garnettwomica-schist/quartzite,granitearefoundintheKarnali-Bheri

region(HayaShi,Fujii,Yoneshiro,andKizaki,1984,Valdiya,1977-78,1982,Fuchsand

Frank,1970,Fuchs,1977,80,andBashya,1981).

1.3.4Hinml町aJzGFzeiSsGroUp

ThegroupconsistsofvariouskindsofgneissesandthrustsovertheMCTgroup

alongtheupperMCT、Thegroupisbasedonthefieldsuwey,dividedintothreesub‐

groups;gneissl,gneissllandaugengneissllsubgroups(Kawamitsu&Hayashi,1991,

Annapurnaregion).Structureofthesegneissesisgenerallyconcordantwiththatofthe

upperMCm

Thegneisslsubgroup;basalpartoftheHimalayanGneissgroupiscomposedofthe

gneisslsubgroup,whichisrepresentedbythealternationofpeliticandpsammiticgneisses

Thepeliticgneisspossessesmediumtocoarse-grainedminerals,especiallygarnet,while

thepsammiticgneissconsistsoffine-grainedparticles・Thetypicalmineralassemblage

isgarnet-biotite-muscovite-Kfeldspar-plagioclase-quartz・

Thegneissllsubgroupiscomposedoffinetomediumgrainedcalc-silicategneissand

overliesthegneisslsubgroup、Thetypicalmineralassemblageisbiotite-muscovite‐

kyanite-calcite-plagioclase-quartz・

Theaugengneissllsubgroupwhichiscomposedofmigmaticgneisswithaugenstructure,

occupiestheupperpartoftheHimalayanGneissgroup、Thetypicalmineralassemblage

isbiotite-muscovite-Kfeldspar-quartz

AccordingtoSakai(1982-84,Tansenarea),Gansser,1964,Hagen,1969,Hashimotoet

a1.,1973andFuchs&Frank(1970,Jajarkotarea),thebasalpartofthegneissesconsists

ofmylonitizegneissincludingcrushedgarnetporphyroblastsandisfollowedbythekyanite‐

garnet-micagneiss・The“argillo-arenaceous,,gneissgraduallygradeupwardintocalcareous

gneissesofthemiddlecalcareousgneissesinthenortheast、AccordingtoAritaetaL

Page 16: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimalayabyMeansofFiniteElementMethod29

(1984,JajarkotDailekh-Raraarea),theHimalayangneissesaremadeupofgarnet-mica

gneiss,kyanite-garnet-micagneiss,siliceousgneissandcalcareousgneiss、

Migmatitegneiss,Augengneiss,calc-siliceousgneiss,gametbiotitegneissarefound

intheKarnali-Bheriregion(Hayashi,Fujii,Yoneshiro,andKizaki,1984,Valdiya,1977‐

78,1982,Fuchs&Frank,1970,Fuchs,1977,80,andBashya,1981).

1.3.5Ti6etα〃TbビノhysGmup

Thegroupiscomposedofthecrystallinelimestonesubgroupandthealternationof

quartziteandmudstonesubgroup(Kawamitsu&Hayashi,1991,Annapurnaregion).The

groupoverliestheHimalayanGneissgroupandseemstobeintenselydeformedThe

groupiscalledtheLarjungFormationbyBordetetal.(1980).

Thecrystaninelimestonesubgroup;basalpartoftheTibetanTethysgrouplsrepre‐

sentedbythenonfossiliferouscrystallinelimestonesubgroup、Thealternationofquartzite

andmudstonesubgroupoverliesthecrystallinelimestonesubgroup・

ThesedimentaryrocksoftheTibetanTethysbasinextendfromthehighestpartof

thegreatHimalayastothenorthintheChineseTibetanterritory,overlyingtheHimalayan

gneisseswhicharethrustedsouthwardsontotheMidlandmetasediments、Therocksof

thisbasindiscussedsepamtelyfromtheMidlandmeta-sedimentarybasinandtectonic

unitsindependentfromthoseoftheMidland(Hagen,1969andFuchs'1967).Rocks

foundintheKaliGandaki,ShishaPangma,SagarmathaandDhaulagiriareaareimpure

limestone,dolomite,argillaceousandcalcareouspelitCs・

ThecalcareousschistisfoundintheKarnali-Bheriregion(Hayashi,Fujii,Yoneshiro,

andKizaki,1984,Valdiya,1977-78,1982,Fuchs&Frank,1970,Fuchs,1977,1980,and

Bashya,1981).

2.NumericalSimuIation

2・IFVi几iteEZeme"tMetbod(FEⅢ)

Finiteelementmethodisawellknownmethodbroadlyusinginmostofthebranches

ofappliedsciences,Engineering,MedicalsciencesoreveninEconomics・Itisalsorapidly

usingfornumericalcalculationinstructuralgeologyandtectonics、

Anadequatemodelisobtainedusingafinitenumberofwelldefinedcomponentsin

manysituationsandsuchproblemisknownasdiscrete・Inotherwords,thesubdivision

iscontinuedindefinitelyandthisleadstodifferentialequationsorequivalentstatements

whichimplyaninfinitenumberofelementsandsuchsystemistermedascontinuous・

Asthecapacityofallthecomputersisfinite,discreteproblemcanbesolvedreadily

(evenifthesamplesizeislarge)butcontinuousproblemcanonlybesolvedexactlyby

mathematicalmanipulation・Thefirsthavedevelopedgeneraltechniquesapplieddirectly

todifferentialequationsgoverningtheproblemsuchasfinitedifferenceapproximation

(R、V・Southwell,1946,,.N・DE・GA11en,1955),variousweightedresidualprocedures

Page 17: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

30 Md、MahmudulA1amandDaigoroHayashi

(S、H・Crandall,1956,B・AFinlayson,1972).Inthefieldofsolidmechanics,reasonably

goodsolutiontoacontinuumproblemcanbeobtainedbysubstitutingsmallportions

(elements)ofthecontinuumbyanarrangementofsimpleelasticbars(McHenry,1943,

Itrenikoff,1941,Newmark,1949,Argyris,1960,Turnereta1.,1956).C1ough(1960)appears

tobethefirstterm“finiteelementmethod"・

Thecivilengineerandstructuralgeologistsaredealingwiththestructuresfirst

calculatestheforce-displacementrelationshipforeachelementofthestructureandthen

proceedstoassemblethewholefollowingawelldefinedprocedureofestablishinglocal

equilibriumateach“、ode”orconnectingpointofthestmcture・Fromsuchequations

thesolutionsoftheunknowndisplacementsbecomespossible・

Thefiniteelementprocessasamethodofapproximationtocontinuumproblems,the

followingstepssufficetodescribethisapproach:

(i)Dividethecontinuumintoafinitenumbersofsubgroups(orelements)ofsimple

geometry(triangles,rectanglesandsoon).

(ii)Selectkeypointsontheelementstoserveasnodes,whereconditionsofequilibrium

andcompatibilityaretobeenforced.

(iii)AssumedisplacementfunctionswithineachelementsothatthediSplacementsat

eachgenericpointaredependentuponnodalvalues.

(iv)Satisfystrain-displacementandstress-strainrelationshipswithinatypicalelement.

(v)Determinestuffinessandequivalentnodalloadsforatypicalelementusingworkor

energyprinciples.

(vi)Developequilibriumequationsforthenodesofthediscretizedcontinuumi、terms

oftheelementcontributions

(vii)Solvetheseequilibriumequationsforthenodaldisplacements.

(掴)Calculatestressesatselectedpointswithintheelements.

(ix)Determinesupportreactionsatrestrainednodesifdesired

TheprimarydisadvantageofthismethodiStodiscretizationofthedifferential

equationsforwhichtheboundaryconditionsaredifficulttosatisfy・Aseconddisadvantage

isthataccuracyoftheresultsisusuallypoor,

Thispotionhavebeenchosenfromthepaper(HayashiandKizaki,1972)toexplain

theFEMforelasticity・Thenumericaltreatmentofthegeologicalprocesshasalready

beenadvancedinthemodernstructuralgeologyaswellasintherockmechanics、Since

thegeologicalprocess,however,areconspicuouslyslowphenomenaandhistories,itis

requiredinthenumericalanalysiscarefullytotakeaccountofthephenomenaandhistory

ofthegeologicalstructuraAnattemptwasmadeinthisstudytoanalyzethestress

distributionsintheNepalHimalayaregionbymeansofFEM・InperformingtheFEM

analysis,itisassumedthatthegeologicalmaterialsinvolvingintheanalysisarehomo‐

geneousandperfectlyelastic,althoughitiscertainthatthegeologicalrockbodymust

beregardedasvisco-elasticbodyasalreadymentionedbyUemura,T・(1971),Ito,H、

Page 18: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmontAroundNepalHimalayabyMeansofFiniteElementMethod31

(1972)andothers、ThhBmaymaketheresultsdifferfromthetrueoncertainpointsbut

itwouldbeconsideredtobeanapproachtothebetterunderstandingofthenature・

Foratypicalelement(Fig.4),assuminghomogeneousstresswithintheelement,the

Fig.4.Atriangularfiniteelement・

vectorofnodaldisplacementsuBeandthevectorofnodalforcesF・canbeexpressinmatrix

formas;

凡凡鴎脇堅脇

周一I|‐ (1),Ⅳ.-皿e=

Bycontinuityofdisplacementwithintheelementandwithadjacentelements,a

displacementfunctionoftwolinearpolynomialscanbechosenforthecaseoftwo

dimensions・Soitcanberepresentedasfollows;

嶢':j=[:::::}'1 (2)

u:innerdisplacementvector

Eq2maybewrittenintheformas;

、〕□Ⅱワ□n』qⅡ⑪

aαロ。、。、U●、

←[;iiiI::] (3)=[R']・a

Page 19: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

Md、MahmudulA1amandDaigoroHayashi32

Thereforethevectorofnodaldisplacementisl遁tedasaproductofmatrixandvector.

臼 (4).α=[R]・a虹c=

[R]:shapefunctionmatrix;α:generalizeddisplacementvector・

UsingJriUlforthex‐andy‐coordinateatthenodalpointi,theshapefunctionmatrix

[RJatthepointisrepresentedby;

皿-[;:il:J…(`’Foreq4thegeneralizeddisplacementvectoraaregivenby

α=[R]-1.88゜ (6)

勾翰輪

111

眺眺鮪

theinversematrix[R]-1willbeexpressed;Using△for

訂巫詞

000△△△△

△△△000

123

111

000△△△△

023

110

副漣海

000△△△

、浬濁

△△△000

則鐘詞

△△△000

[R]-1=上△

(7)

where△equalstotwotimesareaofthetriangleelementsand△diisthecofactorofi,

'…・…。…・…'…-に|………………。innerdisplacementofthetriangleisequatedasfollows;

秘=[R'].α (8)

=[R'].[R']-1.88.

Nowstrainvectoreisrepresentedas;

一日+

-IiII叶馴。=[B]・[R]-1.㎡

(9)

Page 20: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimalayabyMeansofFinitenlementMethod33

Wherethematrix[B]iscalledthestrain-generalizeddisplacementmatrixanditscompo‐

nentsarenotfunctionsofvariablesxandy,sothatonecanseethatthestrainis

constantineachelement・

Therelationofstressvectorpandstrainvectoreis;

一日

'Plw1

E(1-")⑩10

1-2y

O2(1-シ)

(1+")(1-2シ)

0

=[K]・e

WhereyisthePoisson'8ratio,EistheYoung,smodulusand[K]isthestress-strain

matrix・EqlOisvalidforthecaSeofplanestrain、

Letthevirtualdisplacementbeoz函whentheelementisdeformed,thestrainenergyUof

thiselementisgivenbW

U=J上.〃。v

=ル.)T・[K]・eav

=L(灘..)γ・([R]-1)『・[B]『・[X]・[B]・[R]-1WV

=い゛.)T・[B・]『・[K]・[B、]・[R]-1W・dVwhere[B、]isequalto[B、][R]~Iandg・isthevectorofvirtualstrain・

Asthenodalforcesarealreadydefinedbyeq、1,theexternalworkis:

w=(皿.。)了・Fo

Andthestrainenergyisequaltotheexternalwork,sothatthefonowingequation

holds.

(u、。)『・F。=J,(卿.霞)『・[B・]ア・[K]・[B・]・灘。。V

=(鰹..)了(L[B・]?.[K]・[B・]。v)・拠・Whilethevectorofnodalforceisrepresentedby;

F`={J鋤[B、丁・[K]・[B・]。v}・灘.}Now,thestiffnessequationisobtained

F.=[A]・rwhereAiscalledthestiffnessmatrixandcanbewrittenintheform;

A={L[B・]『.[K].[B・]。V}Inthiscase,eachmatrixisconstantintheelement,thentheproductofmatricesi.e・

[β・]T・[K]・[B・],isconstant,Consequently,itispossibletotakeofftheintegralmark,

A=[B・]T・[X]・[B・]。V,whereVisthevolumeoftheelement.

Page 21: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

34 Md・MahmudulAlamandDaigoroHayashi

Bysolvingtheabovestiffnessmatrix,onecangetundecidednodalforcesandnodal

displacementsforeveryelement・Moreove】P,usingthesenodaldisp1acements,thevalues

ofstressandstmincouldbeobtained・FurtheranddetaileddisclI息QinnsonFEMare

referredtosuchpublicationsasZienkiewiczetal.(1967)andsoforth.

2.2MbdbZing

Fourdifferentcrosssectionsareusedtojustifytheeffectofmaterialpmpertiesof

rockformationsappliedonthesecrosssections・Referringpaperswhichwerepublished

duringl979tol999,wehaveselectedthesecrosssectionsforfourmodelstoverifythe

adequatestressdistributionandfaultdevelopmentamongthemodels・Thefourcross

sectionsaretypicalfortheprofileofNepalHimalaya.

》》》v》

。qu

岫岬》一一一n頤、》》一一叩くⅧ”騒騒』DDva1,

》》》》no

so1

・に此

□圏露■

冗罪e3

叩醍

7r

pc

7の(巴

。》・伽吻汕

oP1n

2T

’とい-N齢…圖

F…EIF鷲鵠瀞鉗Ilif:RHI:1.醗職綴粥隠麓:fi:iRl;M;VModifi.。…S…

(ii)Model‐2

u■

mlnUC『]{0丘一》{Uで

mls叱る皿Ⅲ己必罰

Okm

-5

・10

・15

Fig.6.GeologicalsectionacrossthecentralHimalayaofNepal・ModifiedfromBrunel(1986),Pandeyetal.(1999).

Page 22: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistribuIionandFaultDevelopmentAroundNepalHimalayabyMeanSofFiniteEIementMethod35

(iii)Model‐3(A)

TTS

Fig.7.PresentstageofthegeologicalcrosssectionfOrthetectonicevalutionoftheHimalayanMetamorphicbeltincentralNepaLModlfiedfromKaneko(1997).

(iV)Model‐3(B)

-しteCtoSPbCre

Fig.8.Mountambuildingstage(5-11Ma)ofthegeologicalcrosssectionforthetectonicevalutionoftheHimalayanMetamorphicbeltincentralNepal・ModifiedfromKaneko(1997).

Thegeometryofallthecross-sectionsaremoreorlesssamealthougheachhasbeen

takenfromdifferentphenomenon・ItisdifficulttodistinguishtherochSbelongingto

thelayeraccordingtotheirgeologicalmeaning・Anumberofrocksbelongtothelayers

canbeselectedinthefollowingformula

()‐〃!

⑪AC!("-k)!

wherenisthenumberofrocksbelongingtothelayerandkisthenumberoflayer

(、>k).

Thefollowingtablesareshowingthematerialpropertiesfordifferentmodels

Table2、MaterialpropertiesofModel-1ChEBinMPa

、ロ■■、n日■

rnuD iiiiM2F面Euロ⑥n

nngIedB歴B

LiLholDgyLratIgrBpUEunI

gnndBtonBSilぃnnmEMuu北tnmR

曰、。■LonBim蕗hnnB

l空目亜r

Himma

MmbEl

GraniteⅡL亟産、、■

llihHimBlB.、

SFnNphmne

lmPumUm璽亟、巴

T巴thsHim&'四

St『a濡冊ph●

BC Layer Lithology P⑥i稗onUBratio llil1iWi N{i鐘i: )

9111冊;1W

sub

Himalaya6 SandgtoneI

Siltstone0MmdBtone

0.25 2500 40 35 18

Hi4 SandgtoneD

Lim唾to亟0,30 2700 70 50 17

面溌l:;。5 MarbeIO

GraniteoLimeBton⑧

035 2900 80 58 10

IIE:11M(;。1.2.3 Sandgtone,

!i腰鵬。0.25 2600 50 45 20

Page 23: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

36 Md・MahmudulA1amandDaigoroHayashi

Table3.MaterialpropertiesofModel‐2

Ⅱ至旦円里r

imBE■

SFnrU■mmD

imeBtnnロ

Table4MaterialpropertiesofModel‐3(A&B)

囚、土ヒロ回⑭

ime四t□、

2.2.2Bomd(zが00"ditio〃

InallmodelstheuppersurfaceisfreetodeformhorizontanyandverticaUy、The

lowerboundaryisrestrictedtomoveverticallybutallowedtodeformhorizontally・The

nodesattheleftboundarycanmoveonlyvertically、Thenodeatthejoiningoflower

andtheleftboundaryisfixedSW(southwest)toNE(northeast)horizontalshortening

upto375miBappliedinincrementalstepsof75m,equallydividedoverthecross-section・

Model‐1containB352nodes,564elementsandthematerialpropertiesareshownin

Table2;model-2contains501nodes,884elementsandthematerialpropertiesare

showninTable3;model‐3(A&B)contains353nodes,624elements,and491nodes,

880elementsrespectivelyandthematerialpropertiesareshowninTable4・

Accordingtotherulesdescribedabove,theboundaryconditionsforallthemodels

areasfollows8

MOdbZ-LForthenodesl,2and3displacementalonghorizontaldirectionisonly

permitted;nodeno、346,347,348,349,350,351arepermittedtomoveonly

verticany;nodeno、352isrestrictedtomovetoalldirections;nodeno、6,

StrBtigrBphicunit

Layer LithoIogy P⑪i且已⑪nCS

ratioDGnBity(kg/、。)

Young`sModuU亟

(GPa)

Friction

angle(degme)

Cchcgion

(MPa)

sub

Himalaya

3 SandStoneoSiItBtone。M1ndgtone

0.25 2500 40 35 18

U杢匁-P

Himalaya

2 SandstoneoLim⑭gtone

0.30 2800 70 50 17

HigherHimalaya

1 MarbeIO

Granite,Lime2to正

0.35 2900 80 58 10

TethysHimalaya

4 SandBtone,

Impu”liwT⑤二t⑪no

0.露 2600 50 45 20

Stratigraphicunit

Layer Lithology PoisBon0B

ra

De

(kg/、o)Young`sM⑥。ⅢUu2

(GPa)

F面ctioh

angle(degrpe)

Cohesion

(MPa)

sub

Himalaya

2 Sandstone,

SiltStono0Mudstono

0.25 2600 40 35 18

LE2空r

HimaIaya

3 SandstoneoLim餌t⑪Tb⑨

0.30 2600 60 48 15

HigherHimalaya

4 G聖i唾

Granito,Lim函t⑪亟

0.35 2900 80 50 17

TethyBHimalaya

5 Sand8tone,

ImpurBli価、巳to幼e

0.25 2600 50 45 20

Gra

l沮

nitic

yer

1 GraniteoM亜h⑭!

T』imE=tOne

0.35 2900 8058

10

Page 24: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimalayabyMeansofFiniteElementMethod37

9,12,15,19,23,27,31,35,39,43,47,51,55,59,63,73,78,88,95,105,111,

120,125,133,140,147,154,160,174,183,188,196,200,204,208,212,219,

224,237,242,248,254,259,260,265,272,284,304,315and326canmove

horizontallyandvertically(Fig.9).Othernodesarefree.

弓(G伝

.C埒

~■

。●

と鐘}

一一

:‐ヨコ 椒醇f…,。T守わ

【周回ご吻詞H駒I動

←皿 75m40m

●」△10mぞ ̄

nOD21I.】20函DB4’105

禿tmdzOm)

Fig.9.Boundaryconditionofmodel-1・Itcontains352nodesand564ele:ments・Thelowerboundaryisrestrictedtomoveverticallybutallowedtodeformhorizontally・Thenodesattheleftboundarycanmoveonlyvertically・ThenodeatthejoiningollowerandtheleftboundaryisfixedSW(southwest)toNE(northeast)horizontalshorteninguptomaximum375m(equivalentdisplacementat7、5cm/yrof5000yr)isappliedinincrementalstepsof75m,atthesouthwesternendofthecrosssection.

ModeZ‐2:Fornodeno、1,2,3,4,5,6,7and8deformationtakesplacealonghorizontal

directiononly;nodeno、16,17,32,33,34,50,51,74,75,91,92,102,103,

123,124,166,167,187,188,206,239,240,264,265,296,297,314,316,347,

348,366,368,382,383,406,407,413,414,439,441,442and465canmove

horizontallyandvertically;、ode、0.466isforbiddentomovetoalldirections;

nodeno、467,468,469,486,487,488,489,490,501and500canmoveonly

verticaldirection;othernodesarefmeetomovetoalldirections(Fig.10).

一一||

山副ロ卸山【C筒灼

有ロ己圓ゼロ丁由

王 一一王

王 ̄

△f-10Trl

・0’200.幻1600800】CO

零!】:。ヨ(k、)

Fig.10.Boundaryconditionofmodel-2whichcontains501nodesand884elements、Thelowerboundaryisrestrictedtomoveverticallybutallowedtodeformhorizontally・Thenodesattheleftboundarycanmoveonlyvertically・Thenodeatthejoiningoflowerandtheleftboundaryisfixed,8W(southwest)toNE(northeast)horizonIalshortenmguptomaximum375m(equivalentdisplacementat7、5cm/yrof5000yr)isappliedinincrementalstepsof75m,atthcsoutllwesternendofthecrosssection.

3(A):Fornodeno、1,2,3,4,5and6deformationtakesplacealonghorizonta]

directiononly;nodeno、17,18,40,41,57,69,70,84,106,107,118,119,135,

136,157,158,180,206,207,261,262,284,285and307canmovehorizontally

andvertically;nodenq353isforbiddentomovetoalldirections;nodeno、

343,344,345,346,348,350,351and352canmoveonlyverticaldirection;

othernodesarefreetomovetoalldirections(Fig.11).

jlJoapl

Page 25: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

38 Md・MahmudulAlamandDaigoroHayashi

w純一ロ劇一山鄙一○司一、一□

自倒ご駒百円了閃

正 一一主

I】Bu30u輯IOOu75’90

x-,1.0画D

Boundaryconditionofrnodel‐3(A).1tcontains353nodesand624elements・The

lowerboundaryisrestrictedtomoveverticallybutaIlowedtodeformhorizontally・Thenodesattheleftboundarycanmoveonlyvertically・mhenodeatthejoiningoflowerandtheleftboundaryisfixed・SW(southwest)toNE(northeast)horizontalshorteninguptomaximum375m(equivalentdisplacementat7亀5cm/yrof5000yr)isappliedinincrementalstepsof75m,atthesoutllwesternendofthecrosssection.

【0

F埴,111

ModeZ-3(β):Fornodeno、1,2,3,4,5and6deformationtakesplacealonghorizontal

directiononly,nodenql2,13,26,27,57,58,78,79,81,96,97,114,115,

134,135,157,158,209,210,231,232,252,253,273,274,331,332,334,335,

340,341,351,354,356,415,416,and417canmovetobothhorizontala、d

verticaldirection;442isforbiddentomovetoalldirections;nodeno、443,

463,464,465,479,480,481,488,489,and491canmoveonlyverticaldirection;

othernodesarefree(Fig.12).

園一日一℃【|昌一⑭lC

a3旦目ム

乱. 一一

]○

、・zUodOoODu80u1OOU120

秀nxlmmD

Boundaryconditionofnlode1-3(B)whichhave491nodesand880elements・The

lowerboundaryisrestrictedtomoveverticallybutallowedtodeformhorizontally、Thenodesattheleftboundarycanmoveonlyvertically・Thenodeatthejoiningoflowerandtheleftboundaryisfixed・SW(southwest)toNE(northeast)horizzontalshorteninguptomaximum375m(equivalentdisplacementat7、5cm/yrof5000yr)isappliedinincrementalstepsof75m,atthesouthwesternendofthecrosssection.

Fig.12.

22.3qZ6e7io〃/brSeZectio〃q/DiSpZtzcemelztBou几dtzU'00"dition

MarinegeophysicaldatafromtheAtlanticandIndianOceansallowreconstructionof

IndiaandEurasiaforthelast70Ma,ArapiddecreaseinconvergencefromaboutlOO

mm/yrto50mm/yroccurredapproximately40Maago,approximatelyorslightlylaterthanthedateinferredgeologicallyforthecollision・TheHimalayanmountainoriginated

asaresultofcollisionbetweenthelndianandEurasianplates・Thelndianplate

convergesnorthwardatanaveragerateof50mm/yrandisunderthrustingbeneathTibet

(Thakureta1.,2000).Ofthetotalconvergence,~20mm/yr(Lave&Avouac,1998;

BilhametaL,1997)isaccommodatedacrosstheHimalayaandtheremainingconvergenceistakenupfarthernorth(Peltzer&Saucie,1996;Yeats&Thakur,1998).

Page 26: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimalayabyMeansofFiniteElementMethod39

Takingtheestimatethat300to400kmofshorteninghasoccurredintheHimalaya

(Gansser,1966;Mattauer,1975;Warsi&Molnar,1977)andassumingthatunderthrusting

beganintheOligoceneorlateEocene(Gansser,1964;Hamet&A11egre,1976),theaverage

rateofshorteningisaboutlOmm/yr、ThisrateisconsistentwiththerateoflO-20

mm/yrinferredfromrelevelingdataofChugh,1974,withgeodeticmeasurementsaciross

onefault(SinvaletaL,1973),andfromseismicmomentsofearthquakes(Chen&Molnar,

1977).Alloftheratesaresubstantiallylessthantheconvergencebetweenlndiaand

EurasiaforthelastlOMa(LePichon,1968;MinsteretaL,1974).TheHimalaya,therefore,

seemtoabsorbonlyfractionoftheconvergence;theremainderoccursapparentlyby

deformationofthepartofAsianorthoftheHimalaya(Molnar&Tapponnier,1975).

Hayashi(1987,1988andl992)numericallysimulatedtheupliftoftheTibetanplateau

andtheHimalayasassumingthatthenortherlymigrationofthelndianplatedeforms

theoverlyingAsiancontinentalcrustwhichbehavesasanincompressibleNewtonianfluid

ofAsiaabovetherigiduppermantle・Inthesemodels,theNewtoniansialiccrustisdeformed

bya60kmdeeprampdipping45degreesnorthwardsinarigidmantleasthenosphere

movingatlOOmm/yr・

Gatheringourknowledgeandimproveourskillness,3cm/yr,5cm/yr,7.5cm/yrand

lOcm/yrdisplacementhadbeenappliedforallthemodels・Consideringallthecases

mentionedabove,7.5cm/yrdisplacementhavebeentakenforthepresentanalysis.

ProcedUre/bro6taininginputa几doILtp叫tdbutq

Primarilybasedontheseismiccross-sectionbutalsoincorporatingfielddata,a2

dimensionalfiniteelementmodelhasbeenconstructed・Theelementsusedarethree-nodes,

triangles(Fig.4),withlinearshapefunctionsandthusconstantstrainandstress・The

finiteelementcodeusedfortheelasticcalculationise![ES、f

Toproduceinputdata,thecross-sectionsaredividedintotriangleelementsforiden‐

tifyingthecoordinatesofthenodalpointsandimposingtheboundaryconditionsaccording

tothestructuralandtectonicenvironment・

Inputdatacanbemademanuanyusingsectionpaperorthetabletmechanismunder

Macintoshcomputersystem・Itisimportanttonotethattoletthex-axisandy-axisin

thecross-sectionbeparalleltotheframesidesofthetabletasmuchaspossible、Then

usingthetabletthecoordinatesofallthenodeswillbeobtained・Therefore,aftergetting

thecoordinatesofannodes,thedeterminationofelementconnectiondatawillbemade

manually・Basedonthecoordinatesofthenodes,asimpleprofilemapwiththesame

scaleofx-axisandy-axiscanbedrawnbyusingaFortranprogram("et./UJzc).After

thattheinputdatawillbeobtainedfinally・

Wecanverifytheshapeofthemodelwiththecrosssectionlfsomethingwrong

withthecrosssection,itwillbeeasilylocatedbythesoftlzet・んJOC・

Aftergettingtheinputdata,finiteelementmethodprograms,emM6αソZ。./and

Page 27: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

40 Md・MahmudulA1amandDaigoroHayashi

几et、/tmcwritteninFortranareappliedtoobtainthestressfieldofallthemodels,Program

〃et・か"cisusedtoshowthegeometricalstructureoビthecross-sectionundertriangles

only、Program6a7zd・ノisusedtodeterminethehighestvalueofthedifferenceamongthe

nodesofrespectivetriangles、Aftercomputing,i6zu(ljhehighestdifference)isobtainand

isunique・Computingtimedependsonthevalueoftheibw・Ifi6mislarge,computing

timewillbelong,ProgrameZas./isusedtocomputethestressfieldofthemodeLIn

thisprogram,boundaryconditionfile,materialpropertiesanddatafilesareusedto

simulatethemaximumprincipalstress(0,)andminimumprincipalstress(o2).Using

theprincipalstresses,asoftware(st7ess・んjzc)canbeappliedtofindoutthestress

distributionwhichidentifiesthedeformationpatternalongtheregion.

3.Result

Inthenumericalexperimentspresentedinthisstudy,thefaultdistributionandstress

patternaredescribedbytwoparameters:displacementboundaryconditio、and,cohesion

andfrictionangle・Thenumericalexperimentsshowthatacceptabledistributionofdefor-

mationcanbecalculatedforsomechoiceofdisplacementboundarycondition(75m/

l000yr,150m/2000yr,225m/3000yr,300m/4000yr,and375m/5000W)andalsoforthe

valuesofcohesionstrengthandfrictionangleAgeneraldiscussionismadeforallthe

modelsanalyzingthepointsmentionedaboveoftheHimalayaunderFEM.

3.IModeZ-I

HbrizoJztaZdiSpJaceme"tis巧加/IOOOy/瓠.(Fig.13):Principalstressesarestrongerinthe

deeperportionthantheshallowerone、Maximumprincipalstressesaredistributednear

verticallywhileminimumprincipalstressesaredistributednearhorizontallyalloverthe

region・HydrostaticconditionoccursbelowtheTethysHimalayathatbelongsto6tol2

kmdepthoftheHigherHimalaya・LeftsideoftheupperhalfofMCTandMBT,o1is

distributedhorizontallybutverticallyattherightside・Principalstressesarecompressive

alongalltheregion、IntheshallowerpartoftheSiwalikandtheTethys,principalstresses

areverysmall(nearaboutO).Thevaluesofcompressiveo1arefromOto450MPa

(elemontno、541)andthevaluesofcompreSsiveO2arefromOto350MPa(elementnq418).

u▲

Tctl1yo ・ざの、-2ドシ 山口皐繍

一蝋繊》鱗繊

業婆莎

辮》州鮴膨 讓鑪ii鑿艤}iliiiiji3〆

iiiilM:!|NNN

lハ

ii:繍ii'iiWK

XSjmEMEI

印■一■■■⑪

>At/

閂と一

Fig.13.Stressdistributionofmodel‐175mdisplacementboundaryconditionissubjectedtothebottomofthemodelduringlOOOyear.

Page 28: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimalayabyMeansofFiniteElementMethod41

Hbrizo几taZdjSpm“、…iS3巧加/5DDOyr.(Fig.14):Principalstressesarestrongerin

thedeeperportionthantheshallowerone・Maximumprincipalstressesaredistributed

horizontallyandminimumprincipalstressesaredistributedverticallyallovertheregion・

HydrostaticconditionoccursbeneaththedeeperpartoftheHigherHimalaya,thatis

neartheMCTandboundedbylowerboundary・Principalstressesarecompressivealong

alltheregionexceptelement、。.237,248and249TheseelementsshownegligibleextenSive

stress(lessthanlOOMPa)fieldlntheshallowerpartoftheSiwalikandtheTethys

area,minimumprincipalstressesareverysmall(nearaboutO).ThelimitsforOjare

from40MPa(elementno,442)toL1GPa(element、0.418)andfromOto500MPa

(element、0.418)form.

i篝鑪妻蕊 ii義i曇鑿霊鯵懸鎌i:('7/杙ニト

≠ -卜

」て++

-1■■■

Stressdistribution⑥f]mIodel‐1.375mdisplacementbounda]PyconditionissubjectedtothebottomoftUlemodelduring5000year,Redblocksindicatingextensivestressfi⑨1.

Fig.14

3.2j1fodeJ-2

HOrizo"tclJdjSpZCzceme"tiS恋加/IOOOyr.(Fig.15):Principalstressesarestrongerinthe

deeperportionthantheshalloweroneMaximumprincipalstressesaredistributednear

verticallybutminimumprincipalstressesaredistributednearhorizontallyoverallthe

regionHydrostaticconditionappearsbelowtheTethysHimalayathatbelongsto5to

lOkmdepthoftheupperpartoftheHigherHimalayaandsomepartsoftheSiwalik

andtheLesserHimalayaalongtheboundarybetweenthemAlongtheshallowerpartof

theHigherHimalaya,LesserHimalayaandtheSiwalik,Clisdistributedhorizontally

whereO2isverysmall(nearOOMPa).Principalstressesarecompressivealongallthe

reglon・ThelimitsofcompressiveOlarefrom30MPa(element、0.289)to630MPa

(element、0.825)andワョarefromOto390MPa(element、。,792,825,826and827).

Fig.15.ShPessdistributionofmodel‐2.75mdisplacementboundaryconditiomissubjectedtothebottomofthemodelduringlOOOyear.

Page 29: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

42 Md・MahmudulAlamandDaigoroHayashi

HbrizoJztaZdiSpkz“melLtis3庵、/5DOOyr.(Fig.16):Principalstressesarestrongerinthedeeperportionthantheshallowerone・Maximumprincipalstressesaredistributedhori-

zontallyandminimumprincipalstressesaredistributedverticallyallovertheregion・HydrostaticconditionoccursinthedipperpartoftheHigherHimalaya,andsomepartsoftheLesserHimalayaalongthedeeperpartoftheMCTandMBTregion・Principalstressesarecompressivealongalltheregionexceptelement、0.251,256,440,476,661,and66aTheseelementsshownegligibleextensivestress(1essthanlOOMPa)field、In

theshallowerpartoftheSiwalikandtheTethysarea,minimumprincipalstressesareverysmall(nearaboutO).ThelimitsforOIarefrom90MPa(element、0.871)to680MPa(element、0.820)andfromOto650MPa(element、0.819)for02.

F ロnm ロロ、u■[■

]qnLLB 、Ⅱ

3.3MbdbZ‐3(A)(P7℃…tstCUge)

HO7吃olztaJdiSpZCuceme〃tis市、/I〃Oyr.(FZgI7):Principalstressesarestrongerinthedeeperportionthantheshallowerone、A1ongtheSiwalikregion,Ojisdistributedhori-

zontally(Gangaticplane)whereasinthedeeperpartitisdistributednearvertically・IntheLesserHimalaya,ワ,tendstohorizontaltoverticaldirectionalongtheshallowerparttodeeperpart・IntheHigherHimalayamshowsthesametendencyastheSiwalik

andtheLesserHimalayabutthedeepermostpartobtaininghydrostaticcondition.A1ongalltheregionsoftheTethysHimalaya,◎,isdistributedhorizontally・Mostofthearea

oftheGraniticlayermisdistributednearverticallybut。2isnearhorizontalexceptthepartjustbelowtheSiwalikregion,whereO1isdistributedhorizontally・HydrostaticconditionoccursinsomepartsoftheGraniticlayer・PrincipalstressesarecompressivealongalltheregionThelimitsofcompressiveDlarefrom30(element、。、283)to530MPa(element、0.305)andOgarefromOto340MPa(element、。、526).

Fig.17.Stressdistributionofmodel-3(A).75mdisplacementboumdaryconditiOnissubjectedtothebottomofthemodelduringlOOOyear.

Page 30: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDishibutionandFamltDevelopmentAroundNepalHimalayabyMeansolFiniteElementMethod43

Hb7izo几tQZdiSpZaceme"tZs3面、/5000yr.(Fig.18):Principalstressesarestrongerin

thedeeperportionthantheshallowerone・Maximumprincipalstressesandminimum

principalstressesaredistributedalmosthorizontallyandvertically,respectivelyoveran

theregionbuthydrostaticconditionisobservedalongthedeeperpartofHigherH1Th輿laya,

LesserHimalayaIandsomepartsofGraniticlayer・PrincipalstresseSarecompressive

alongalltheregmnexceptelementno、163,187and190.Theseelementsshownegligible

extensivestress(lessthanlOOMPa)fieldThelimitsformarefrom40(element、0.

283)to740MPa(elementno,529)andfromOto490MPa(elementno’572)forの.

蕊鑿議篝鑿篝議警護蕊「

ZN7△N

塗心支

一己一

Fig.18.Stressdis放ibutionofmodel‐3(B).375mdisplacementboundaryconditionissub‐jectedtotllebottomofthemodelduring5000year・IRedbIocksindicatingextensivestrSssfield.

3.4jlrodeJ‐3(B)(ルfOU刀tai7z6uiZdt7zgsmge)

Hb7izo几tQJdiSpZQceme"tis75m/1000W.(Fig.19):Principalstressesaremorestronger

inthedeeperportionthantheshallowerone,AlongtheSiwalikregion,misdistributed

horizontally(Gangaticplane)whereasinthedeeperpartitisdistributedvertically・In

theLesserHimalaya,O1tendstohorizontaltoverticaldirectionalongtheshallower

parttodipperpart・IntheHigherHimalayaO1showsthesametendencyastheSiwalik

andtheLesserHimalayabutthedippermostpartobtaininghydrostaticconditionmnthe

TethysHimalaya,misdistributedhorizontallyalongtheshallowerpartbutthedeeper

partshowsnearverticaldirection・ShanowerpartoftheGraniticlayer,D,showshori‐

zontaldirectionwllileinthedeeperitshowsverticaldirection・Hydrostaticconditionoccurs

insomeplacesoftheGraniticlayer・Principalstressesarecompressivealongalltheregions、

Thelimitsofcompressivemarefrom20(elementno、45)to590MPa(elementno、723)

and◎2arefromOto420MPa(elementno,719).

ii霧議篝鑿篝i鑿鑿

冒上

PBOヰユェ的一・

■T

、玉■

3(B).75111modelduring

Fig.19.Stressdistributionofmodelsubiedfedtothebottomofthe

displacementboundaryconditionislOOOyear.

Page 31: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

44 Md、MahmudulAIamandDaigoroHayashi

Hbrizo"tclZdiSpmcem…iS3乃加/〃OOy7.(Fig・卯):Principalstressesaremorestronger

inthedeeperportionthantheshallowerone・ojando2aredistributedhorizontallyandvertically,respectivelyallovertheregionexceptalongthedeeperpartoftheGranitic

layer,whereobtainingreversedistributionofぴ,and02.Hydrostaticconditionisobsewed

alongthedeeperpartofHigherHimalaya,LesserHimalaya,andsomepartsofGranitic

layer・Principalstressesarecompressivealongallthereglonsexceptelementno、521.

Thiselementshowsnegligibleextensivestress(lessthanlOOMPa)fieldThelimitsfor

OlarefromlOO(elementno、66)to880MPa(element、0.719)andfromOto640MPa

(elementno719)for02.

■ 血

Fig.20.Stressdistributionofmodel‐3(B).375mdisplacementboundaryconditionissub‐jectedtotllebottomofthemodelduring5000year,Redblocksindicatingextensivestressfield.

4.Discussion

4.ISeismiCityα"dFbmm`ccノbCz"iSmSbZUtio〃

Himalayaisseismicallyactiveatteststocurrenttectonicactivity・Fourearthquakes

withmagnitudemorethan8occurredsincel897andallappeartoberelatedtomountain

buildingprocessesintheHimalaya・A1thoughearthquakesoccurinneighboringreglons,abeltofseismicityfollowstherangealongtheentirelength・Accordingtolnternational

SeismologicalCenterandthelnternationalOceanicandAtmosphericAdministrationfor

theperiodl961-1970,mostoftheepicentersfallnearthetraceoftheMCTandnotthe

MBF・Fromthis,itistemptingtoconcludethattheMCTisactivebutnottheMBE

However,whenoneconsidersthattheMBFdipsgentlytothenorthornortheast(Gansser,

1964),ELndthattheearthquakesoccuratfinitedepth,itseemsmorereasonabletoconclude

thatalongmostoftheHimalaya,theactivityisassociatedwithMBFandtheZone

surroundingit・

TheseismicityatbothendsoftheHimalayaappearstobemorecomplicatedwith

diffusezonessouthofmamrange、Intheeast,seismicityisdistributedovertheShillongplateauandit,smargins(Fig.21).Inthenorthwest,usingadensenetworkofstations,ArambrusteretaL,(1976)andJacobetaL,(1976)locatedearthquakesinabroadarea

from50kmnorthoftheMCTtol50kmsouthofitandextendingtodepthsgreaterthan60kmTheyconsiderboththeMCTandtheMBFtobeactive,andinfactusedthe

earthquakeepicenterstomapthewestwardcontinuationoftheMBFbeyondwhereitis

Page 32: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimalayabyMeansofFiniteElementMethod45

90゜ 鋼。期。的●75●

ShallowfDcusseismicityoftheHimalayaregion・SelectedwelllocatedepicentersfromlSCorNOAAfroml961-1970andmajorshoCksSincel897(Molnareta1.,1977).

Fig.21.

recognizedgeologically・A1thoughthetectonicsofthissegmentoftheHimalayaisprobably

morecomplicatedthantothesoutheast,thelessontobelearnedisprobablythatseismicity

alongtheentirerangeisnotrestrictedtoasinglenarrowfaultzone、

SeveralpublishedstudiesoffocalmechanismsolutionsofearthquakesmtheHimalaya

regiongivethesamegeneralpatternofthrustfaulting,withoneplanedippinggently

beneaththeHimalaya(ArmbrusteretaL,1976;Banghar,1974;BenMenahenetaL,1974;

Chen&Molnar,1977;Fitch,1970;IchikawaetaL,1972;MolnaretaL,1973;Rastogiet

aL,1973;Tandon,Srivastava,1975).Amongthesestudiesslightlydifferentapproaches

havebeentaken,andinafewcases,differentsolutionsforthesameearthquakewere

reported,butthegeneralpatternisobservedfornearlyalLExceptpossiblyforthel950

AssamearthquakeaUtenofthefocalmechanismsolutionsforeventsintheHimalaya

showlargecomponentsofthrusting(Fig.22).Assumingthatdipsapproximatelynorth

9軒DOP、●75・ 850

Focalmechanismsolutions・SinglearrowsshowpresumeddirectionOnmnder‐thrusting・Opposingarrowsfbrevent2showapproximatedirectionofmaximumcompressionanddivergingarrowsforevent7showapproximatedirectiOnofleastcompression・Numbe顕correspondtotable5・Circesshowlowerhemisphereplotsoffocalsphere-darkareasrepresentquadrantwithcompressionalfi霜tarrivals(Molnareta1.,1977).

Fig.22.

JG

I..

◆$。

●■

8 食●1

Page 33: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

46 Md・MahmudulA1amandDaigoroHayashi

ornortheastisthefaultplane,theslipvectorsarefairlywelldeterminedandshowan

underthrustingtothenorthornortheast,Thedipsofthefaultplanesappeartobeshal-

lowerforearthquakesinthesoutheELstportionoftheHimalayathanelsewhere、The

solutionsarebasedonfirstmotionsofpwavesand,whenpossible,swaves,from

recordingsoflongperiodseismograms、Parametersforthesesolutionsaregivenin

Table5.

Table5.Catalogoffocalmechanismsolutionparameters

19URV1963

80.46

17740

lZJAN1965

UIW1966 19649

IAR1966

100

1014

16740

Azimuth(Az.)andplunges(pL)aregivenforpolesofeachpossiblenodalplaneandforP,T,andBaxis,whichroughlyapproximatethedirectionsofmaximum,minimumandinter‐mediatecompressivestresses.

InnorthernPakistan,wherefocalmechanismsolutionsofsmallerearthquakeshave

beenexaminedindetail(Arambrustereta1.,1976,Jacobeta1.,1976),thesamebasic

patternprevailsbutgreatercomplexity・Theseismicityalsoscattersattheeasternend

oftheHimalayaneartheShillongplateau・Apoorlydeterminedsolutionwasobtained

forasmallevent(June19,1963)neartheDaukifault(Evens,1964),whichseparates

thecrystallinerocksoftheShillongplateaufromtheCenozoicsedimentssouthofit・

Drillingdatasuggestasmuchas250kmofrightlateralstrikeslipmotiononthisfault

(Evans,1964).

TheAugustl5,1966earthquakeoccurredlOOkmsouthwestofHimalayanfront,the

GangaBasin、Normalfaultingoccurredonaplanethatstrikesapproximatelyparallel

totheHimalaya、TheinterpretationthatStauder(1968),Isacks,oliver,Sykes(1968)

gave,thatthenormalfaultingisduetoastretchingoftheupperpartofthelithosphere

asitbendsdownatthetrenchMenke&Jacob(1976)locatedmanyearthquakesbeneath

theGangabasinandsouthofit、Inthissensethel966earthquakeisnotunusual

(Molnareta1.,1979).

4.2MOノカr-CbuZom6/bljm"ePLueZOPe

Mohr-Coulombfailureenvelopeisamethodwhichhelpstoidentifythelocationof

NO Earthquakedate

Lat(N) Long(E) PoIe

Az.p】.

Pole

Az.pL

PoIe

Az.pL

T-axis

A2.p1.

B・RXi色

Az.p1.

01 l5AUGl950 28.50 96.70 35112 17178 17133 35157 810

02 l9JUN1963 24 97 92 06 23520 33016 1925 28724 9160

03 26SEP1964 29 96 80 46 4030 22060 22015 4075 1350

04 210CTl964 28 04 93 75 3575 17785 17740 35750 870

05 l2JANl965 27 40 87 01 015 18075 18030 060 900

06 27jUN1966 29 62 80 83 3641 19649 2074 9Ul86 29710

07 l5MAR1966 28 17 78 93 4259 22231 22276 4214 1320

08 l6DECl966 29 62 80 79 19066 1024 19021 1069 1000

09 z0FEBl967 33 63 75 鋼 16825 4250 1014 12357 27228

10 l4MAR1967 28 41 9H1 29 310 18380 18335 355 930

11 l9FEB1970 27 40 93 99 3475 16785 16740 34750 770

12 O3SEP1972 35 98 73 42 050 18040 05 18050 900

Page 34: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

StressDistributionandFaultDevelopmentAroundNepalHimalayabyMeanBofFmiteElementMethod47

faultplanewithinthecrustorinthesurface・SinceFEMhelpstocomputethe2Dstress

field(。,andO3)underemslprogramforanthemodels,thethirdunknownprincipal

stress(0。)canbeobtainedbyusingtheequation

o=ソ(o,+oh)⑫●

where,l’isPoisson'sratio(Tilnoshenko&Goodier,1970,HayashiandKizaki,1972),

ロ‘and◎2(cEL1culatedbyFEM)aretheprincipalstresses・Aftergettingthevaluesof

C,,O2andび゛foreachelement,itiseasytocomputewhichprincipalstresses,、,

D2,and◎。arethemaximum,intermediateandminimum・Accordingtotheorderof

magnitude,anewlydefinedstressfieldcanbeobtainedbyusingthenewlyobtainedprincipal

stressesO1,O2andO8、

TheMohr-CoulombfailureenvelopeisshowninFig、23.Itisbasedonalinear

/づて、

Fig.23.Mohrcircleconstructiondemonstratmgtheconceptofproximitytofailure・

relationshipbetweenthesharestress「andthenormalstressoh:

T)h…=c+ohtan‘㈹wherecisthecohesivestrengthoftherockanddistheangleofinternalfriction、

FailureoccurswhentheMohrcirclefirsttouchesthefailureenvelope・Thisoccurswhen

th…dius・ftheMohrcircle,凸-百一望,isequaltoth.p…diculardiS…fr・mtho

…。f…廼。'…且-票L`。…ilu…、.'。p・,

(且L云竺ル冠-.…+(且L苧)…伽Asthenewlydefinedstressfieldofeachmodelisavailable,itispossibletolocatein

whichelement,faultwillbedevelopedaccordingtoMohrcircle、

TheproximitytofailureP「,canbedefinedastheratiobetweentheactualradiosofthe

M゜hrcircle,些百~里,andthomd…tfanure,

(二二;;二)昨( 。,

Page 35: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

48 Md. Mahmudul Alam and Daigoro Hayashi

One can evaluate whether faulting develops in certain element according to the value of

the parameter Pr. Whenever the value of Pr<X the stress state is within the failure

envelope ( i.e., no fault develops), but when Pf>\, failure occurs. Thus Pr is taken as

an indicator to define whether the fault develops or not. Using the eq. (19 it is easy to

find out the location of failure element.

Some experiments have done for choosing the material properties according to the

layer using eq. (ID. Table 2-4 show the required material properties for our numerical

modeling. We have imposed some boundary conditions like 3 cm/yrf 5 cm/yr, 7.5 cm/yr

and 10 cm/yr; among these we describe only 7.5 cm/yr during 1000 to 5000 yr period.

According to the boundary condition 75 m/lOOOyr, the average limits for O\ and a» are

from 20-500 MPa and 0 to 360 MPa, and for 375 m/5000yr, average limits for O\ and

a% belong to 60 - 800 MPa and 0 to 600 MPa respectively, which indicates that the

difference between maximum principal stress ( tfi) and minimum principal stress ( o») is

comparatively high if the convergence rate is relatively high and the deformation rate is

also strong. The results are observed from the stress field over the Granitic layer, Tethys

Himalaya, Higher Himalaya, Lesser Himalaya and Siwalik that the principal stresses are

stronger in the deeper part than the shallower one. For models 3(A) and 3(B) hydrostatic

condition is observed along the granitic layer beneath the Siwalik for the boundary condition

75 m during 1000 yr but for 375 m during 5000 yr hydrostatic condition belongs to some

parts of granitic layer and deeper most part of Higher Himalaya and Lesser Himalaya.

For model - 2, hydrostatic condition is observed along the upper part of Higher Himalaya

and some parts of Lesser Himalaya for the boundary condition 75 m/lOOOyr. But for 375

m/5000yr hydrostatic condition is obtained in the deeper part of Higher Himalaya and

Lesser Himalaya along the MCT and MBT zones. Hydrostatic condition is obtained along

the deeper and upper most part of Higher Himalaya according to the boundary condition

375 m/5000yr and 75 m/lOOOyr, respectively for the model - 1. It is obvious from the

discussion that no deformation is observed along the deeper part of Lesser Himalaya,

Higher Himalaya and Granitic layer due to hydrostatic condition. May be, lower parts

of these layers belong to a high grade metamorphic rock.

The occurrence of faulting under Mohr circle depends on the values of displacement

boundary condition, cohesive strength (c) and friction angle (0). The values of cohesive

strength (c) and friction angle ( <f>) are shown in Tables 2-4. When the displacement

boundary condition is equal to 75 m/lOOOyr no failure may occur for all the models but

if gradual change of boundary condition i.e. 150 m/2000yr, 225 m/3000yr then a few failure

may occur at the shallower level. For the proposed models, displacement boundary

condition has been taken as 375 m/5000yr. Depending on this condition some failure occur

along the shallower level of all the models and most of the failure occur at the sub

Himalaya and the Tethys Himalaya (Fig. 24-27). According to the predetermined great

thrusts (MBT, MCT, LHT and STDS), failure occur along two boundaries (Fig. 24-27).

Page 36: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

Stress Distribution and Fault Development Around Nepal Himalaya by Means of Finite Element Method 49

Tdliy

Fig, 24, Failure elements of model - 1. Red blocks indicate failured.

Fig. 25. Failure elements of model - 2. Red blocks indicate failured.

1 100

Fig. 26. Failure elements of model - 3(A). Red blocks indicate failured.

Fig. 27. Failure elements of model - 3(B). Red blocks indicate failured.

By 'tuning' different controlling parameters, we did not succeed in obtaining in a model

where failure occurred at the deeper part of Higher Himalaya and Lesser Himalaya, due

to hydrostatic condition.

Several published studies of focal mechanism solutions of earthquakes in the Himalaya

region give the same general pattern of thrust faulting, with one plane dipping gently

beneath the Himalaya (Armbruster et a]., 1976; Banghar, 1974; Ben Menahen et al., 1974;

Chen & Molnar, 1977; Fitch ,1970; Ichikawa et al., 1972; Molnar et al., 1973; Rastogi et

al., 1973; Tandon & Srivastava, 1975).

This study also shows the same pattern of thrust faulting along the shallower part

Page 37: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

50 Md. Mahmudul Alam and Daigoro Hayashi

of all the models. The boundary condition, whatever it might be (75 m during lOOOyr

or 375 m during 5000 yr), it shows thrust faulting along the shallower region of the

Himalaya. Changing of displacement boundary condition changes the direction of principal

stresses along the deeper part but the upper part remain unchanged.

Conclusion

(1) Variation of the velocity boundary condition indicates changes of direction of principal

stresses along the deeper part while that along the shallower part remain unchanged.

(2) Nature of stress pattern is most likely compressive for all the models but if conver

gence rate is high then some extension ( less than 100 MPa) may happen on the shallower

part.

(3) The difference between maximum principal stress ( ad and minimum principal stress

( as) is comparatively high if the convergence rate is relatively high.

(4) Hydrostatic condition occurs within the deeper part of the Higher Himalaya, Lesser

Himalaya and some parts of the Granitic layer (no deformation may occur within the

region).

(5) General tendency of the direction of principal stresses ( <J\ and a3) are complicate to

determine. Along the upper part of the whole region the maximum principal stress is

horizontal. Comparatively, in the lower part, the direction of principal stress is vertical

(except for the boundary condition 375m).

(6) According to the Mohr - Coulomb criterion, failure is observed along the shallower

part of Siwalik, Tethys and Granitic layer, and a very few near the surface of MBT,

MCT and STDS.

(7) Inspite of changing the controlling parameters, failure did not occur in the deeper

part of Higher Himalaya, Lesser Himalaya and Granitic layer, because of hydrostatic

condition.

(8) Previous studies on focal mechanism solutions of earthquakes in the Himalayan

region show the existence of thrust faults along its EW stretching with one plane dipping

gently north beneath the Himalaya. Simulation provides the same distribution of thrust

faults along the upper part of the models as shown by the focal mechanism solutions.

Acknowledgment

Md. Mahmudul Alam would like to express his gratitude to MONBUSHO for financial

constraint during the study period. The encouragement and suggestions for him received

from honorable teacher Professor Massaki Kimura, Department of Physics and Earth

Sciences, University of the Ryukyus, Okinawa, Japan.

References

Arita, K., Hayashi, D., Yoshida, M., 1982. Geology and structure of the Pokhara-Piuthan

Page 38: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

Stress Distribution and Fault Development Around Nepal Himalaya by Means of Finite Element Method 51

area, central Nepal. Jour. Nepal Geol. Soc. 2, 5-29.

Arita, K., Shiraishi, K. Hayashi, D., 1984. Geology of western Nepal and a comparison with

Kumaun, India. Jour. FAc. Sci., Hokkaido Univ. Ser. IV. 21(1), l-20.ture of thePokhara-

Piuthan area, central Nepal. Jour. Nepal Geol. Soc. 2, 5-29

Arita, K., 1983. Origin of the inverted metamorphism of the lower Himalaya, central Nepal.

Tectonophysics, 95, 43-60.

Armbraster, J.f Seeber, L., Jacob, K.H., 1978. The northwestern termination of the Himalayan

mountain front: Active tectonics from microearthquakes. J. Geophys. Res. 83, 269-282.

Banghar, A.R., 1974. Focal mechanisms of earthquakes in China, Mongolia, Russia, Nepal,

Pakistan, and Afghanistan. Earthq. Notes, 45, 1-11.

Banghar, M. Isacks, B.L., 1976. Spatial distribution of earthquakes and subduction of the

Nazca plate beneath South America. Geology, 4, 686-692.

Bashyal, R.P., 1981. Geology of Dhangarhi-Dandeldhura road section and its regional

significance. JNGS, 1, 15-28.

Bordet, P., Colchen, M., Le Fort, P., 1972. Some features of the geology of the Annapurna

renge, Nepal Himalaya. Him. Geol., 2, 537-563.

Bmnet, M., 1986. Ductile thrusting in the Himalayas: Shear sense criteria and stretching

lineations. Tectonics, 5, 247-265.

Burg, J.P., Chen, G.M., 1984. Tectonics and structural zonation of southern Tibet, China.

Nature, 311, 219-223.

Chandra, U., 1981. Focal mechanism solutions and their tectonic implications for the eastern

Alpine-Himalayan region. Geodynamics series, 3, 243-271.

Chemenda, A.I., Mattaure, M. Malavieille, J., Bokun, A.,N., 1995. A mechanism for syn-

collisional rock exhumation and associated normal faulting: Results from physical

modeling. Earth Planet. Sci. Lett., 132, 225-232.

Chen, W.P., Molnar, P. 1977. Seismic moments of major earthquake and the average rate of

slip in central Asia. J. Geophys. Res., 82, 2945-2969.

Colchen, M., LE Fort, P., Pecher, A., 1986. Geological research in the Nepal's Himalaya:

Annapurna-Manaslu-Ganesh Himal, notice of the geological map on 1/200000. Centre

National de la Recherche Scientifique, Paris.

Dewey, J.F., Bird, J.M., 1970. Mountain belts and the new global tectonics. J. Geophys. Res.,

75, 2625-2647.

England, P., Houseman, G., 1985. Role of lithospheric strength heterogeneities in the tectonics

of Tibet and neighbouring regions. Nature, 315, 297-301.

England, P., Houseman, G., 1986. Finite strain calculations of continental deformation, 2,

comparison with the India-Asia collision zone. J. Geophys. Res., 91, 3664-3676.

England, P., Mckenzie, D., 1982. A thin viscous sheet model for continental deformation.

Geophys. J.R.Astr.Soc, 70, 295-321.

England, P., Mckenzie, D., 1983. Correction to a thin viscous sheet model for continental

deformation. Geophys. J.R.Astr.Soc, 73, 523-532.

England, P.C., Thomson, A.B., 1984. Pressure - temperature-time paths of regional meta

morphism, part-I: Heat transfer during the evolution of regions of thickened continental

crust. Jour. Petrol., 25, 929-954.

Evans, P., 1964. The tectonic framework of Assam, J. Geol. Soc. India, 5, 80-98.

Fitch, T.J., 1970. Earthquake mechanisms in the Himalaya, Burmese and Andaman regions

and continental tectonics in Central Asia. J. Geophys. Res., 75, 2699-2709.

Fuchs, G., Frank, W., 1970. The geology of west Nepal between the rivers Kali Gandaki and

Thulo Bheri. Jahrb. Bundesanst. Sonderb. 18, 1-103.

Page 39: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

52 Md. Mahmudul Alam and Daigoro Hayashi

Fuchs, G., 1980. The Lesser Himalayan geology of west Nepal and its regional importance.

In: stratigraphy and correlations of Lesser Himalayan formations, Hindustan Pub., Delhi,

163-173.

Ganseer, A., 1984. Geology of the Himalayas. Interscience, London 289p.

Ganseer, A., 1966. The Indian Ocean and the Himalayas: a geological interpretation, Eclog.

Geol. Helv., 59, 831-848.

Gill, W.D., 1952. The stratigraphy of the Siwalik Series in the northern Potwar, Punjab,

Pakistan. Q.J. Geol.Soc. London, 107(4), 375-394.

Glennie, K.W., Ziegler, M.A., 1964. The Siwalik formation in Nepal. Intern. Geol. Cong.

22nd Sess. Rep. Pt., 15, 82-95.

Hagen, T., 1969. Report on the geological survey of Nepal, Vol.1. Denkschr. Schweiz. Naturf.

Gesell., Bd. 86(1), 1-185.

Hashimoto, S., et al., 1973. Geology of the Nepal Himalayas. Saikon, Tokyo, 286p.

Hayashi, D., 1979. Finite element formulation of viscous fluid on a variational principle.

Bull. Coll Sci. Univ. Ryukyu, 28, 119-130.

Hayashi, D., 1980. Variation of field of viscous stress around diapir calculated by the finite

element method. Bull Coll. Sci. Univ. Ryukyu, 30, 11-21.

Hayashi, D., 1980. Simulation of Himalayan orogeny and tectonophysics. Monthly Earth, 2,

787-796.

Hayashi, D., 1987. Numerical simulation of the uplift of the Tibetan Plateau. Jour. Geol.

Soc. Jap., 93, 587-595.

Hayashi, D., Kizaki, K., 1972. Numerical analysis on migmatite dome with special reference

to the finite element method. Jour. Geol. Soc. Jap., 78, 677-686.

Hayashi, D., Kizaki, K., 1979. Numerical experiments of migmatite rise based on continuum

dynamics. Tectonophysics, 60, 61-76.

Hayashi, D., Fujii, Y., Yoneshiro, T., Kizaki, K. 1984. Geology of the Karnali-Bheri region,

west Nepal. Jour. Nepal Geol. Soc, 2, 29-40.

Hayashi, D., Talbot, C, 1991. Numerical simulation of a Himalayan profile. Essays in

Geology, Professor Hisao Nakagawa Commemorative Volume, 53-63.

Hiroshima, M., 1972. Topography of Marsyandi River, Symposium: Nepal , 1, 45-50.

Ichikawa, M., Srivastava, H.N., Drakopoulos, J., 1972. Focal mechanism of earthquakes

occuring in and around Himalayan and Burmese mountain belt. Papers in Meteorology

and Geophysics (.Tokyo), 23, 149-162.

Isacks, B.L., Oliver, J., Sykes, L.R., 1968. Seismology and the new global tectonics. J.

Geophys. Res., 73, 5855-5900.

Itihara, M. Shibasaki, T., Miyamoto, N., 1972. Photogeological survey of the Siwalik Ranges

and the Terai Plain, southeastern Nepal. Jour. Geosci. Osaka City Univ., 15, 77-98.

Ito, H., 1972. Change of topography due to flow of the crust under the condition of isostasy.

Jour. Geol. Soc. Jap., 78, 29-38.

Kamada, K., Yashida, M., Arita, K., 1982. Jurassic ammonites from the Muktinath region.

Jour. Nepal Geol. Soc, 2, 149-154

Kaneko, Y., 1994. Metamorphic P-T path of the Higher Himalayan Sequence in the Annarnapurna

region, central Nepal Himalaya. Proceeding of the Himalaya Symposium, Tok&i University

Press.

Kaneko, Y., 1995. Thermal structure in the Annapurna region, central Nepal Himalaya:

implication for the inverted metamorphism. Jour. Mineral. Petrol. Econ. Geol., 90, 143-

154.

Kano, T., 1977. Origin of augen gneisses and related mylonitic rocks in the Hida metamorphic

Page 40: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

Stress Distribution and Fault Development Around Nepal Himalaya by Means of Finite Element Method 53

region, central Japan. Plutonism in relation to volcani&m and metamorphism (7th

C.P.P.P. meetings), 206-229.

Le Fort, P., 1975. Himalayas: the collided range. Present knowledge of the continental arc.

Amer. Jour. Sci., 275, 1-44.

Le Pichon, X., 1988. Sea floor spreading and continental drift. J. Geophys. Res. 73, 3661-

3698.

McKenzie, D., 1969. Speculations on the consequences and causes of the plate motions.

Geophys. J. Roy. Astr. Soc, 18, 1-32.

Menke, W.H., Jacob, K.H., 1976. Seismicity patterns in Pakistan and northwestern India

associated with continental collision. Bull. Seismo. Soc. Amer. 76.

Minster, J.B., Jorden, T.H., Molnar, P., Haines, E., 1974. Numerical modeling of instanta

neous plate tectonics. Geophys. J. Roy. Astr. Soc, 36, 541-576.

Molnar, P., Fitch, T.J., Wu, F.T., 1973. Fault plane solutions of shallow earthquakes

contemporary tectonics of Asia. Earth Plan. Sci. Lett., 16, 101-112.

Molnar, P., Fitch, T.J., Wu. F.T., Chen, W.P., Warsi, W.E.K., Tapponnnier, P., 1977.

Structure and tectonics of the Himalaya; A brief summary of relevant geophysical obser

vations. Himalaya, Science de la Terre, Centre National de la Recherche Scientique,

Paris, 269-294.

Molnar, P., Tapponnnier, P., 1975. Cenozoic tectonics of Asia: effect of a continental collision.

Science, 189, 419-426.

Pecher, A., 1989. The metamorphism in the central Himalaya. Jour. Metamorphic. GeoL, 7,

31-41.

Powell, P., Conaghan, P.J., 1973. Plate tectonics and the Himalayas. Earth Plan. Sci. Lett.,

20, 1-20.

Rastogi, B.K., 1974. Earthquake mechanisms and plate tectonics in the Himalayan region.

Tectonophysics, 21, 47-56.

Sakai, H., 1985. Geology of the Kali Gandaki Supergroup of the Lesser Himalaya in Nepal.

Mem. Fac. Sci., Kyushu Uniu., Ser. D. GeoL, 25, 337-397.

Searly, M., Windley, B.F., Coward, M.P., Cooper, D.J.W., Rex, A.J., Rex, D., Tingdong,

L., Xuchang, X., Jan. M.M.Q., Thakur, V.C. and Kumar, S., 1987. The closing of Tethys

and the tectonics of the Himalaya. Bull. GeoL Soc. Amer., 98, 678-701.

Seeber, L., Armbruster, J.G., Quittmeyer, R.C., 1981. Seismicity and Continental subduction

in the Himalayan Arc. Geodynamics series, 3, 215-242.

Sharma.T., Merh, S.S., Vashi, N.M., 1978. The Terraced Conglomerates of Pokhara Vally in

central Nepal, Symposium on Morphology and Evolution of Landforms, Department of

Geology, University of Delhi, 226-240.

Sharma.T., Upreti, B.N., Vashi, N.M., 1980. Kali Gandaki gravel deposits of central West

Nepal - their neotectonic significance, Tectonophysics, 62, 127-139.

Stauder, W., 1968. Tensional character of earthquake foci beneath the Aleutian trench with

relation to sea-floor spreading. J. Geophys. Res., 73, 7693-7703.

Stocklin, J., 1980. Geology of Nepal and its regional frame. Jour. GeoL Soc. London, 137,

1-34.

Tandon, A.N., Srivastava, H.N., 1975. Focal mechanisms of some recent Himalayan earth

quakes and regional plate tectonics. Bull. Seismo. Soc. Amer., 65, 963-969.

Tandon, S.K., 1976. Siwalik sedimentation in a part of the Kumaun Himalaya, India. Sed.

GeoL, 16, 131-154.

Tandon, S.K., Narayan, D., 1981. Calcrete conglomerate, case-hardened conglomerate and

cornstone, a comparative account of pedogenic carbonates from the continental Siwalik

Page 41: Stress Distribution and Fault Development Around …ir.lib.u-ryukyu.ac.jp/bitstream/20.500.12000/2621/1/No73...Title Stress Distribution and Fault Development Around Nepal Himalaya

54 Md. Mahmudul Alam and Daigoro Hayashi

Group, Punjab, India. Sedimentology, 28, 353-367.

Tapponnier, P. Molnar, P., 1977. Active faulting and tectonics in China. J. Geophys. Res.,

82, 2905-2930.

Uemura, T., 1971. Some problems on tectonic flow of rocks. Jour. Geol. Soc. Jap. 77, 273-278.

Valdiya, K.S., 1980. Geology of Kumaun Lesser Himalaya. Wadia Institute of Himalayan

Geology, Dehra Dun, India, 291p.

Valdiya, K.S., 1977. Structural set-up of the Kumaun Lesser Himalaya. In: Himalaya,

C.N.R.S., Paris, 449-462.

Valdiya, K.S., 1980. Outline of the structure of Kumaun Lesser Himalaya. In: Tectonic geology

of the Himalaya. Today and Tomorrow Pub., New Delhi, 1-14.

Wadia, D.N., 1975. Geology of India, 4th Edition. Tata McGraw-Hill Publishing Co., New

Delhi, 508p.

Warsi, R.I., Molnar, P., 1977. Plate tectonics and gravity anomalies in India and the Himalaya.

Science de la Terre, Centre National de la Recherche Scientique, Paris.

West, R.M., Lukacs, J.R., Munthe, J.Jr., Hussain, S.T., 1978. Vertebrate fauna from Neogene

Siwalik Group, Dang Vally, western Nepal. Jour. Paleont,, 52, 1015-1022.

Widely, B.F., 1984. The evolving continents, 2nd ed. John Wiley and Sons, Inc., 399p.

Widely, B.F., 1995. The evolving continents, 3rd ed. John Wiley and Sons, Inc., 526p.

Yamanaka, H., Iwata.S., 1982. River terraces along the middle Kali Gandaki and Marsyandi

Khola, central Nepal. Jour. Nepal Geol. Soc, 2, 95-111.

Yamanaka, H., Yoshida, M., Arita, K., 1982. Terrace landform and Quaternary deposit

around Pokhara vally, central Nepal. Jour. Nepal Geol. Soc, 2, 113-136.

Yashida, M., Arita, K., 1982. On the Siwaliks observed along some routes in central Nepal.

Jour. Nepal Geol. Soc, 2, 59-66.