Stabilitas Lereng II

5

Click here to load reader

description

Good paper...

Transcript of Stabilitas Lereng II

Page 1: Stabilitas Lereng II

β

N = W cos βW

T = W sin β

R

2.1 Konsepsi Kemantapan Lereng

Beberapa hal yang dibahas dalam analisa kemantapan lereng meliputi konsep, analisis berdasrkan : pengalaman, komputasi dan grafik. Sebelum membahasnya terlebih dahulu akan diuraikan terlebih dahulu menganai konsep kemantapan lereng.

2.1.1 Teori dasar

Salah satu penerapan pengetahuan mengenai kekatan geser tanah atau batuan adalah untuk analisa kemantapan lereng. Keruntuhan geser pada tanah atau batuan terjadi akibat gerak reatif antara butirnya. Oleh sebab itu kekuatannya bergantung pada gaya yang bekerja antar butirnya. Dengan demikian dapat dikatakan baha kekuatan geser t4erdiri dari:

(1) Bagian yang bersifat kohesif, tergantung pada macam tanah atau batuan dan ikatan butirnya.

(2) Bagian yang bersifat geserkan, yang sebanding dengan tegangan efekti yang bekerja pada bidang geser.

Kekuatan geser tanah dapat dinayatakan dalam rumus:

1.2.....'.........tan)(' φµσ −+= CS

keterangan: S = Kekuatan geserσ = Tegangan total pada bidang geserµ = Tekanan air pori

'φ = Sudut geser dalam efektifC’ = Kohesi efektif

Analisa dasar kemantapan lereng didasarkan pada mekanisme gerak suatu benda yang terletak pada bidang seperti terlihat pada gambar 2.1.

Page 2: Stabilitas Lereng II

Gambar 2.1 Keseimbangan benda pada bidang miring

2.1.2 Metoda Analisis

Cara analisis kemantapan lereng telah banyak dikenal. Secara garis besar dapat dibagi menjadi tiga kelompok yaitu:

(1) metode yang berdasar pada pengamatan visual(2) cara komputasi(3) menggunakan grafik

Dalam pembahasan ini akan dijelaskan mengenai analaisa dengan komputasi.

2.1.2.1 Fellenius

Cara ini dapat dipakai pada lereng-lereng dengan kondisi isortopis, non isotropis dan berlapis-lapis. Massa tanah yang bergerak diandaikan terdiri dari beberapa elemen vertikal. Lebar elemen dapat diambil tidak dan sedemikian sehingga lengkung busur di dasar elemen dapat dianggap garis lurus. Berat total tanah atau batuan pada suatu elemen (Wi) termasuk beban luar yang bekerja pada permukaan lereng (Gambar 2.2). Wi ditentukan diuraikan daam komponen tegak lurus dan tangensial pada dasar ekemen. Dengan cara ini, pengaruh gaya T dan E yang bekerja di samping elemen diabaikan. Faktor keamanan adalah perbandingan momen penahan longsoran dengan penyebab longsor. Pada gambar 2.2, momen tahanan geser pada bidang logsoran adalah:

Mpenahan = R.r …………………..(2.2) Dimana R adalah gaya geser dan r adalah jari-jari bidang lonsoran. Tahanan geser pada dasar tiap elemen dalah:

)3.2....(.'.........tan)(' 1 S. R φµσ −+== C

)4.2........(..1

. iCosWiiCosWi αασ ==

Momen penahan yang ada sebesar:

)5.2....(.).........'tancos'.(r Mpenahan φα iWilc +=

komponen tangensial Wi bekerja sebagai penyebab longsoran menimbulkan momen penyebab:

6.2..........).sin( rWiMpenyebab iα=

Sehingga faktor keamanan dari lereng menjadi:

Page 3: Stabilitas Lereng II

)7.2...(..........sin

'tan).cos.('(

∑∑ −+

=i

i

WilWilc

Fkα

φµα

µ = Tekanan air pori di dasar bidang longsoran

2.1.2.2 Bishop

Cara analisis yang dibuat oleh A.W Bishop (1955) menggunakan cara elemen di mana gaya yang bekerja pada tiap elemen ditunjukkan seperti pada gambar 2.3. Persyaratan keseimbangan ditetapkan pada elemen yang membentuk lereng tersebut. Faktor keamanan terhadap longsoran didefinisikan sebagai perbandingan kekuatan geser maksimum yang dimiliki tanah di bidang longsoran (Stersedia) dengan tahanan geser yang diperlukan untuk keseimbangan (Sperlu).

)8.2.......(perlu

tersedia

SSFk =

Bila kekuatan geser tanah adalah :

'tan)(' φµσ −+== CSStersedia

maka tahanan geser yang diperlukan untuk keseimbangan adalah:

)9.2..().........'tan)('(11 φµσ −+== CFk

SFk

S tersediaperlu

Faktor keamanan dihitung berdasar rumus:

)10.2...(..........sin

'tan).cos.('(1

∑∑ −+

=i

ii

Wi

lWilcmFk

α

φµα

Harga m dapat ditentukan dari gambar 2.4.

Cara peneyelesaian merupakan coba ulang (trial and errors) harga faktor keamanan Fk di ruas kiri persamaan (2.10), dengan menggunakan gambar 2.4, untuk mempercepat perhitungan. Faktor keamanan menurut cara ini menjadi tidak sesuai dengan kenyataan terlalu besar, bila sudut (-) di lereng paling bawah mendekati 300.(gambar 2.4). kondisi ini bisa timbul bila lingkaran longsor sangat dalam atau pusat rotasi yang diandaikan

Page 4: Stabilitas Lereng II

berada dekat puncak lereng. Faktor keamanan yang didapat dari cara bishop ini lebih besar daripada yang didapat menggunakan cara fellenius. 2.1..2.3 Janbu

Janbu (1954) mengembangkan suatu cara analisis kemantapan lereng yang dapat diterapkan untuk semua bentuk bidang lonsoran (gambar 2.5).

Besaran-besaran yang akan dicari adalah F, yang berhubungan dengan T, N, E dan S.

Berdasarkan keseimbangan gaya vertikal:

N cos θ = W + Δ S - T sin θ N = (W + Δ S) sec θ – T tan θ

Jumlah gaya-gaya tegak lurus maupun tangensial terhadap bidang dasar irisan adalah nl. Sehingga persamaannya adalah:

)11.2......(..........)(dxEyd

dxdEyS t−=

)12.2(..........sincos)( θθ ESWN ∆+∆+∆=∆

)13.2(..........cossin)( θθ ESWT ∆+∆+∆=∆

berdasarkan kriteria longsor MOHR-COULOMB adalah :

)14.2(..........tansec.FNxcT θθ ∆+∆=∆

Dengan menggabungkan persamaan (2.12), (2.13) dan (2.14), dan memisalkan x = 0, maka:

)15.2)........(tan()(1)tan()tan1( 2

dxdy

FdW

dxdy

Fc

dxdy

FdxdS

dxdy

FdxdE ++

+−=−++ θθθ

Persamaan (2.11) dan (2.1.5) merupakan dua persamaan differensial, yang digunakan untuk menentukan E, S, yt. Untuk melengkapi sistem persamaan tersebut, dimisalkan:

S = λ f(x) E

Dimana f(x) adalah suatu funsi dari x, dan λ = konstanta. λ dan F dapat dipecahkan dengan persamaan (2.11) dan (2.15). f (x) dimisalkan linier dengan menentukan suatu angka tertentu dapat ditentukan harga λ yang memenuhi persamaan-persamaan tersebut.

Page 5: Stabilitas Lereng II

2.2 Metode perkuatan lereng tanah