SPR for Aptamer-Based Molecular Interactions in Programmable Materials

25
SPR for Aptamer-Based Molecular Interactions in Programmable Materials Reichert Technologies Webinar September 22, 2015 Erin Gaddes The Wang Lab: Biomolecular & Biomimetic Materials The Pennsylvania State University University Park, PA 16802 SPR for Aptamer - Molecule Interactions

Transcript of SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Page 1: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Reichert Technologies Webinar

September 22, 2015

Erin Gaddes

The Wang Lab: Biomolecular & Biomimetic Materials

The Pennsylvania State University

University Park, PA 16802

SPR for Aptamer-Molecule Interactions

Page 2: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Outline

SPR for Aptamer-Molecule Interactions

• Introduction to surface plasmon resonance (SPR)• What is it? How does it work?• Samples and detection strategies• Data analysis

• SPR for analysis of oligo-biomolecule interactions• Cell Capture and Release• Growth factor loading and release• Signal amplification

Page 3: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Surface Plasmon Resonance

SPR for Aptamer-Molecule Interactions

Technique used to examine molecular interactions in real time• Sensor chip contains

immobilized ligand• Microfluidic system delivers

analyte• Optical measurement

system: changes in local refractive index Æ changes in mass at sensor chip-solution interface

Daghestani & Day. Sensors 2010, 10, 9630-9646.

Wang lab SPR setup: Reichert SR7500DC dual channel system

Page 4: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Optical Detection

SPR for Aptamer-Molecule Interactions

• Light entering the prism above the critical angle is totally internally reflected

• These photons produce an evanescent wave at surface interface

• Mobile electrons of metal surfacetreated as plasma

• Surface plasmons, from density fluctuations at the interface, propagate along the interface

n1 > n2

ϴSPR > ϴCritical

n2

n1

ϴSPR

Page 5: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Optical Detection

SPR for Aptamer-Molecule Interactions

• When momentum of photons matches that of surface plasmons, resonance occurs, based on:

• Light angle• Wavelength• Refractive indices of materials

• Photons excite the plasmonsÆreduction in detected light

• This reduction occurs as resonance angle is approached

Page 6: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Optical detection

SPR for Aptamer-Molecule Interactions

• Light illuminated on surface at range of angles

• Output determines angle of minimum reflectivity

• Mass changes at interface alter local refractive index Æalter resonance angle

http://www.reichertspr.com/

Page 7: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Sensor Chip

SPR for Aptamer-Molecule Interactions

• Sensor chip consists of glass coated with a thin metal layer

• Metal functionalized for immobilization of ligand

• Amine coupling (EDC/NHS)• Streptavidin/neutravidin-

biotin• Gold-thiol

• Polymer matrix for balance between binding sites and signal strength

http://www.reichertspr.com/

N.J. de Mol, M.J.E. Fischer (eds.), Surface Plasmon Resonance, Methods in Molecular Biology, 2010.

Page 8: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Flow Cell

SPR for Aptamer-Molecule Interactions

• Two channels• Immobilization of ligand on

sample channel• Reference channel with no

ligand

• Both channels treated with analyte for binding analysis

http://www.reichertspr.com/

Jahanshahi et al. Scientific Reports 2014, 4, 3851.

Page 9: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Data Analysis

SPR for Aptamer-Molecule Interactions

• Kinetic analysis software (TraceDrawer)

• Alignment for start time, response

• Blank subtractions• Kinetic model fitting

• 1:1• 2:1, 1:2• Mass transport

depletion considerationsN.J. de Mol, M.J.E. Fischer (eds.), Surface Plasmon Resonance, Methods in Molecular Biology, 2010.

http://www.reichertspr.com/

Page 10: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

SPR Data

SPR for Aptamer-Molecule Interactions

• Binding kinetics• Equilibrium analysis• Binding specificity• Molecular interactions

• Protein• Small molecules• Cells• Oligonucleotides

Le et al. Analytica ChimicaActa 2013, 761, 143-148.

Stephenson-Brown et al. Analyst 2013, 138, 7140-7145.

Page 11: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Aptamers

SPR for Aptamer-Molecule Interactions

• Merits• Robust• High throughput chemical

synthesis• Little batch-to-batch variation• No significant immunogenicity http://www.amsbio.com/

2013

• Nucleic acid aptamers: • Short, single-stranded

oligonucleotides• Selected from randomized libraries• Interact with biomolecules (e.g.

surface receptors)

Page 12: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

SPR for Oligonucleotide Interactions

SPR for Aptamer-Molecule Interactions

• Biosensors• Sequence specificity• Hybridization

• DNA polymers• Competitive displacement

• Aptamer affinity• VEGF• Thrombin• PTK7 receptors

Hasegawa et al. Sensors 2008, 8, 1090-1098. Chen et al. Biosensors and Bioelectronics 2014, 61, 83-87.

Page 13: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Sequence Specificity

SPR for Aptamer-Molecule Interactions

0

50

100

150

200

250

300

350

0 500 1000 1500 2000

∆µR

IUTime [s]

Sequence A

immobilized on chip

Sequence B

Sequence C

+

A

BC

Scrambled B

B + Scrambled CB + C (20 base pairs)

+

+

+

B + C (25 base pairs)

Zhang et al. JACS 2012, 134, 15716-15719.

C displaces Bfrom A by forming 25 base pairs

B binds A with 20

base pairs

Page 14: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Application: Tumor Cell Capture and Release

SPR for Aptamer-Molecule Interactions

Zhang et al. JACS 2012, 134, 15716-15719.

Cell Release

Complementary Sequence Release

Functional Scrambled

Cell Catch

Hydrogel regeneration

Aptamer Display

Page 15: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Aptamer Length vs Affinity

SPR for Aptamer-Molecule Interactions

Zhang et al. Chemical Communications 2013, 49, 9600-9602.

0

30

60

90

120

150

180

0 200 400 600

ΔμRIU

Injection time [s]

10mer 9mer 8mer 7mer 6mer

0

30

60

90

120

150

180

0 200 400 600

ΔμRIU

Injection time [s]

10mer + trigger 10mer + control

Page 16: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Aptamer Affinity Evaluation via SPR

SPR for Aptamer-Molecule Interactions

Battig et al. Biomaterials 2014, 35, 8040-8048.

0

100

200

300

0 250 500

Res

pon

se

[µR

IU]

Time [s]

100 nM

50 nM

25 nM

0

50

100

150

200

250

0 250 500

Res

pon

se [

µRIU

]

Time [s]

0

100

200

0 250 500

Res

pon

se

[µR

IU]

Time [s]

100 nM50 nM25 nM12.5 nM6.25 nM3.125 nM

050

100150200250

0 250 500

Res

pon

se

[µR

IU]

Time [s]

100 nM50 nM25 nM12.5 nM6.25 nM3.125 nM

High Affinity Aptamer

Moderate Affinity Aptamer

Low Affinity Aptamer

High

Moderate

Low

Comparison of Anti-PDGF BB Aptamers at 100 nM

Page 17: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Application: Loading and Release of Growth Factors

SPR for Aptamer-Molecule Interactions

Battig et al. Biomaterials 2014, 35, 8040-8048.

Page 18: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

SPR Examination of DNA Polymerization

SPR for Aptamer-Molecule Interactions

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000

ΔμRIU

Time [s]

DI DM1 + DM2

DNA Polymer

DM1

DM2

DM1 + DM2

Chen et al. Small 2013, 23, 3944-3949.

DI is immobilized on sensor chip

Page 19: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Application: DNA Polymer Nanoparticles for Signal Amplification

SPR for Aptamer-Molecule Interactions

Chen et al. Small 2013, 23, 3944-3949.

Page 20: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Formation of Polyvalent Aptamers

SPR for Aptamer-Molecule Interactions

Richards et al. Biomacromolecules 2014, 15, 4561-4569.

Page 21: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Application: Polyvalent Aptamers for Tumor Cell Capture

SPR for Aptamer-Molecule Interactions

Richards et al. Biomacromolecules 2014, 15, 4561-4569.

Page 22: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Polyvalent Aptamer Triggered Depolymerization

SPR for Aptamer-Molecule Interactions

Gaddes et al. Biomacromolecules 2015, 16, 1382-1389.

Page 23: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Summary

SPR for Aptamer-Molecule Interactions

• SPR is a technique to detect molecular interactions in real time via alterations in local refractive index

• Used to determine binding specificity, kinetics, and molecular interactions between proteins, nucleic acids, cells, and other small molecules

• Nucleic acid aptamers have ability to bind targets with tunable affinity

• SPR utilized to evaluate aptamer specificity, DNA hybridization, and triggered dissociation

Page 24: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Resources

SPR for Aptamer-Molecule Interactions

• Mol, Nico J. de, and Marcel J. E. Fischer, eds. Surface Plasmon Resonance Methods and Protocols. New York, NY: Humana Press, 2010.

• Wong, Chi Lok, and Malini Olivo. “Surface Plasmon Resonance Imaging Sensors: A Review.” Plasmonics 9.4 (2014): 809–824.

• Reichert Technologies: http://www.reichertspr.com/• TraceDrawer:

http://www.ridgeview.eu/software/tracedrawer/• Scrubber: http://www.biologic.com.au/

Page 25: SPR for Aptamer-Based Molecular Interactions in Programmable Materials

Acknowledgements

SPR for Aptamer-Molecule Interactions

Funding:• National Science Foundation (DMR

1322332)• Pennsylvania State College of Engineering• Pennsylvania State Materials Research

Institute

• Dr. Yong Wang

• The Wang Lab• Dr. Mark R. Battig• Dr. Niancao Chen• Shihui Li

http://www.mri.psu.edu/about/millennium-science-complex.asp

• Reichert Technologies