Spin, Charge, and Orbital Ordering of Transition Metal...

46
Spin, Charge, and Orbital Ordering of Transition Metal Oxides 黃迪靖 國家同步輻射研究中心 清華大學物理系 (合聘) 清華大學物理系演講 Oct. 5, 2005

Transcript of Spin, Charge, and Orbital Ordering of Transition Metal...

  • Spin, Charge, and Orbital Ordering of Transition Metal Oxides

    黃迪靖國家同步輻射研究中心清華大學物理系 (合聘)

    清華大學物理系演講 Oct. 5, 2005

  • Outline:

    •Verwey transition and charge-orbital

    ordering of Fe3O4•Multiferroics in TbMn2O5

    -- coexistence and strong coupling of ferroelectricityand antiferromagnetism

  • Phenomena of electron-correlated materials

    CMR

    T

    RB = 0

    B = 15 T

    HTSC MIT

    RR

    T T

    Colossal Magneto-Resistance

    High Temperature SuperConductivity

    Metal-to-Insulator Transition

  • metalssuper-conductors

  • Physical properties of solids are primarily determined by valence electrons in a lattice.

    Electronic structure of correlated materials:

    •bandwidth

    •Coulomb interaction

    •charge transfer energy

  • W

    Density of States

    Imada, Fujimori & TokuraRev. Mod. Phys. (1998)

    TM

    O

    BandwidthW Fermi level

    Metals, from the view point of band theory

  • Correlated-Electron Materials: U > W

    TM

    Oxygen

    On-site Coulomb energyU

    din dj

    n

    i j

    djn dj

    n+1 L

    Charge-transfer energy∆

    j

    din−1 dj

    n+1

  • W

    Density of States

    Imada, Fujimori & TokuraRev. Mod. Phys. (1998)

    TM

    O

    Mott-Hubbard insulator

    Coulomb energyU

    CoO:insulator

    Band theory is insufficient to explain the physical properties of strongly correlated-electron systems.

  • 3z2-r2

    x2-y2 TM

    eg

    xy

    zx yz

    OJT

    3d crystal field

    t2g

  • spin

    charge

    orbital

    lattice

    Charge ordering: spatial localization of the charge carriers on certain sites

    2+

    3+

    Orbital ordering:periodic arrangement of specific electron orbitals

  • soft x-ray absorption & scattering

    TM: 2p 3dO: 1s 2p

    direct, element-specific probing of electronic structure of TMO

    TM 2p

  • The Electromagnetic Wave Spectrum

    103 101 10-1 10-3 10-5 10-7 10-9 10-11 10-13 10-15

    10-9 10-7 10-5 10-3 10-1 101 103 105 107 109

    Radio waves

    Visible lightVisible light

    Infrared Ultra-violet Hard-X-rays Gamma raysSoft X-rayMicro-waves

    SynchrotronRadiation

    (eV)

    物體大小

    建築物

    波長(米)

    光 源

    粒子加速器

    棒球 昆蟲 細胞 病毒 蛋白質 分子 原子核 質子 夸克?原子

    放射性源X射線管電 燈無線電天線 微波管

    光子能量(電子伏特)

  • ElectronBeam

    N

    S

    N

    S

    Bending Magnet

    Synchrotron radiation is the electromagnetic waves emitted from charge particles when they move in a curved path.

    SynchrotronRadiation

    This light has been called “synchrotron radiation”, since it was accidentally discovered in an electron synchrotron in 1947.

  • Insertion Device

    Elliptically Polarized Undulator 5.6

    N

    S

    ElectronBeam

    Synchrotron Radiation

  • 11

    2233

    44

    55

    6677

    88

    99

    1010

    99 1010

    中心設施 11 大門 22 行政大樓 33 研光大樓 44 儀光大樓 55 增能環館 儲存環館 77 機電館 88 招待所

    鄰近單位 高速電腦中心 交通大學

    66

    國家同步輻射研究中心

  • Research Highlights

    • Electronic structure of half-metal oxidesHuang et al., PRB (2003) Chen et al., PRB (2004)Chang et al., PRB (2005)

    • Orbital ordering of manganitesHuang et al., PRL (2004)

    • Spin and orbital moments of magnetic oxidesHuang et al., PRB (2002) Huang et al., PRL (2004)

    • Orbital symmetry and electron correlation of cobaltatesWu et al., PRL (2005)

    • The Verwey transition• Multiferroics in TbMn2O5

  • Verwey transition and charge-orbital ordering of Fe3O4

  • macroscopic manifestation of the Verwey transition in Fe3O4

    Weiss and Forrer (1929)

    Millar (1929)

    Okamura (1932)

    100 200 T(K)

    Recent Reviews

    Imada, Fujimori, and TokuraRev. Mod. Phys. (1998)Tsuda, Nasu, Fujimori, and Siratori“Electronic Conduction in Oxides” (2000)F. Walz, J. Phys: Condens. Matter (2002)J. Garcia & G. Subias, J. Phys: Condens. Matter (2004)

  • The Verwey transition of magnetite (Fe3O4)

    T > TV ~ 120 K

    Inverted spinel structure (cubic)1/3: tetrahedral (A-site) ) Fe3+2/3: octahedral (B-site) Fe3+, Fe2+

    A-site , B-site , TC ~ 860K

    Verwey model:

    charge order-disorder transition of B-site Fe (Verweyn & Haayman, 1941)

    oxygen

    Fe3O4 is believed to be a classic example of charge ordering.

  • a2

    a2a

    aaa 222 ××

    aaa ××T > TVcubic,

    T < TVmonoclinic

    supercellwith space group Cc

    neutron scatteringFujii et al. (1975)

    low T phaseC = 2a

    (4 0 1/2)c

    unit cell

  • k k’∆k = q

    2a sinθ = λ =

    2k sinθ = 2πa

    2πk

    momentumtransfer q =

    2πa

    θ

    Basic concept of diffraction

    a

    lattice doubling half-order diffraction

    k k’∆k’ = q’

    2(2a) sinθ’ = λ =

    2k sinθ = 2πa

    2πk

    q’ = 2πa

    12

    12

    2a

  • Does Fe3O4 exhibit charge ordering?Neutron diffuse scattering [Siratori et al., J. Phys. Soc. Jpn. (1998)]The atomic displacements are not of localized character, but spread over at least several unit cells, indicating the itinerant character of the 3d electrons.

    NMR results [ Novak et al., PRB (2000) ]The states of Fe ions on the B sublattice are mixed so strongly that the notion of 2+ and 3+ valencymay lose its meaning.

    X-ray scattering [ Garcia et al., PRL (2000) ]The octahedral Fe atoms are electronically equivalent in a time scale lower than 10-16 sec.

  • Refinement of x-ray and neutron diffraction

    2a

    Charge ordering was deduced from the Fe-O distance.

    4 independent B sites of Fe used; B1, B2, B3, B4(B1 and B4 have 2.4 valence, B2 and B3 have 2.6 valence)

    suggest:1.(0 0 1)c and (0 0 1/2)c

    charge modulation along the c-axis

    2.Breakdown of Anderson’s criterion

    Fe2+

    Fe3+

    Wright, Attfield, and Radaelli, PRL (2001), PRB (2002)

  • 3.815.485.4Fe B33.905.415.4Fe B23.395.585.6Fe B43.45 5.575.6Fe B1

    LDA+Uspin moment

    LDA+Uvalence charge

    Wright et al.valence charge

    monoclinic

    cubic

    Fe2+

    Fe3+

    LDA+U calculations

    Jeng, Guo, and Huang, PRL (2004)

    •gap ~ 0.2 eV

    •charge ordering of B-Fe

    cf: Leonov et al., PRL (2004)

  • LDA+U calculations: charge-orbital ordering

    Jeng, Guo, and Huang, PRL (2004)

    Fe3+

    OFe3+

    electron-rich Fe4O4 cube(3 B-Fe2+ and 1 B-Fe3+)

    electron-poor Fe4O4 cube(3 B-Fe3+ and 1 B-Fe2+)

    Fe2+

    Fe3+Fe3+

    Fe3+

    Fe3+

    z = 0

    a2

    2/a

    2/a

    A Fe3+B Fe3+

    B Fe2+ O

    Breakdown of Anderson’s criterion can be explained by the existence of orbital ordering.

  • X-ray scattering

    kkqvvv −= '

    drrrq

    rqrnf i∫ ⋅⋅

    = 2)sin()(4 vvvv

    π

    'kv

    kv )(rni : electron density

    Fe3O4: charge disproportionation ∆Q= 0.2 e∆Q/Qtotal ~ 1/550

    kv

    'kv

    0

    i∑ Γ−−−

    ⋅⋅∆

    ⋅⋅

    i i

    rkirki

    iEEeriier

    f)(

    0'0~

    0

    '

    ωεε

    h

    vvvv vvvvempty valence

    core level

    Resonant X-ray scattering

    to extract the valence disproportionationand to learn about the spatial distribution of i

  • Subias et al., PRL (2004)Resonant X-ray scattering

    Fe K-edge resonant X-ray scattering failed to observe any charge ordering.

    (0 0 l+1/2)C ?

    ??

    1s 3d

    1s 4p

  • Subias et al., PRL (2004)Resonant X-ray scattering

    (0 0 l+1/2)c ?

    ??

    1s 3d

    1s 4p

    Fe K-edge resonant X-ray scattering failed to observe any charge ordering.

  • The existence of charge ordering in Fe3O4remains controversial.

    No freezing of the soft phonon mode has been observed.[Samuelsem, & Steinsvoll (1974)]

    Mechanism of the Verwey transition?

  • egt2g

    Fe 4p

    1sK-edge resonant x-ray scattering

    charge-orbital ordering

    Fe 3d

    Fe

    Fe 2p

    Fe L-edge and O K-edgeresonant soft x-ray scattering directly probes Fe 3d and O 2pwith high sensitivity.

    O 2p

    O 1s

    Strong hybridization between Fe 3d and O 2pChen et al., PRB (2004)

  • monoclinic

    DOS from LDA+U calculations

    B-Fe t2g

    States between EF and 1 eV above + 2a periodicity(0 0 ½)c resonant diffraction

  • Iso-surface of O 2p in Fe3O4integrated between EF and 1 eV above

    z = 0

    a2

    2/a

    2/a

    B Fe3+

    z = a B Fe2+

    O

    z = 0

    monoclinic P2/c structure LDA+U calculations: H.T. Jeng

  • Summary

    •The Verwey transition is a transition of charge-orbital ordering.

    •Experimental discovery of orbital-ordering mechanism for the Verweytransition, resolving the long-lasting debate.

  • Outline:

    •Verwey transition and charge-orbital

    ordering of Fe3O4•Multiferroics in TbMn2O5

    -- coexistence and strong coupling of ferroelectricityand antiferromagnetism

  • The magnetoelectric effect:the induction of magnetization by an electric field; induction of polarizationby a magnetic field.- first presumed to exist by Pierre Curie in 1894

    πρ

    ππ

    40

    1

    )4(14

    =⋅∇

    =⋅∇∂∂

    −=×∇

    +∂∂

    +=×∇

    EB

    tB

    cE

    PEtc

    jc

    H

    v

    v

    vv

    vvvv

  • Nature, 426, 55 (2003)

    TbMnO3

  • 2 0

    2 5

    3 0

    3 5

    0 1 0 2 0 3 0 4 0

    -4 0

    -2 0

    0

    2 0

    4 0

    0

    (b )

    (a )

    0 T 1 T 3 T 5 T 7 T 9 T

    E //b , H //a (F C )1 k H z

    w a r m in g

    ε

    P1

    P2T

    P

    0

    40

    -80

    40

    P1

    P2T

    P

    0

    40

    -80

    40

    E p o le //+ bH //a (Z F C )

    P (n

    C/cm

    2 )

    T (K )

    • 3 transitions on cooling. • Magnetic field induces a sign reversalof the electric polarization.

    TbMn2O5 Nature, 429, 392 (2004)

  • Recently discovery in the coexistence and strong coupling of antiferromagnetismand ferroelectricity in frustrated spin systems such RMnO3 and RMn2O5(R=Tb, Ho , …)

    revived interest in “multiferroic” systems

    The mechanism has not been yet clarified, although magnetic competing interactions are believed to be the key ingredient.

  • Tb

    O

    Mn4+O6octahedron

    • orthorhombic structure (a b c, α = β = γ = 90°)

    •AFM insulator (TN=42 K )

    AFM square lattice with asymmetrical next-nearest-neighbor interactions, i.e. geometrically frustrated

    •Magnetization in the ab plane,

    •Tb ferromagnetic below 10 K

    •Spontaneous polarization P // b

    •AFM modulation vector k ⊥ PMn3+O5pyramid

    TbMn2O5

    Tb3+Mn4+ , Mn3+O2-

    kP

  • 3 AFM phases with different propagation vectors in the ac plane. k = (kx 0 kz)

    propagation vectors kin units of (2π/a 0 2π/c):33 K < T 42 K k ~ (1/2 0 0.30) incommensurate

    24 K < T

  • Summary

    •Resonant soft x-ray scattering of TbMn2O5Two incommensurate orderings at T < 24:

    AFM ordering, consistent with neutron diffractions.A new type of ordering,

    --- charge-orbital ordering ?.

    •The AFM ordering is closely related to the dielectric response.

  • Collaborators

    Jun Okamoto (國家同步輻射研究中心)趙國勝 (交通大學電子物理研究所)林宏基、黃志謀、徐嘉鴻、陳建德 (國家同步輻射研究中心)吳文斌 (交通大學電子物理研究所)

    LDA+U:鄭弘泰 (中研院物理所)郭光宇 (台灣大學物理系)

    Resistivity measurements (Fe3O4):林大欽 (淡江大學物理系)

    TbMn2O5: S. W. Cheong (Rutgers Univ.)

  • 歡迎有興趣的研究生加入我們的研究團隊!

  • Thank you !