Sos, Fopz, Sopz

30
SOS โ€“ General Form โ€ข General second order system Standard form SRSaunders - WSU - ChE 441 141 2 2 () 2 + 1 () + () = () 2 2 () 2 + 2 () + () = () = 2 , 2 = 1 ,= 2 2 + 2 + = () = 2 2 + 2 + 1 ()

description

Process Dynamics and Control Notes

Transcript of Sos, Fopz, Sopz

Page 1: Sos, Fopz, Sopz

SOS โ€“ General Form

โ€ข General second order system

Standard form

SRSaunders - WSU - ChE 441 141

๐‘Ž2

๐‘‘2๐‘ฆ(๐‘ก)

๐‘‘๐‘ก2+ ๐‘Ž1

๐‘‘๐‘ฆ(๐‘ก)

๐‘‘๐‘ก+ ๐‘Ž๐‘œ๐‘ฆ(๐‘ก) = ๐‘๐‘ข(๐‘ก)

๐œ2๐‘‘2๐‘ฆ(๐‘ก)

๐‘‘๐‘ก2+ 2๐œ๐œ

๐‘‘๐‘ฆ(๐‘ก)

๐‘‘๐‘ก+ ๐‘ฆ(๐‘ก) = ๐พ๐‘ข(๐‘ก)

๐œ =๐‘Ž2

๐‘Ž๐‘œ, 2๐œ๐œ =

๐‘Ž1

๐‘Ž๐‘œ, ๐พ =

๐‘

๐‘Ž๐‘œ

๐œ2๐‘ 2๐‘Œ ๐‘  + 2๐œ๐œ๐‘ ๐‘Œ ๐‘  + ๐‘Œ ๐‘  = ๐พ๐‘ˆ(๐‘ )

๐‘Œ ๐‘  =๐พ

๐œ2๐‘ 2 + 2๐œ๐œ๐‘  + 1๐‘ˆ(๐‘ )

Page 2: Sos, Fopz, Sopz

SOS Parameters

โ€ข Three key parameters

Gain K

Natural period ฯ„

Damping coefficient ฮถ (Zeta)

โ€ข Existence and nature of oscillation are

characterized by ฮถ and ฯ„

โ€ข Poles?

SRSaunders - WSU - ChE 441 142

๐‘1,2 =โˆ’2๐œ๐œ ยฑ 4๐œ2๐œ2 โˆ’ 4๐œ2

2๐œ2=

โˆ’๐œ ยฑ ๐œ2 โˆ’ 1

๐œ

Page 3: Sos, Fopz, Sopz

Lets look at 3 test cases and their

response to a unit stepโ€ฆ

K 10 10 10

ฯ„2 40 42.25 13

2ฯ„ฮถ 25 13 3

SRSaunders - WSU - ChE 441 143

0 10 20 30 40 50 60 70 80 90 1000

5

10

15

time

y(t)

K=10,t2=40, 2tz=25

K=10,t2=42.25, 2tz=13

K=10,t2=40, 2tz=3

Which is :

Underdamped?

Overdamped?

Critically Damped?

Page 4: Sos, Fopz, Sopz

SOS Dynamics

Damping Coefficient ฮถ

โ€ข Damping coefficient characterizes qualitative

process response

โ€ข Case 1: 0 < ฮถ < 1

Poles are real or imaginary?

Displays oscillation

Has OVERSHOOT

โ€ข progression past the final value,

โ€ข followed by a return to the

โ€ข steady state

Underdamped

SRSaunders - WSU - ChE 441 144

0 20 40 60 80 1000

5

10

15

time

y(t)

K=10,t2=40, 2tz=3

Page 5: Sos, Fopz, Sopz

SOS Dynamics

Damping Coefficient ฮถ

โ€ข Case 2: ฮถ = 1

Poles are real or

imaginary?

Fastest approach to

final value w/o

overshoot

Critically damped

โ€ข Case 3: ฮถ > 1

Poles are real or

imaginary?

Slower response than

case 2

Overdamped system

SRSaunders - WSU - ChE 441 145

0 20 40 60 80 1000

2

4

6

8

10

time

y(t)

Overdamped

Critically Damped

Page 6: Sos, Fopz, Sopz

SOS Dynamics

Damping Coefficient ฮถ

โ€ข Case 4: ฮถ = 0

โ€ข Pole are real or imaginary?

โ€ข Oscillatory response

โ€ข with no damping

โ€ข Frequency of oscillation :

โ€ข 1/ฯ„ => period = ฯ„

โ€ข Case 5: ฮถ < 0

โ€ข UNSTABLE

SRSaunders - WSU - ChE 441 146

0 10 20 30 40 50 60 70 80 90 1000

5

10

15

20

25

30

time

y(t)

Oscillatory No Damping

Unstable

Page 7: Sos, Fopz, Sopz

FOS vs. SOS

โ€ข Step response comparison

SOS (w/ no zeros) always more

sluggish than FOS

SOS has an โ€œSโ€ shape response

TOS is even more sluggish

System FOS SOS

Final Value AK AK

Initial Value 0 0

Initial

SLOPE

Finite, non-

zero0

SRSaunders - WSU - ChE 441 147

Page 8: Sos, Fopz, Sopz

Underdamped SOS

โ€ข Rise time

Time to the first crossing of the final steady state

value

SRSaunders - WSU - ChE 441 148

tr=12

๐‘ก๐‘Ÿ =๐œ

๐›ฝ๐œ‹ โˆ’ ๐œ™

๐›ฝ = 1 โˆ’ ๐œ2

๐œ™ = tanโˆ’1๐›ฝ

๐œA=1, K=10, ฯ„2=40, 2ฯ„ฮถ=3

Page 9: Sos, Fopz, Sopz

Underdamped SOS

โ€ข Period

Time between successive oscillation peaks

SRSaunders - WSU - ChE 441 149

๐‘‡ =2๐œ‹๐œ

๐›ฝ๐‘๐‘’๐‘Ÿ๐‘–๐‘œ๐‘‘ ๐‘œ๐‘“ ๐‘œ๐‘ ๐‘๐‘–๐‘™๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›

๐œ” =๐›ฝ

๐œ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘œ๐‘“ ๐‘œ๐‘ ๐‘๐‘–๐‘™๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›

A=1, K=10, ฯ„2=40, 2ฯ„ฮถ=3

Page 10: Sos, Fopz, Sopz

Underdamped SOS

โ€ข Decay Ratio

A measure of the rate of oscillation decay

โ€ข Overshoot

SRSaunders - WSU - ChE 441 150

a1=4.64

a2=1.0๐ท๐‘… =๐‘Ž2

๐‘Ž1= ๐‘’

โˆ’2๐œ‹๐œ๐›ฝ

A=1, K=10, ฯ„2=40, 2ฯ„ฮถ=3๐‘‚๐‘† = ๐ด๐‘’

โˆ’๐œ‹๐œ

1โˆ’๐œ2

Page 11: Sos, Fopz, Sopz

Underdamped SOS

โ€ข Settling Time โ€“ time at which the output

enters (and remains within) a percentage of

the final value

Often 90%, 95% or 99% settling time

SRSaunders - WSU - ChE 441 151

t90%=49

t95%=69

t99%=123

A=1, K=10, ฯ„2=40, 2ฯ„ฮถ=3

Page 12: Sos, Fopz, Sopz

FOS - Lead-lag Systems

โ€ข System with a โ€œproperโ€ transfer function

Gain K

Zero -1/๐œ๐‘Ž

Pole -1/ฯ„

Lead-to-lag ratio ฯ = ๐œ๐‘Ž๐œ

โ€ข Lead arises from the zero, lag from the pole.

SRSaunders - WSU - ChE 441 152

๐บ ๐‘  =๐พ(๐œ๐‘Ž๐‘  + 1)

๐œ๐‘  + 1

Page 13: Sos, Fopz, Sopz

FOS โ€“ Lead-Lag Systems

โ€ข Partial Fraction Expansion

โ€ข General Form

SRSaunders - WSU - ChE 441 153

(๐œ๐‘Ž๐‘  + 1)

๐œ๐‘  + 1= ๐ด +

๐ต

๐œ๐‘  + 1

๐œ๐‘Ž๐‘  + 1 = ๐ด ๐œ๐‘  + 1 + ๐ต

๐‘ 1: ๐œ๐‘Ž๐‘  = ๐ด๐œ๐‘ 

๐ด =๐œ๐‘Ž

๐œ= ๐œŒ

๐‘ 0: 1 = ๐ด + ๐ต๐ต = 1 โˆ’ ๐ด = 1 โˆ’ ๐œŒ

๐บ ๐‘  =๐พ(๐œ๐‘Ž๐‘  + 1)

๐œ๐‘  + 1= ๐พ๐œŒ +

๐พ 1 โˆ’ ๐œŒ

๐œ๐‘  + 1

Page 14: Sos, Fopz, Sopz

Lead-Lag Step Response

โ€ข Observations

For very small t (t->0, i.e., use initial value

theorem) y(0)=KฯA

โ€ข Discontinuous jump in the output signal

โ€ข Effect of the zero

For very large t (t->โˆž, i.e., use final value

theorem) y(โˆž)=KA

โ€ข Effect of lag term

Behavior of y(t) is a big function of ฯ

SRSaunders - WSU - ChE 441 154

๐‘Œ ๐‘  =๐พ ๐œ๐‘Ž๐‘  + 1

๐œ๐‘  + 1๐‘ˆ ๐‘  =

๐พ๐œŒ๐ด

๐‘ +

๐พ 1 โˆ’ ๐œŒ ๐ด

๐‘ (๐œ๐‘  + 1)

Page 15: Sos, Fopz, Sopz

Lead-Lag Systems โ€“ Effect of ฯ

โ€ข Case 1: 0 < ๐œ๐‘Ž < ฯ„ (0 < ฯ < 1)

Discontinuous Jump @ moment of

step

๐œ๐‘Ž-> 0, becomes more of a โ€œpureโ€

FOS and lag dominates

SRSaunders - WSU - ChE 441 155

A=1, K=5, ๐œ๐‘Ž=0.5, ฯ„=1y(t

)

0

Page 16: Sos, Fopz, Sopz

Lead-Lag Systems โ€“ Effect of ฯ

โ€ข Case 2: ๐œ๐‘Ž = ฯ„ (ฯ = 1)

Pole-zero cancellation

Pure gain system G(s)=K

Discontinuous jump @

moment of step

SRSaunders - WSU - ChE 441 156

A=1, K=5, ๐œ๐‘Ž=0.5, ฯ„=0.5

y(t

)

0

Page 17: Sos, Fopz, Sopz

Lead-Lag Systems โ€“ Effect of ฯ

โ€ข Case 3: ๐œ๐‘Ž > ฯ„ (ฯ > 1)

Overshoot

Lead dominates

Discontinuous jump @

moment of step

SRSaunders - WSU - ChE 441 157

A=1, K=5, ๐œ๐‘Ž=1, ฯ„=0.5

y(t

)

0

Page 18: Sos, Fopz, Sopz

Lead-Lag Systems โ€“ Effect of ฯ

โ€ข Case 4: ๐œ๐‘Ž < 0 < ฯ„ (ฯ < 0)

Inverse response

Initial move away from the SS Value

SRSaunders - WSU - ChE 441 158

A=1, K=5, ๐œ๐‘Ž=-1, ฯ„=0.5

y(t

)

t0

0

Page 19: Sos, Fopz, Sopz

FOS In Parallel

๐บ1 ๐‘  =๐พ1

๐œ1๐‘  + 1

๐บ2 ๐‘  =๐พ2

๐œ2๐‘  + 1

๐‘Œ ๐‘  = ๐‘Œ1 ๐‘  + ๐‘Œ2 ๐‘ 

= ๐บ1 ๐‘  ๐‘ˆ ๐‘  + ๐บ2 ๐‘  ๐‘ˆ ๐‘ 

= ๐‘ˆ ๐‘  ๐บ1 ๐‘  + ๐บ2 ๐‘ 

= ๐‘ˆ ๐‘  ๐บ(๐‘ )

๐บ ๐‘  = ๐บ1 ๐‘  + ๐บ2 ๐‘  =๐พ1

๐œ1๐‘  + 1+

๐พ2

๐œ2๐‘  + 1

SOS with

Zeroes!

SRSaunders - WSU - ChE 441 159

=๐พ1(๐œ2๐‘  + 1) + ๐พ2(๐œ1๐‘  + 1)

(๐œ1๐‘  + 1)(๐œ2๐‘  + 1)

=(๐พ1 + ๐พ2)

(๐พ1๐œ2 + ๐พ2๐œ1)๐พ1 + ๐พ2

๐‘  + 1

(๐œ1๐‘  + 1)(๐œ2๐‘  + 1)

=(๐พ1๐œ2 + ๐พ2๐œ1)๐‘  +(๐พ1 +๐พ2)

(๐œ1๐‘  + 1)(๐œ2๐‘  + 1)=

๐พ1๐œ2๐‘  + ๐พ1 + ๐พ2๐œ1๐‘  + ๐พ2

(๐œ1๐‘  + 1)(๐œ2๐‘  + 1)

G2

G1

U(s) Y(s)+

+

Page 20: Sos, Fopz, Sopz

SOS with Zeroes

โ€ข 2-pole, 1 zero system:

โ€ข Output step response:

SRSaunders - WSU - ChE 441 160

๐บ ๐‘  =๐พ ๐œ๐‘Ž๐‘  + 1

๐œ1๐‘  + 1 ๐œ2๐‘  + 1

๐‘Œ ๐‘  =๐พ ๐œ๐‘Ž๐‘  + 1

๐œ1๐‘  + 1 ๐œ2๐‘  + 1

๐ด

๐‘†= ๐พ๐ด

๐ต

๐‘ +

๐ถ

๐œ1๐‘  + 1+

๐ท

๐œ2๐‘  + 1

๐ต = 1

๐ถ = โˆ’๐œ1 ๐œ1 โˆ’ ๐œ๐‘Ž

๐œ1 โˆ’ ๐œ2

๐ท =๐œ2 ๐œ2 โˆ’ ๐œ๐‘Ž

๐œ1 โˆ’ ๐œ2

๐‘ฆ ๐‘ก = ๐ด๐พ 1 โˆ’๐œ1 โˆ’ ๐œ๐‘Ž

๐œ1 โˆ’ ๐œ2๐‘’

โˆ’๐‘ก๐œ1 +

๐œ1 โˆ’ ๐œ๐‘Ž

๐œ1 โˆ’ ๐œ2๐‘’

โˆ’๐‘ก๐œ2

Page 21: Sos, Fopz, Sopz

SOS with Zeroes โ€“ Step Response

A=1, K=10, ๐œ1=5, ๐œ2=10

SRSaunders - WSU - ChE 441 161

>

Page 22: Sos, Fopz, Sopz

SOS โ€“ Case Evaluations

โ€ข Let ฯ„1

< ฯ„2, ฯ„

a> 0

Unless otherwise noted

โ€ข Case 1: ฯ„a

> ฯ„2

Overshoot

โ€ข Case 2: ฯ„a

= ฯ„1

or ฯ„a

= ฯ„2

Pole-zero cancellation

Yields a FOS

SRSaunders - WSU - ChE 441 162

๐บ ๐‘  =๐พ ๐œ๐‘Ž๐‘  + 1

๐œ1๐‘  + 1 ๐œ2๐‘  + 1=

๐พ

๐œ๐‘–๐‘  + 1

>

Page 23: Sos, Fopz, Sopz

SOS โ€“ Case Evaluations

โ€ข Case 3: 0 < ฯ„a

< ฯ„2

Resembles a FOS until ฯ„a

<< ฯ„1

โ€ข Case 4: ฯ„a

< 0

Always displays inverse response

SRSaunders - WSU - ChE 441 163

Page 24: Sos, Fopz, Sopz

Case Summary โ€“ FOS ฯ„a

Values Key Observations

0 < ฯ„a < ฯ„Jump at t=0 toward

y(โˆž)

ฯ„a = ฯ„

Pure gain system

(pole-zero

cancellation)

ฯ„a > ฯ„ Overshoot

ฯ„a < 0 < ฯ„ Inverse response

SRSaunders - WSU - ChE 441 164

โ€ข Discontinuous jump @ t=0 for all cases

Page 25: Sos, Fopz, Sopz

โ€ข Let ฯ„1

< ฯ„2, ฯ„

a> 0

โ€ข Unless otherwise noted

โ€ข No discontinuous jump @ t=0

Case Summary โ€“ SOS ฯ„a

Values Key Observations

0 < ฯ„a < ฯ„2 Similar to FOS

ฯ„a = ฯ„1 or ฯ„2

FOS

(pole-zero cancellation)

ฯ„a > ฯ„2 Overshoot

ฯ„a < 0 Inverse response

SRSaunders - WSU - ChE 441 165

Page 26: Sos, Fopz, Sopz

Case Summary โ€“ SOS ฮถ

Values Key Observations

ฮถ < 0 Unstable

ฮถ = 0Underdamped

oscillates forever

0 < ฮถ < 1Overshoot and

underdamped

ฮถ = 1 Critically damped

ฮถ > 1Overdamped โ€“

sluggish

SRSaunders - WSU - ChE 441 166

Page 27: Sos, Fopz, Sopz

Inverse Respone

โ€ข When a process output initially moves in a

direction opposite to its steady state value

followed by a return to steady state

Effect of (at least) two opposing processes are

different timescales

Occurs when ฯ„a

< 0 in single-zero systems

y(t) crosses the zero axis (in deviation variables)

in response to a step input

โ€ข Where does this show up?

SRSaunders - WSU - ChE 441 167

Page 28: Sos, Fopz, Sopz

A Two Timescale Exercise

โ€ข Given the following block diagram and

transfer functions, calculate G(s)

SRSaunders - WSU - ChE 441 168

๐บ1 ๐‘  =5

10๐‘  + 1๐บ2 ๐‘  =

โˆ’1

1๐‘  + 1

๐บ ๐‘  = ๐บ1 ๐‘  + ๐บ2 ๐‘ 

=5

10๐‘  + 1โˆ’

1

๐‘  + 1

=5 ๐‘  + 1 โˆ’ (10๐‘  + 1)

(10๐‘  + 1)(๐‘  + 1)

=4 โˆ’

54

๐‘  + 1

10๐‘ 2 + 11๐‘  + 1

G2

G1

U(s) Y(s)+

+

Page 29: Sos, Fopz, Sopz

FOS in Parallel

โ€ข Two FOS in Parallel

โ€ข Let:

|K1|> |K

2|

K1

and K2

be opposite signs

ฯ„1

> ฯ„2

(G2

is faster than G1)

โ€ข Consequences

Fast process => Initial response

Slow Process => final response (due to higher

gain)

SRSaunders - WSU - ChE 441 169

๐บ(๐‘ ) =(๐พ1 + ๐พ2)

(๐พ1๐œ2 + ๐พ2๐œ1)๐‘ ๐พ1 + ๐พ2

๐‘  + 1

(๐œ1๐‘  + 1)(๐œ2๐‘  + 1)

Page 30: Sos, Fopz, Sopz

Real Inverse Response

โ€ข Drum Boiler

Used for steam generation

SRSaunders - WSU - ChE 441 170

Heat

Source

Steam

Cold Water