Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina...

13
Simulazione stocastica di sorgenti sismiche

Transcript of Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina...

Page 1: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.

Simulazione stocastica di sorgenti sismiche

Page 2: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.

La simulazione stocastica di forme d’onda combina modelli sismologici che descrivono le ampiezze spettrali dei dati registrati con

l’assunzione che i segnali ad alta frequenza sono caratterizzati da una distribuzione “random”

delle fasi.Si assume quindi che le accelerazioni in campo

lontano a frequenze maggiori della corner frequency siano composte da

rumore bianco gaussiano di durata limitata e che le sorgenti siano descritte

da spettri a singola corner frequency dipendente dalla grandezza dell’evento.

Page 3: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.
Page 4: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.

)()()()( fSfPfGfA

Lo spettro di un segnale sismico e’ il risultato di un termine di sorgente, uno di propagazione ed uno di sito

Nel modello stocastico vengono simulati sia gli effetti di sorgente tutti gli elementi che compaiono

nello spettro di campo lontano.

Page 5: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.

SORGENTE

Si assume una forma spettrale a singola corner frequency sotto l’ipotesi she sia: M0f0

3= Costante

M0 e’ la migliore misura del terremotonon soggetta a saturazione;puo’ essere determinato da registrazionio dedotto da dati paleosismici;e’ legato allo slip sul piano di faglia;

Page 6: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.

PROPAGAZIONE Il termine di propagazione e’ dato da:

P(R,f) = Z(r) exp[-fr/Q(f)cQ]

Dove Z(r) tiene conto dell’attenuazione geometrica e il termine esponenzialedell’attenuazione anelastica con Q uguale al fattore di qualità e c uguale alla velocitàdi propagazione. Il termine di attenuazione geometrica puo’ essere espresso con le seguenti relazioni:

Z(r) = R0/R R < R1

Z(r1) = Z(r1)(r1/r)p1 R1 < R < R2

.

.Z(rn) = Z(rn)(rn/r)p

n Rn < R

Il termine di attenuazione dello spettro ad alta frequenza e’ dato da:

Page 7: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.

Oltre al decadimento dovuto all’attenuazione uno spettro sperimentalepresenta un decadimento ad alta frequenza modellabilecon un termine del tipo:

D(f) = exp[-pk0f]

Tale termine va aggiunto a quello mostrato in precedenza.

Page 8: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.
Page 9: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.

Il modello stocastico puo’ essere applicato anche su faglie estese e registrazioni in campo vicino.

In questo caso la faglia si suddivide in elementi di piccole dimensioni che contribuiscono al segnale registrato con termini di campo lontano.

Per ogni elemento si applica il modello stocastico fissando i parametri di slip e di stress in modo che il momento sismico dell’evento sia esprimibile come la somma dei momenti sismici dei subeventi.

La dimensione degli elementi non puo’ essere molto piccola altrimenti la corner frequency diventa troppo alta e si limita il campo di frequenze

investigato. Con questo metodo si puo’ enucleare l’evento in vari punti della faglia simulando effetti di direttivita’Si puo’ inoltre imporre slip costante o variabile sugli elementi della faglia in

modo di simulare asperita’ e barriere sul piano di faglia.

Page 10: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.

Orientazione Faglia E-W strike 270 – dip 80

Dimensioni Faglia (km2) 8.0 x 6.4

Vertice superiore (km) 13.7

Magnitudo momento (Mw) 5.7

Parametro di stress (bar) 50

Sottoelementi faglia 20

Dimensione elementi (km) 1.6

Slip omogeneo (m) 0.2

Corner frequency elementi (Hz)

0.9

Velocità onde di taglio (km/s)

3.8

Densità (gr/cm3) 2.9

Spreading geometrico 1/R

Attenuazione anelastica 80 * f 0.7 – 200 * f 0.8

Fattore k0 0.050

Punto di enucleazione

Page 11: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.

Nella pratica si genera un grande numero di accelerogrammi sintetici ognuno dei quali avrà una forma spettrale fissata ma valori dei parametrioel moto differenti.Per predire a fini ingegneristici I parametri del moto ricavati dalla modellazione si possono calcolare I valori medi dei parametri di interesse (picco di accelerazione,picco di velocità, ecc.)

Page 12: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.
Page 13: Simulazione stocastica di sorgenti sismiche. La simulazione stocastica di forme donda combina modelli sismologici che descrivono le ampiezze spettrali.