Scholarship Sewanee poster 2014

1
Spin Echoes & the Principles of NMR Frank Odom III Department of Physics & Astronomy University of the South: Sewanee Overview Nuclear MagneEc Resonance is widely used in the fields of biology, chemistry, and medicine as a non destrucEve imaging method. NMR can obtain valuable informaEon about a given sample by manipulaEng the magneEc moments of its nuclei. I have conducted NMR experiments using Earth’s magneEc field (about 39 μT) as my primary, external magneEc field. Figure 2. FID signal. Elemental ComposiEon We can easily obtain informaEon about the elements within a sample from an FID signal. Any nucleus with a net magneEc moment will precess at a characterisEc frequency, called the Larmor frequency. Fourier analysis can easily idenEfy the consEtuent elements. Figure 1. Equipment from TeachSpin Spin Flips & Spin Echoes Our FID signal decays primarily due to field inhomogeneiEes; however, we could revive the signal by “flipping” our magneEc moments (a spin flip), causing them to precess in the opposite direcEon. The revived signal is called a spin echo. Figure 3. Spin Echo signal Electronics We will try to excite a spin flip using radio waves. So, our electronic circuit must be able to provide the following: Time delay of about 0.5 s Sine wave output pulse of easily controlled magnitude and duraEon Figure 4. Electronic circuit. Quantum Mechanics Using Schrödinger’s equaEon as well as Emedependent perturbaEon theory, the probability of a spin flip is: 0.5 1.0 1.5 »V osc »HVL 0.5 1.0 1.5 2.0 Spin Echo HVL 10 20 30 40 Number of Cycles 0.5 1.0 1.5 2.0 2.5 Spin Echo HVL 1500 1600 1700 1800 1900 2000 f osc HHzL 0.5 1.0 1.5 2.0 2.5 Spin Echo HVL CarrPurcell Method We can determine the characterisEc relaxaEon Eme for a given sample. This is called the spinspin relaxaEon Eme. Figure 5. CarrPurcell method. SpinLabce RelaxaEon Time AddiEonal valuable informaEon can be obtained from the spinlabce relaxaEon Eme. This is more easily thought of as the “polarizaEon Eme” for a given sample. 5 10 15 Time HsL 1 2 3 4 5 6 7 FID Signal HVL Figure 6. SpinLabce RelaxaEon Time. Characterizing a Sample We can use these two methods of imaging to determine the physical characterisEcs of samples– namely, ice and a mixture of corn starch and water. 1 2 3 4 5 6 Time HsL 5 10 15 20 FID Signal HVL Figure 7. SpinLabce RelaxaEon Emes for ice and mixture of water and corn starch. Acknowledgements TeachSpin Dr. Peterson Sewanee Physics Dept. The mixture of corn starch and water behaves much more like ice– a crystalline solid– than a liquid. Without any addiEonal informaEon, it would be much easier to disEnguish the mixture from water.

Transcript of Scholarship Sewanee poster 2014

Page 1: Scholarship Sewanee poster 2014

Spin  Echoes  &  the  Principles  of  NMR  Frank  Odom  III  

Department  of  Physics  &  Astronomy  University  of  the  South:  Sewanee  

Overview    Nuclear  MagneEc  Resonance  is  

widely  used  in  the  fields  of  biology,  chemistry,  and  medicine  as  a  non-­‐destrucEve  imaging  method.    NMR  can  obtain  valuable  informaEon  about  a  given  sample  by  manipulaEng  the  magneEc  moments  of  its  nuclei.  I  have  conducted  NMR  experiments  using  Earth’s  magneEc  field  (about  39  μT)  as  my  primary,  external  magneEc  field.  

Figure  2.  FID  signal.    

Elemental  ComposiEon    We  can  easily  obtain  informaEon  

about  the  elements  within  a  sample  from  an  FID  signal.    Any  nucleus  with  a  net  magneEc  moment  will  precess  at  a  characterisEc  frequency,  called  the  Larmor  frequency.    Fourier  analysis  can  easily  idenEfy  the  consEtuent  elements.  

Figure  1.  Equipment  from  TeachSpin    

Spin  Flips  &  Spin  Echoes    Our  FID  signal  decays  primarily  due  

to  field  inhomogeneiEes;  however,  we  could  revive  the  signal  by  “flipping”  our  magneEc  moments  (a  spin  flip),  causing  them  to  precess  in  the  opposite  direcEon.    The  revived  signal  is  called  a  spin  echo.  

Figure  3.  Spin  Echo  signal    

Electronics    We  will  try  to  excite  a  spin  flip  using  

radio  waves.    So,  our  electronic  circuit  must  be  able  to  provide  the  following:  •  Time  delay  of  about  0.5  s  •  Sine  wave  output  pulse  of  easily  

controlled  magnitude  and  duraEon  

Figure  4.  Electronic  circuit.    

Quantum  Mechanics    Using  Schrödinger’s  equaEon  as  well  

as  Eme-­‐dependent  perturbaEon  theory,  the  probability  of  a  spin  flip  is:  

0.5 1.0 1.5»Vosc» HVL

0.5

1.0

1.5

2.0

Spin Echo HVL

10 20 30 40Number of Cycles

0.5

1.0

1.5

2.0

2.5

Spin Echo HVL

1500 1600 1700 1800 1900 2000fosc HHzL

0.5

1.0

1.5

2.0

2.5

Spin Echo HVL

Carr-­‐Purcell  Method    We  can  determine  the  characterisEc  

relaxaEon  Eme  for  a  given  sample.    This  is  called  the  spin-­‐spin  relaxaEon  Eme.  

Figure  5.  Carr-­‐Purcell  method.    

Spin-­‐Labce  RelaxaEon  Time    AddiEonal  valuable  informaEon  can  

be  obtained  from  the  spin-­‐labce  relaxaEon  Eme.    This  is  more  easily  thought  of  as  the  “polarizaEon  Eme”  for  a  given  sample.  

5 10 15Time HsL

1

2

3

4

5

6

7

FID Signal HVL

Figure  6.  Spin-­‐Labce  RelaxaEon  Time.    

Characterizing  a  Sample    We  can  use  these  two  methods  of  

imaging  to  determine  the  physical  characterisEcs  of  samples–  namely,  ice  and  a  mixture  of  corn  starch  and  water.  

1 2 3 4 5 6Time HsL

5

10

15

20

FID Signal HVL

Figure  7.  Spin-­‐Labce  RelaxaEon  Emes  for  ice  and  mixture  of  water  and  corn  starch.    

Acknowledgements  •  TeachSpin  •  Dr.  Peterson  •  Sewanee  Physics  Dept.  

The  mixture  of  corn  starch  and  water  behaves  much  more  like  ice–  a  crystalline  solid–  than  a  liquid.    Without  any  addiEonal  informaEon,  it  would  be  much  easier  to  disEnguish  the  mixture  from  water.