Robust Repositioning in Large-scale Networks

32
Robust Empty Reposi.oning in LargeScale Freight Consolida.on Networks Alan Erera 1 , Antonio Carbajal 1 , Mar.n Savelsbergh 2 1 School of Industrial and Systems Engineering, Georgia Tech 2 University of Newcastle, Australia Odysseus 2012

description

Talk at Odysseus 2012, Mykonos

Transcript of Robust Repositioning in Large-scale Networks

Page 1: Robust Repositioning in Large-scale Networks

Robust  Empty  Reposi.oning                      in  Large-­‐Scale  Freight  Consolida.on  

Networks    Alan  Erera1,  Antonio  Carbajal1,  

Mar.n  Savelsbergh2  1  School  of  Industrial  and  Systems  Engineering,  Georgia  Tech    2  University  of  Newcastle,  Australia  

Odysseus  2012  

Page 2: Robust Repositioning in Large-scale Networks

What  to  remember  

1.  Robust  models  for  empty  mobile  resource  management  pragma.c  and  effec.ve  

2.  Empty  resource  hubs  useful  for  very  large-­‐scale  reposi.oning  networks  

3.  Rolling-­‐horizon  deployments  of  two-­‐stage  robust  op.miza.on  models  should  u.lize:  

–  short  robust  horizons  –  rolling  robust  constraints  

 

Page 3: Robust Repositioning in Large-scale Networks

Customer Satellite terminal Hub terminal

destination

origin

Consolida.on  networks  

Page 4: Robust Repositioning in Large-scale Networks

Satellite terminal Hub terminal

Consolida.on  networks  

+5

-3

-5

-1

-1

+1 +4 +1

-3

+1

-2

+3

+3 +3

0

0 -6

-4

+1 +1

+2

+4

-3 +1 -1

+2

Net weekly surplus of empty trailers

Page 5: Robust Repositioning in Large-scale Networks

Dynamic  trailer  reposi.oning  

•  Large-­‐scale  terminal  network  – 250+  satellites  and  hubs  

•  Dynamics  – Several  decision  epochs  daily  – Today’s  projected  demand  for  trailers  accurate  – Tomorrow’s  (and  beyond)  significantly  uncertain  

•  Goal  – Best  empty  reposi.oning  plan  each  epoch  

Page 6: Robust Repositioning in Large-scale Networks

Modeling  approaches  

•  Determinis.c  rolling-­‐horizon  network  flow  LP  – Assume  that  trailer  demands  tomorrow  (and  beyond)  behave  as  expected    

•  Stochas.c  models  – Minimize  expected  costs  given  probabilis.c  model  of  demand  

– Powell  (87),  Frantzeskakis  and  Powell  (90),  Cheung  and  Powell  (96),  Godfrey  and  Powell  (02a,  02b)        

– Crainic  (93),  Di  Francesco,  et  al.  (09)  

Page 7: Robust Repositioning in Large-scale Networks

Modeling  approaches  

•  Robust  op.miza.on  models  – Bertsimas  and  Sim  (03),  Atamturk  and  Zhang  (07)  – Morales  (06),  Erera  et.  al.  (09)  

•  Two-­‐stage  model  •  Explicit  focus  on  future  feasibility  •  Minimize  cost  of  planned  movements  such  that  a  feasible  set  of  recovery  movements  exists  for  each  non-­‐extreme  scenario  

Page 8: Robust Repositioning in Large-scale Networks

Two-­‐stage  robust  reposi.oning  

t=1 t=0 t=2 t=3 t=4 t=5 A

B

C

D

E

First stage decisions

Page 9: Robust Repositioning in Large-scale Networks

Two-­‐stage  robust  reposi.oning  

t=1 t=0 t=2 t=3 t=4 t=5 A

B

C

D

E

First stage net supply bi

Initial trailers

+2

+6

Known and expected future loaded moves

-2

+2

-1

+1

Page 10: Robust Repositioning in Large-scale Networks

Two-­‐stage  robust  reposi.oning  

t=1 t=0 t=2 t=3 t=4 t=5 A

B

C

D

E

Second stage “recovery” decisions

Page 11: Robust Repositioning in Large-scale Networks

Two-­‐stage  robust  reposi.oning  

t=1 t=0 t=2 t=3 t=4 t=5 A

B

C

D

E

Second stage uncertain demand

Intervals on future loaded moves

[0, 2]

[�a, �a]

Page 12: Robust Repositioning in Large-scale Networks

•  First  stage  network  flow  

•  Second  stage  “recovery  flow”  for  each  scenario  

Two-­‐stage  robust  reposi.oning  

a∈δ+(i)

xa −�

a∈δ−(i)

xa = bi ∀ i ∈ N

min�

a

caxa

xa + wa(ω) ≥ 0

∀ a ∈ A

∀ a ∈ A

xa ≥ 0 and integer

a∈δ+(i)

wa(ω)−�

a∈δ−(i)

wa(ω) = bi(ω)− bi ∀ i ∈ N

Page 13: Robust Repositioning in Large-scale Networks

C

B

A

•  Key  result:  Existence  of  Recovery  Flow  

Two-­‐stage  robust  reposi.oning  

a∈δ+(U)∩I

xa ≥ ν(U) ∀ U is inbound-closed

t=1 t=0 t=2 t=3 t=4 t=5

Page 14: Robust Repositioning in Large-scale Networks

C

B

A

•  Inbound  closed  set  – node  set  with  no  incoming  recovery  transporta.on  arcs  

Two-­‐stage  robust  reposi.oning  

t=1 t=0 t=2 t=3 t=4 t=5

Page 15: Robust Repositioning in Large-scale Networks

C

B

A

•  Inbound  closed  set  –  this  example  not  inbound-­‐closed  

Two-­‐stage  robust  reposi.oning  

t=1 t=0 t=2 t=3 t=4 t=5

Page 16: Robust Repositioning in Large-scale Networks

C

B

A

•  Worst-­‐case  vulnerability  of  inbound-­‐closed  set  

 

Two-­‐stage  robust  reposi.oning  

t=1 t=0 t=2 t=3 t=4 t=5

a∈δ+(U)∩I

xa ≥ ν(U) ∀ U is inbound-closed

ν(U) =�

a∈δ+(U)

�a −�

a∈δ−(U)

�a +�

i∈U

bi

[0, 2]

[1, 5]

Page 17: Robust Repositioning in Large-scale Networks

Challenges  

(1) Smart  recovery  network  –  Low-­‐cost  moves  (since  costs  not  modeled)  –  Opera.onally  simple  

(2) Appropriate  use  of  two-­‐stage  model  –  Controlling  conserva.sm  pragma.cally  –  Special  considera.ons  for  rolling  horizon  

implementa.on  –  Solvable  (but  very  large  scale)  MIPs  

 

Page 18: Robust Repositioning in Large-scale Networks

Smart  recovery  network  

Region 1

Region 2

Region 3

Empty hubs

Page 19: Robust Repositioning in Large-scale Networks

Controlling  conserva.sm  

•  Exclude  extreme  scenarios  – Narrow  the  width  of  intervals  – Limit  to  k  the  number  of  uncertain  quan..es  that  may  simultaneously  take  on  an  extreme  quan.ty  

•  Challenges  for  large  .me-­‐expanded  networks  – Very  large  numbers  of  inbound-­‐closed  sets  and  associated  robust  constraints:  

– Difficult  to  judge  in  advance  which  robust  constraints  will  be  ac.ve  

[�a, �a]

> O(τnS )

Page 20: Robust Repositioning in Large-scale Networks

C

B

A

•  Bounded  vulnerability  of  inbound-­‐closed  set  

 

Two-­‐stage  robust  reposi.oning  

t=1 t=0 t=2 t=3 t=4 t=5

[0, 2]

[1, 5]

maxz

a∈δ+(U)

(�a − �a)za +�

a∈δ−(U)

(�a − �a)za |�

za = k

Page 21: Robust Repositioning in Large-scale Networks

Appropriate  use  of  two-­‐stage  model  Terminal limit

A

B

C

D

known future

–  inbound-­‐closed  sets  with  L+1  terminals  or  fewer  

Page 22: Robust Repositioning in Large-scale Networks

Appropriate  use  of  two-­‐stage  model  Robust horizon

A

B

C

D

known future

robust horizon

–  inbound-­‐closed  sets  include  no  nodes  aher  RH  

Page 23: Robust Repositioning in Large-scale Networks

Appropriate  use  of  two-­‐stage  model  Rolling-horizon robust constraints

A

B

C

D

known future

–  add  constraints  now  for  future  horizon  rolls  •  assume  that  demand  intervals  do  not  change  

robust horizon

Page 24: Robust Repositioning in Large-scale Networks

Appropriate  use  of  two-­‐stage  model  Rolling-horizon robust constraints

A

B

C

D

known future

–  add  constraints  now  for  future  horizon  rolls  •  assume  that  demand  intervals  do  not  change  

robust horizon

Page 25: Robust Repositioning in Large-scale Networks

Tes.ng  the  ideas  

•  Givens  – Historical  data  from  a  na.onal  consolida.on  trucking  carrier    

– Loaded  moves  involve  264  terminals  – Reposi.oning  moves  (truck  and  rail)  – 10  empty  hubs  – At  most  4  daily  dispatch  .mes  per  terminal  – Wide  forecast  intervals  on  loaded  demands  (+/-­‐  50%  of  actual)  

Page 26: Robust Repositioning in Large-scale Networks

Tes.ng  the  ideas  

•  Horizons  – 14  weeks  of  data  – Planning  horizon  of  7  days  for  each  model  

•  Network  size  for  7-­‐day  planning  horizon  – 5,000  .me-­‐space  nodes  – 300,000  arcs  

•  Primarily  reposi.oning  arcs  •  Limited  connec.ons  

Page 27: Robust Repositioning in Large-scale Networks

Tes.ng  the  ideas  

•  Simulate  – Assume  today’s  loaded  demands  known  – Solve  model,  implement  today’s  decisions  

•  Assume  trailer  deficits  covered  by  an  outsourced  trailer  

– Draw  realiza.on  of  tomorrow’s  demands  – Repeat  

Page 28: Robust Repositioning in Large-scale Networks

Results  Figure 18: Unmet demands on a given day - Scenario 2

Figure 19: Cumulative unmet demands - Scenario 2

104

Page 29: Robust Repositioning in Large-scale Networks

Results  Figure 20: Execution costs on a given day - Scenario 2

Figure 21: Cumulative execution costs - Scenario 2

105

Page 30: Robust Repositioning in Large-scale Networks

Short  planning  horizons  

Figure 22: Cumulative unmet demands with di!erent planning horizons - Scenario 1

106

Page 31: Robust Repositioning in Large-scale Networks

Next  steps  

•  Refinements  – More  reasonable  model  of  true  uncertainty  in  demand  

– Understand  sources  of  cost  escala.on,  including  if  and  where  excessive  conserva.sm  introduced  

•  Empty  hub  selec.on  •  Fleet  size  versus  reposi.oning  cost  for  robust  plans  

Page 32: Robust Repositioning in Large-scale Networks

What  to  remember  

1.  Robust  models  for  empty  mobile  resource  management  pragma.c  and  effec.ve  

2.  Empty  resource  hubs  useful  for  very  large-­‐scale  reposi.oning  networks  

3.  Rolling-­‐horizon  deployments  of  two-­‐stage  robust  op.miza.on  models  should  u.lize:  

–  short  robust  horizons  –  rolling  robust  constraints