Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI...

21
ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL J OURNAL THE 37-MONTH MAXI/GSC SOURCE CATALOG IN THE HIGH GALACTIC-LATITUDE SKY KAZUO HIROI , 1 YOSHIHIRO UEDA, 1 MASAAKI HAYASHIDA, 1 MEGUMI SHIDATSU, 1 RYOSUKE SATO, 1 TAIKI KAWAMURO, 1 MUTSUMI SUGIZAKI , 2 SATOSHI NAKAHIRA, 3 MOTOKO SERINO, 2 NOBUYUKI KAWAI , 4 MASARU MATSUOKA, 2,3 TATEHIRO MIHARA, 2 MIKIO MORII , 4 MOTOKI NAKAJIMA, 5 HITOSHI NEGORO, 6 TAKANORI SAKAMOTO, 7 HIROSHI TOMIDA, 3 YOHKO TSUBOI , 8 HIROSHI TSUNEMI , 9 SHIRO UENO, 3 KAZUTAKA YAMAOKA, 10 ATSUMASA YOSHIDA, 7 MASATO ASADA, 6 SATOSHI EGUCHI , 11 TAKANORI HANAYAMA, 12 MASAYA HIGA, 8 KAZUTO I SHIKAWA, 4 MASAKI I SHIKAWA, 13 NAOKI I SOBE, 14 MITSUHIRO KOHAMA, 15 MASASHI KIMURA, 3 KUMIKO MORIHANA, 2 YUJIN E. NAKAGAWA, 14 YUKI NAKANO, 7 YASUNORI NISHIMURA, 12 YUJI OGAWA, 12 MASAYUKI SASAKI , 9 J URI SUGIMOTO, 2 TOSHIHIRO TAKAGI , 2 RYUICHI USUI , 4 TAKAYUKI YAMAMOTO, 2 MAKOTO YAMAUCHI , 12 AND KOSHIRO YOSHIDOME 12 Accepted on August 17, 2012 ABSTRACT We present the catalog of high Galactic-latitude (|b| > 10 ) X-ray sources detected in the first 37-month data of Monitor of All-sky X-ray Image (MAXI) / Gas Slit Camera (GSC). To achieve the best sensitivity, we develop a background model of the GSC that well reproduces the data based on the detailed on-board calibration. Source detection is performed through image fit with the Poisson likelihood algorithm. The catalog contains 500 objects detected in the 4–10 keV band with significance of s D,4-10keV 7. The limiting sensitivity is 7.5 × 10 -12 ergs cm -2 s -1 (0.6 mCrab) in the 4–10 keV band for 50% of the survey area, which is the highest ever achieved as an all-sky survey mission covering this energy band. We summarize the statistical properties of the catalog and results from cross matching with the Swift/BAT 70-month catalog, the meta- catalog of X-ray detected clusters of galaxies, and the MAXI/GSC 7-month catalog. Our catalog lists the source name (2MAXI), position and its error, detection significances and fluxes in the 4–10 keV and 3–4 keV bands, their hardness ratio, and basic information of the likely counterpart available for 296 sources. Subject headings: catalogs — surveys — galaxies: active — X-rays: galaxies 1. INTRODUCTION Monitor of All-sky X-ray Image (MAXI: Matsuoka et al. 2009) is the first astronomical mission performed on the Inter- national Space Station (ISS). The main instrument of MAXI is the Gas Slit Camera (GSC: Mihara et al. 2011; Sugizaki et Electronic address: [email protected] 1 Department of Astronomy, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502 2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 3 ISS Science Project Office, Institute of Space and Astronautical Sci- ence (ISAS), Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 4 Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 5 School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaecho- nishi, Matsudo, Chiba 101-8308 6 Department of Physics, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 7 Department of Physics and Mathematics, Aoyama Gakuin University, 5- 10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 8 Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 9 Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 10 Astro-H Project team, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 11 National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka City, Tokyo 181-8588 12 Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192 13 School of Physical Science, Space and Astronautical Science, The grad- uate University for Advanced Studies (Sokendai), Yoshinodai 3-1-1, Chuo- ku, Sagamihara, Kanagawa 252-5210 14 Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 15 Mitsubishi Space Software Co., Ltd., WTC Bldg.2-4-1 Hamamatsu- cho, Minato-ku, Tokyo 105-6132 al. 2011), which covers the 2–30 keV band. Since its first light on 2009 August 15, MAXI/GSC has been monitoring nearly the entire sky every 92 minute with two instantaneous field- of-views of 1.5 × 160 that rotate according to the orbital motion of the ISS. The survey with MAXI/GSC is expected to achieve the best sensitivity so far as an all-sky monitor in the 2–10 keV band, which is complementary to other all-sky surveys conducted below 2 keV (ROSAT: Voges et al. 1999, 2000) and above 10 keV (INTEGRAL: Bird et al. 2007; Beck- mann et al. 2006, 2009; Krivonos et al. 2007; Bird et al. 2010, Swift: Tueller et al. 2008, 2010; Cusumano et al. 2010; Baum- gartner et al. 2010, 2012). This bandpass is the most suitable to survey X-ray populations with intrinsically soft X-ray spec- tra with little bias for obscuration. Utilizing the first 7-month data of MAXI/GSC in the 4–10 keV band, Hiroi et al. (2011) produced the first X-ray source catalog in the high Galactic latitude sky (|b| > 10 ). It con- sists of 143 objects above the 7σ significance level with a lim- iting sensitivity of 1.5 × 10 -11 ergs cm -2 s -1 (1.2 mCrab) in the 4–10 keV band. Though limited in sample size, the first MAXI/GSC catalog has an advantage that the identification completeness is very high (> 99%). Utilizing the AGN sam- ple of this catalog, Ueda et al. (2011) calculate a new AGN X- ray luminosity function in the local universe and solve the dis- crepancy of the AGN space density previously reported from different missions. In this paper, we present the second MAXI/GSC source cat- alog at |b| > 10 , constructed from the data in the 4–10 keV band observed for 37 months between 2009 September and 2012 October. The significantly increased photon statistics enables us to achieve much better sensitivities than those of the 7-month catalog. We also analyze the data in the 3–4 keV band to derive the hardness ratio of the detected sources. Sec- tion 2 describes the data reduction and filtering. In section 3, we report the analysis procedures to detect source candidates and determine their fluxes and positions. Section 4 presents

Transcript of Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI...

Page 1: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

ACCEPTED FORPUBLICATION IN THE ASTROPHYSICALJOURNAL

THE 37-MONTH MAXI/GSC SOURCE CATALOG IN THE HIGH GALACTIC-LATITUDE SKY

KAZUO HIROI,1 YOSHIHIRO UEDA,1 MASAAKI HAYASHIDA ,1 MEGUMI SHIDATSU,1 RYOSUKE SATO,1 TAIKI KAWAMURO ,1 MUTSUMISUGIZAKI ,2 SATOSHI NAKAHIRA ,3 MOTOKO SERINO,2 NOBUYUKI KAWAI ,4 MASARU MATSUOKA,2,3 TATEHIRO M IHARA ,2 M IKIO

MORII,4 MOTOKI NAKAJIMA ,5 HITOSHI NEGORO,6 TAKANORI SAKAMOTO ,7 HIROSHI TOMIDA ,3 YOHKO TSUBOI,8 HIROSHITSUNEMI,9 SHIRO UENO,3 KAZUTAKA YAMAOKA ,10 ATSUMASA YOSHIDA,7 MASATO ASADA,6 SATOSHI EGUCHI,11 TAKANORIHANAYAMA ,12 MASAYA HIGA ,8 KAZUTO ISHIKAWA ,4 MASAKI ISHIKAWA ,13 NAOKI ISOBE,14 M ITSUHIRO KOHAMA ,15 MASASHI

K IMURA ,3 KUMIKO MORIHANA ,2 YUJIN E. NAKAGAWA ,14 YUKI NAKANO ,7 YASUNORI NISHIMURA ,12 YUJI OGAWA ,12 MASAYUKISASAKI ,9 JURI SUGIMOTO,2 TOSHIHIRO TAKAGI ,2 RYUICHI USUI,4 TAKAYUKI YAMAMOTO ,2 MAKOTO YAMAUCHI ,12 AND KOSHIRO

YOSHIDOME12

Accepted on August 17, 2012

ABSTRACTWe present the catalog of high Galactic-latitude (|b| > 10◦) X-ray sources detected in the first 37-month

data of Monitor of All-sky X-ray Image (MAXI) / Gas Slit Camera (GSC). To achieve the best sensitivity,we develop a background model of the GSC that well reproduces the data based on the detailed on-boardcalibration. Source detection is performed through image fit with the Poisson likelihood algorithm. The catalogcontains 500 objects detected in the 4–10 keV band with significance ofsD,4−10keV≥ 7. The limiting sensitivityis ≈ 7.5×10−12 ergs cm−2 s−1 (≈ 0.6 mCrab) in the 4–10 keV band for 50% of the survey area, which is thehighest ever achieved as an all-sky survey mission covering this energy band. We summarize the statisticalproperties of the catalog and results from cross matching with the Swift/BAT 70-month catalog, the meta-catalog of X-ray detected clusters of galaxies, and the MAXI/GSC 7-month catalog. Our catalog lists thesource name (2MAXI), position and its error, detection significances and fluxes in the 4–10 keV and 3–4 keVbands, their hardness ratio, and basic information of the likely counterpart available for 296 sources.

Subject headings:catalogs — surveys — galaxies: active — X-rays: galaxies

1. INTRODUCTION

Monitor of All-sky X-ray Image (MAXI: Matsuoka et al.2009) is the first astronomical mission performed on the Inter-national Space Station (ISS). The main instrument of MAXIis the Gas Slit Camera (GSC: Mihara et al. 2011; Sugizaki et

Electronic address: [email protected] Department of Astronomy, Kyoto University, Oiwake-cho, Sakyo-ku,

Kyoto 606-85022 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1

Hirosawa, Wako, Saitama 351-01983 ISS Science Project Office, Institute of Space and Astronautical Sci-

ence (ISAS), Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen,Tsukuba, Ibaraki 305-8505

4 Department of Physics, Tokyo Institute of Technology, 2-12-1Ookayama, Meguro-ku, Tokyo 152-8551

5 School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 101-8308

6 Department of Physics, Nihon University, 1-8-14 Kanda-Surugadai,Chiyoda-ku, Tokyo 101-8308

7 Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258

8 Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku,Tokyo 112-8551

9 Department of Earth and Space Science, Osaka University, 1-1Machikaneyama, Toyonaka, Osaka 560-0043

10 Astro-H Project team, Institute of Space and Astronautical Science(ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshino-dai,Chuo-ku, Sagamihara, Kanagawa 252-5210

11 National Astronomical Observatory of Japan, 2-21-1, Osawa, MitakaCity, Tokyo 181-8588

12 Department of Applied Physics, University of Miyazaki, 1-1 GakuenKibanadai-nishi, Miyazaki, Miyazaki 889-2192

13 School of Physical Science, Space and Astronautical Science, The grad-uate University for Advanced Studies (Sokendai), Yoshinodai 3-1-1, Chuo-ku, Sagamihara, Kanagawa 252-5210

14 Institute of Space and Astronautical Science (ISAS), Japan AerospaceExploration Agency (JAXA), 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara,Kanagawa 252-5210

15 Mitsubishi Space Software Co., Ltd., WTC Bldg.2-4-1 Hamamatsu-cho, Minato-ku, Tokyo 105-6132

al. 2011), which covers the 2–30 keV band. Since its first lighton 2009 August 15, MAXI/GSC has been monitoring nearlythe entire sky every 92 minute with two instantaneous field-of-views of 1.5◦ × 160◦ that rotate according to the orbitalmotion of the ISS. The survey with MAXI/GSC is expectedto achieve the best sensitivity so far as an all-sky monitor inthe 2–10 keV band, which is complementary to other all-skysurveys conducted below 2 keV (ROSAT: Voges et al. 1999,2000) and above 10 keV (INTEGRAL: Bird et al. 2007; Beck-mann et al. 2006, 2009; Krivonos et al. 2007; Bird et al. 2010,Swift: Tueller et al. 2008, 2010; Cusumano et al. 2010; Baum-gartner et al. 2010, 2012). This bandpass is the most suitableto survey X-ray populations with intrinsically soft X-ray spec-tra with little bias for obscuration.

Utilizing the first 7-month data of MAXI/GSC in the 4–10keV band, Hiroi et al. (2011) produced the first X-ray sourcecatalog in the high Galactic latitude sky (|b| > 10◦). It con-sists of 143 objects above the 7σ significance level with a lim-iting sensitivity of∼ 1.5×10−11 ergs cm−2 s−1 (1.2 mCrab) inthe 4–10 keV band. Though limited in sample size, the firstMAXI/GSC catalog has an advantage that the identificationcompleteness is very high (> 99%). Utilizing the AGN sam-ple of this catalog, Ueda et al. (2011) calculate a new AGN X-ray luminosity function in the local universe and solve the dis-crepancy of the AGN space density previously reported fromdifferent missions.

In this paper, we present the second MAXI/GSC source cat-alog at|b| > 10◦, constructed from the data in the 4–10 keVband observed for 37 months between 2009 September and2012 October. The significantly increased photon statisticsenables us to achieve much better sensitivities than those ofthe 7-month catalog. We also analyze the data in the 3–4 keVband to derive the hardness ratio of the detected sources. Sec-tion 2 describes the data reduction and filtering. In section 3,we report the analysis procedures to detect source candidatesand determine their fluxes and positions. Section 4 presents

Page 2: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

2 K. Hiroi

the source catalog, its basic properties, the results from cross-matching with other X-ray source catalogs, and the logN-logSrelation. We summarize our conclusion in section 5.

2. DATA REDUCTION

The second MAXI/GSC catalog is based on the 37-monthdata obtained from 2009 September 23 to 2012 October 15.The data reduction procedure is essentially the same as usedto produce the MAXI/GSC 7-month catalog in Hiroi et al.(2011). We start from processed event files provided by theMAXI team, which have columns of the photon arrival time(TIME), energy (Pulse-height Invariant = PI), and sky posi-tion (R.A. and Decl.). In the processing, two pulse-height val-ues read out from both ends of a carbon-anode wire were con-verted into the PI and an one-dimensional detector positionalong the anode wire on the basis of the ground and in-flightcalibration (Mihara et al. 2011; Sugizaki et al. 2011). The skyposition of the incident X-ray photon is then calculated by re-ferring to the ISS attitude at the photon arrival time. For thedata reduction, we use HEAsoft (version 6.12) and MXSOFT,an original MAXI software package developed by the MAXIteam.

To detect sources, the data in the 4–10 keV band are utilizedfor consistency with our previous work (Hiroi et al. 2011),where high signal-to-noise ratio is achievable due to the highquantum efficiency and low background rate of the detector(Mihara et al. 2011). We basically use all available data of alltwelve GSC counters operated with high voltage levels of both1650 V and 1550 V, except for those taken with GSC_3 after2010 June 22, in which the background-veto counters werenot available. Unlike Hiroi et al. (2011), the photon events ofanode #1 and #2 are also available in this study, thanks to theimprovement of the instrument response calibration. We dis-card the data acquired in unusual conditions where the back-ground reproducibility of the GSC is found to be poor: (1) theinitial operation phase from 2009 September 1 to 22, (2) thephase from 2012 October 16 to 31 when the Dragon space-craft was attached to the ISS, (3) those during the docking orundocking operation of the Soyuz spacecraft, (4) those soonafter the reboot of the electrical system of MAXI, (5) thoseduring large solar flares16, and (6) those when the telemetrydata were missed due to the network trouble between the ISSand the ground base station.

The following data selection criteria are applied in event se-lection. To exclude data of the GSC with high particle back-ground, we select the events when the latitude of the ISS isbetween−40◦ and 40◦ and those detected in an inner regionof each camera with the incident angle|ϕ| ≤ 38◦ (for defini-tion of ϕ, see Mihara et al. 2011). In our new analysis for the37-month catalog, we also properly take into account the ef-fects of the occultation of the GSC field-of-views by the spaceshuttle and the solar paddles of the ISS in a time dependentmanner; the occulted regions in the detector coordinate de-fined byϕ at a given time, if any, are excluded with a marginof 5◦ on the basis of monitoring information of the relativegeometry between MAXI and the ISS.

The left panel of figure 1 displays the effective exposuremap for the 37-month MAXI/GSC data in the Galactic co-ordinates projected with the Hammer-Aitoff algorithm. Theeffective-exposure distribution is shown in the right panel.

16 From the light curves with 16-sec bin size in the 4–10 keV band, wefilter out time regions when the count rates exceeded 25, 35, 40, and 30 cnts/sfor GSC_3, GSC_8, GSC_B, and the other cameras, respectively, with mar-gins of 32 sec each before and after these periods.

The map is produced by the latest version of the MAXI sim-ulator maxisim (Eguchi et al. 2009) for uniformly extendedemission, where theϕ dependence of the slit area, the colli-mator field-of-view, and the detector efficiency as a functionof an incident X-ray energy (see Mihara et al. 2011; Sugizakiet al. 2011) are correctly taken into account. Referring to theorbit and attitude of the ISS,maxisim is able to generate sim-ulated photon events from any input X-ray sources by reflect-ing the latest responses of the GSC. The stripe patterns foundin the map are caused by an incident-angle dependence of theeffective area of the GSC aimed at each pointing direction, thedifferent duty cycle among the twelve GSC counters, and theprecession of scanning motion of the field-of-views coupledwith that of the ISS orbit. The two darkest, annular-like struc-tures at the top-left and bottom-right of the map correspondto the regions with the longest exposure near the poles aroundthe rotation axis of the ISS orbit.

3. ANALYSIS

3.1. Background Reproduction

For source detection, we perform image analysis of the pro-jected sky image from the whole MAXI/GSC data, as detailedin section 3.2. Basically, we search for excess signals overthe profile of the background, which consists of the non-X-raybackground (NXB) and the cosmic X-ray background (CXB).Thus, to achieve the best sensitivity, it is critical to modelthe background image with the least systematic errors thatenables us to detect even the faintest sources as statisticallysignificant signals. The NXB of the GSC shows complex be-haviors (Sugizaki et al. 2011). The rate of the NXB is highlyvariable, depending on the environment such as conditions ofother spacecrafts attached to the ISS, the orbital position andattitude of the ISS.

We thus construct a background model of MAXI/GSCbased on the detailed calibration of the on-board data as de-scribed below. Here we do not distinguish the NXB from theCXB, only treating their sum, since it is not easy to separatethe two components from the observed data. This is mainlydue to the fact that the MAXI/GSC field-of-views always lookat the sky and seldom look at the earth. For this purpose, weanalyze the on-board data that can be regarded as blank sky,by excluding regions around the 70 brightest sources at highGalactic latitudes listed in the 7-month MAXI/GSC catalog17

(Hiroi et al. 2011) and that of the Galactic-center region with|l |< 50◦ and|b|< 10◦. The same screening described in sec-tion 2 is adopted for event extraction. To avoid complexity inexposure correction, we discard any data taken when a partof the field-of-view was occulted by the space shuttle and thesolar paddles of the ISS in each camera.

We first investigate the long-term variability of the back-ground rate. The top panel of figure 2 displays a one-dayaveraged background rate as a function of time, derived fromthe data in the 4–10 keV band taken with the GSC_4 counter.It is clearly seen that the MAXI/GSC background rate hastwo separate levels of 3–4 cnts/s and 2–2.5 cnts/s in this cam-era. We find that this long-term variability of the backgroundis strongly correlated with whether the Soyuz spacecraft wasdocked or undocked to the ISS. Since Soyuz has an altimetercontaining a radioactive source, the MAXI/GSC backgroundrate is largely increased when it is attached to the nearest ISS

17 We confirm that when our new 37-month catalog is used to exclude evenfainter sources in this process, the resultant background profile in the detectorcoordinate is little (< 1%) changed.

Page 3: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

The 37-Month MAXI/GSC Source Catalog in the High Galactic-Latitude Sky 3

0 5E+05 1E+06 1.5E+06 2E+06 2.5E+06 3E+06 3.5E+06 4E+06 4.5E+06 5E+06

0

20

40

60

80

100

120

140

160

180

2e+06 3e+06 4e+06 5e+06

Nu

mb

er o

f p

ixel

s

Effective exposure (cm2 s)

FIG. 1.— (Left) Effective exposure map for the 37-month MAXI/GSC data in the Galactic coordinates projected with the Hammer-Aitoff algorithm. The unitsare cm2 s. The entire sky is divided into 12288 pixels with a size of 1.83◦×1.83◦. (Right) Histogram of the effective exposure presented in the left panel.

0.9

1

1.1

55000 55200 55400 55600 55800 56000 56200

Rati

o

MJD

ratio (= realBGD/simBGD) 1

2

3

4

5

Rate

(cn

ts/s

)

simBGD

1

2

3

4

5

Rate

(cn

ts/s

)

realBGD

FIG. 2.— (Top) History of the background rate in the 4–10 keV band ob-served with GSC_4 in a one-day bin (real data). The attached error is 1σ.The dot-dashed lines indicate the boundaries of the phases. The dock/undockstatus of the Soyuz spacecraft causes the drastic change of the daily back-ground rate. (Middle) Same as the top panel but produced from simulations.(Bottom) The ratio of the real background rate to the simulated one. Thesimulated background data are well consistent with the real ones with an rmsscatter of∼1%.

port to MAXI, and vice versa. Furthermore, it is found thatan increment of the background rate depends on the individ-ual Soyuz spacecraft docked at that time. The difference ofhigh-voltage level between 1650 V and 1550 V also affectsthe background rate. Thus, we divide the 37-month periodinto 9 different phases according to the existence of Soyuzand the high-voltage level of the GSC, and create the back-ground model separately in each phase.

Next, the short-term variability of the NXB on a time scaleless than one day is examined. In the previous study (Hi-roi et al. 2011), we considered the dependence of the back-ground rate on the cut-off rigidity (COR) parameter, which isdetermined solely by the orbital position of the ISS. The cor-relation of the NXB with COR is known to be not so good,however. Alternatively, we have found that the instantaneousbackground rate is well estimated from the so-called “VC”count, representing the rate of events simultaneously detectedby the carbon-anode cells and the tungsten-anode cells forparticle veto, available as a monitor count in the house keep-ing data of the GSC (Mihara et al. 2011; Sugizaki et al. 2011).The reason why the VC works as a good monitor of the NXBis that high energy particles hitting the GSC counter shouldbe detected by both the inner (carbon) and outer (veto) cells,unlike X-ray events. Figure 3 plots examples of the correla-tion between the VC and background rates in the 4–10 keVband for GSC_4 in two different phases. The blue circles and

1

2

3

4

5

6

100 200 300 400 500B

GD

rat

e (c

nts

/s)

VC count (cnts/s)

Soyuz undock

Soyuz dock

FIG. 3.— Correlation between the 4–10 keV background rate and the VCcount rate for GSC_4. The red squares (for visuality, slightly shifted) andsolid curve represent the data points and the best-fit model of a third-orderpolynomial, respectively, when Soyuz was undocked, while the blue circlesand dotted curve show them when it was docked from 2009 December 22 to2010 May 11 (MJD = 55187–55327).

red squares correspond to the data obtained when Soyuz wasdocked to the ISS port and undocked, respectively. The errorbars represent 1σ standard deviation in the background rateincluding the statistical fluctuation. A tight correlation is con-firmed in each phase. The blue-dotted and red-solid lines rep-resent the best-fit models of a third-order polynomial to thesecorrelations.

We develop a background-event generator of the GSC,which makes use of the framework of the MAXI simulatormaxisim. By using the correlation between the VC and back-ground rates determined for each camera and phase, it gen-erates simulated background events in time series with theinstantaneous rate calculated from the light curve of the VCcounts. Their energies and positions on the detector are ran-domly assigned according to their distributions derived fromthe real background data, which also depend on the VC count.We produce ten times more events than the real data to reducethe statistical error in the model. The simulated backgrounddata are then processed in the same way as for the observeddata. The middle panel of figure 2 plots the same as thatshown in the top panel of figure 2 but based on the simulatedbackground data. We confirm that the background light curveis well reproduced by our model with an rms scatter of∼1%,as shown in the bottom panel of figure 2.

3.2. Image Analysis

In this section, we describe the details of our image analy-sis method to produce the X-ray catalog from the MAXI/GSC

Page 4: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

4 K. Hiroi

data. The procedure consists of two major stages: a detec-tion of source candidates from smoothed images, and a mea-surement of fluxes and positions for the source candidates bymaximum-likelihood image fitting. For the image analysis,we use display45 version 2.04, which is a command-driven,interactive histogram-browsing program based on CERN li-braries.

(1) MAKING PARTED IMAGES

Both for the real and simulated background data, we cre-ate images from the event lists after applying the selectioncriteria described in section 2. Like a standard image analy-sis, we produce a tangentially-projected image within a smallregion in the sky coordinates (X, Y) defined by three param-eters: the reference point in right ascension (R.A.) and decli-nation (Decl.) corresponding to the center of the image andthe position angle of the+Y-axis to the north, which is set tobe zero in our analysis. The images are simply stored in unitsof counts without exposure correction.

The entire sky is divided into 768 square regions with asize of 7.3◦ × 7.3◦, whose centers are determined by usingthe HEALPix software package (Górski et al. 2005) so thateach region has the same solid angle. Using the central posi-tion of each region as the sky-reference point, we then make768 tangentially-projected images with a size of 14◦×14◦ byreferring to the columns of sky position (R.A., Decl.) in theevent lists. In order not to miss any sources located near theboundaries, the images have overlapping area of> 3◦ on bothsides with neighboring ones. The bin size is set to 0.1◦, whichis sufficiently finer than the typical size of the point spreadfunction (PSF) of MAXI/GSC (FWHM∼ 1.5◦).

(2) SEARCHING FOR SOURCE CANDIDATES

To pick up source candidates from each image, we create asignificance map in the following manner. Firstly, we makenet-source maps by subtracting the simulated backgroundfrom the real data. Then, both the real data and net-sourcemap are smoothed with a circle ofr = 1◦ with a constantweight of unity (i.e., simple integration). We finally calculatethe significance of excess signals as “net-source/

√real data”

at each point, yielding the significance map.In this step, a correct estimate of the background level is es-

sential. Although the reproductivity of the background modeldescribed in section 3.1 is fairly good for blank sky, we findthat it is sometimes better to re-normalize the absolute levelof the background map from the observed data themselves,in particular when additional diffuse background other thanthe CXB such as Galactic diffuse emission exists in the im-age. Thus, the background level used to make a final source-candidate list is determined by iteration in the following way.At first, assuming a conservative background level higher thanthe nominal value by a factor of 1.1, we create a tentativesignificance map. We then search for the peak showing thehighest significance in the map if it is larger than 15σ. Next,after masking out the circular region around the peak of thebright source with a radius ofr = 3◦, the whole size of thePSF, we compare the averaged counts in the real and the sim-ulated background maps, whose ratio determines an improvedbackground level. By repeating these procedures of findingand masking out brightest sources until the significance of anewly detected peak becomes< 15σ, we finally derive themost reasonable background level in each image. The correc-tion from the nominal level is typically less than 3%, and thus

possible systematic errors in the positional dependence of thebackground do not affect the flux measurements of sources.

Once the background level is determined, we make the mostreliable significance map, from which peaks above 5σ arepicked up as source candidates. Those located near the bound-aries of the image (|X| > 5.5◦ or |Y| > 5.5◦) are discardedbecause they are located closer to the center of a neighboringimage that can detect them with better conditions. The issueof source confusion that two nearby sources may be detectedas a single source candidate will be overcome in a later pro-cedure (the 6th step).

(3) MERGING SOURCE-CANDIDATE LIST

Merging the source-candidate lists obtained from the wholesky yields 1308 sources in total above 5σ at |b| > 10◦. Thislist includes duplicate sources detected in multiple images,however, which are located at the overlapping regions nearthe boundaries. We treat any pair of sources whose positionsare within 1◦ as a single object; we adopt a source detected ata closer position to the image center and discard the other. Itis confirmed that the detection significances of the paired can-didates are consistent with each other within expected levels.Thus, we finally obtain a unique source-candidate list consist-ing of 615 objects above 5σ at |b|> 10◦.

(4) CONSTRUCTING MODELS OF POINT SPREADFUNCTION

For image analysis, we need to construct a model of the PSFfor each source candidate. Since the MAXI/GSC data usedin this study compose of multiple observations with differentconditions, it is difficult to model the PSF shape analytically.Hence, we utilize the MAXI simulatormaxisim (Eguchi etal. 2009) to produce the PSF model by inputting a point-likesource at the detected position. The simulation is performedwith exactly the same observational conditions (such as thetotal exposure) as for the real data, and hence the resultantPSF contains the expected number of counts from that sourcewith a given flux by fully taking into account the instrumentalresponses. The Crab Nebula-like spectrum18, a power law of aphoton index of 2.1 absorbed with a hydrogen column densityof NH = 2.6×1021 cm−2, and no flux variability are assumedfor simplicity. We confirm that the choice of the spectrum forthe PSF model does not affect the determination of the flux bythe image fitting because the energy dependence of the PSF isnot very large in the energy band of interest. To suppress thestatistical fluctuation in the PSF model, we generate a suffi-ciently large number of photons for each source candidate byassuming a flux of 50 mCrab. The simulated events of thePSF data are processed in the same way as for the real data,and are converted into images in the sky coordinates.

(5) DETERMINING FLUXES AND POSITIONS WITHIMAGE FIT

To determine the fluxes and positions of the source candi-dates, we perform image fitting to the real data with a modelconsisting of the background and PSF models, both producedby the simulations as described above. Here the fits to allof the source candidates and the background are performedsimultaneously in each image. The best-fit parameters aredetermined with the Poisson likelihood algorithm where the

18 The spectral parameters are adopted from the INTEGRAL General Ref-erence Catalog (ver. 35). http://www.isdc.unige.ch/integral/science/catalogue

Page 5: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

The 37-Month MAXI/GSC Source Catalog in the High Galactic-Latitude Sky 5

hpixID134(RA0, DEC0) = (253.125, 41.810), (L0, B0) = (66.208, 39.272)

SKY

Y (

deg)

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6SKYX (deg)

0 10 20 30 40 50 60 70 80

+ABELL 2199

+ABELL 2219

+Mrk 501

+Her X-1

hpixID134(RA0, DEC0) = (253.125, 41.810), (L0, B0) = (66.208, 39.272)

SKY

Y (

deg)

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6SKYX (deg)

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6SKYX (deg)

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6SKYX (deg)

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6SKYX (deg)

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6SKYX (deg)

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6SKYX (deg)

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6SKYX (deg)

FIG. 4.— (Left) Example of a smoothed image of the real data. The image size is 14◦×14◦, whose center is located at (R.A., Decl.) = (253.125◦, 41.810◦).The best-fit background model obtained from image fitting is subtracted. The four cyan crosses represent the locations of detected sources withsD,4−10keV ≥ 7.(Right) Significance map of the same region. The contours display the significance levels of 5 (black), 7 (red), 10 (green), 20 (blue), 40 (yellow), 70(magenta),and 90(cyan), from outer to inner.

so-calledC statistics (Cash 1979) is minimized, defined as

C≡ 2∑i, j

{M(i, j) − D(i, j) lnM(i, j)}, (1)

whereD(i, j) andM(i, j) represent the data and model at theimage pixel (i, j), respectively. The parameter that gives aCvalue larger by unity than that of the best-fit with the otherfree parameters allowed to float corresponds to its 1σ error.The MINUIT package is utilized in the minimization. In thefitting, we change the bin width of an image from 0.1◦ to 0.2◦

for the fit to converge faster, and only treat the inner 11◦×11◦

region of the image for the calculation to ignore the influenceby sources located just outside the whole image with a size of14◦×14◦. For the PSF models of source candidates located inthe inner 11◦×11◦ region of the image, their normalizationsand positions are set to be free, as well as the overall back-ground level. The PSF normalization of each source gives itsflux corrected for exposure and the instrumental response inunits of “Crab” because we basically measure its total countsrelative to that would be observed from the Crab Nebula onwhich the PSF simulation is based. Since it is difficult to accu-rately determine the position of a source outside the 11◦×11◦

region whose PSF is distributed beyond the image boundary,we fix it at the location originally detected in the significancemap. It is found that in a few images containing very brightsources such as Sco X-1 and Cyg X-2, the background levelcannot be properly determined due to the incomplete repro-duction of the PSF shape. In such cases, we fix the back-ground level to the value obtained in the second step.

After the fitting, we calculate the detection significance inthe 4–10 keV (sD,4−10keV) for each source candidate, definedas

sD,4−10keV≡ (best-fit 4-10 keV flux)/(its 1σ statistical error).(2)

Here we use the MINOS negative error in the MINUIT pack-age as the flux error, although the positive and negative er-rors are consistent with each other in almost all cases becausethe number of source counts is always sufficiently high thatsymmetric errors are a reasonable approximation. We adoptsD,4−10keV ≥ 7 for the criterion of source detection, consider-ing the number of fake sources caused by the fluctuation ofbackground level (see section 4.2).

(6) ITERATION OF SOURCE SEARCH AND IMAGE FIT

Due to source confusion, multiple close sources can be de-tected as a single object. To salvage such sources located ina source crowded region as much as possible, we again per-form the source search in the second step but by adopting thebest-fit total model consisting of PSFs and the backgroundobtained in the previous step as a new background. Herewe adopt a more conservative detection criterion of 5.5σ thanin the first round to reduce the probability of fake detectionsaround the existing sources. This procedure gives us an addi-tional source-candidate list containing 135 objects above 5.5σat |b| > 10◦. The first and second source-candidate lists aremerged into one list. We then repeat the image fitting usingthe revised source-candidate list, and obtain the final list ofsources detected withsD,4−10keV≥ 7 in the 4–10 keV band.

(7) MEASUREMENT OF 3–4 KEV FLUX

To obtain spectral information, we also determine the 3–4keV fluxes of all sources in the final list created above. Theimages of real data, background model, and PSF models inthe 3–4 keV band are produced in the same way as for thosein the 4–10 keV band. We then perform image fitting to the3–4 keV band image using the source-candidate list obtainedin the 6th step. The source positions are fixed at those deter-mined by the image fit in the 4–10 keV band. Thus, we finallyderive the 3–4 keV fluxes and their errors for all the sourcesdetected in the 4–10 keV band. Using the 4–10 keV and 3–4keV fluxes, which are independently determined from the im-ages of the two energy bands, we calculate the hardness ratio(HR) defined as

HR =H − SH + S

, (3)

whereH andSrepresent the observed fluxes in the 4–10 keVand 3–4 keV bands, respectively. The error of the HR is cal-culated by simple propagation of those inH andS, both canbe regarded as symmetric errors.

4. CATALOG

4.1. Basic Properties

In this section, we present the second MAXI/GSC X-raysource catalog in the high Galactic latitude sky obtained fromthe 37-month all-sky survey data in the 4–10 keV band.

Page 6: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

6 K. Hiroi

hpixID134(RA0, DEC0) = (253.125, 41.810), (L0, B0) = (66.208, 39.272)

Inte

grat

ed c

ount

SKYX (deg)0

10000

20000

30000

40000

50000

60000

-6 -4 -2 0 2 4 6hpixID134

(RA0, DEC0) = (253.125, 41.810), (L0, B0) = (66.208, 39.272)

Inte

grat

ed c

ount

SKYY (deg)0

10000

20000

30000

40000

50000

60000

-6 -4 -2 0 2 4 6

FIG. 5.— Projected images onto theX-axis (left) andY-axis (right) of the same region as shown in figure 4. The black points represent the real data with 1σPoisson errors. The two color lines display the best-fit models (red-solid: total, blue-dashed: only background).

It consists of 500 sources detected with a significance ofsD,4−10keV ≥ 7 at |b| > 10◦. Table 1 gives the catalog withcolumns of (1) source identification number, (2) MAXI sourcename based on the best-fit position in the final image fit (witha prefix of “2MAXI”), (3)-(4) best-fit position in the equa-torial coordinates in units of degree, (5)σstat: 1σ statisticalposition error in units of degree (the squared sum of those inthe X- and Y-directions). (6)sD,4−10keV: 4–10 keV detectionsignificance, (7)f4−10keV: observed 4–10 keV flux and its 1σerror in units of 10−12 ergs cm−2 s−1, (8) sD,3−4keV: 3–4 keVdetection significance, (9)f3−4keV: observed 3–4 keV flux andits 1σ error in units of 10−12 ergs cm−2 s−1, (10) HR: hard-ness ratio and its 1σ error, (11) counterpart name, (12)-(13)position of the counterpart (14) redshift, (15) type, (16) cross-matching flag, and (17) note.

Taking into account the MAXI/GSC response, we calculatethe dependences of the hardness ratio HR on spectral parame-ters and those of the conversion factors from an area-correctedcount rate (defined as that relative to the Crab one) into an en-ergy flux in the same energy band,C4−10 andC3−4. In thetop-left panel of figure 6, the hardness ratio is plotted as afunction of photon index with an unabsorbed power-law spec-trum, whereas in the top-right panel it is given as a functionof column density of an absorbed power-law spectrum with aphoton index of 1.8 at redshift of 0. In the middle and bottompanels, we also display the dependences of the conversion fac-tors on the same spectral parameters in the 4–10 keV and 3–4keV bands, respectively. The expected values of HR and con-version factors are HR=0.0745,C4−10 = 1.24 [10−11 ergs cm−2

s−1]/[mCrab],C3−4 =0.401 [10−11 ergs cm−2 s−1]/[mCrab] fora photon index of 1.8 with no absorption, and HR=0.000,C4−10 =1.21 [10−11 ergs cm−2 s−1]/[mCrab],C3−4 =0.398 [10−11

ergs cm−2 s−1]/[mCrab] for the Crab Nebula-like spectrum(see section 3.2 for its spectral parameters). The energy fluxeslisted in the catalog are all calculated by assuming the CrabNebula-like spectrum.

The correlation between the flux and the detection signifi-cance in the 4–10 keV band are plotted in figure 7. The de-tection significance,sD, can be approximated asSt/

√St+ Bt,

whereS and B are the count rates of the source and back-ground, respectively, andt is exposure. Thus, in the high fluxrange (sD ∼

√St), the detection significance is expected to

be proportional to (flux)1/2. In contrast, it is proportional to(flux)1 in the low flux range (sD ∼ S

√t/B). These trends

are confirmed in the figure. The limiting sensitivity withsD,4−10keV ≥ 7 (that of the faintest source detected) corre-sponds to∼ 5× 10−12 ergs cm−2 s−1 (∼ 0.4 mCrab) in the4–10 keV band.

4.2. Number of Spurious Sources

Since we conservatively adopt the detection threshold ofsD ≥ 7, fake detections by statistical fluctuation in photoncounts are expected to be negligible. However, the catalogmay contain a small fraction of spurious sources caused byremaining systematic errors in the background model. Tosimply estimate the number of such sources, we search for“negative” signals from the smoothed net-source maps pro-duced in the second step of section 3.2. This gives a “neg-ative” source-candidate list consisting of 50 objects below -7σ from the entire sky. Performing image fitting by addingnegative PSFs to the model, we find that the number of fi-nal “negative” detections withsD ≤ −7 becomes only 18% ofthat of spurious source candidates. The reduction is expectedbecause the shape of residual signals due to improper mod-eling of the background profile is very different from that ofthe PSF. Thus, we estimate that our catalog would include∼ 9 spurious detections, which are less than 2% of the totalsources. Note that if we instead adoptsD ≥ 6 as the detectioncriterion for the catalog, we find that the fraction of spuriousones becomes∼5% of the total, which is too high to be ac-cepted.

4.3. Cross Matching with Other X-ray Catalogs

Identification of X-ray sources with counterparts in otherwavelengths is very important for further scientific studies us-ing an X-ray catalog. The most critical information for thistask is the position accuracy. Figure 8 plots the correlationbetween the flux and position error of the MAXI sources.As noticed,σstat is roughly proportional to (sD,4−10keV)−1, asexpected from a simple statistical argument on the accu-racy of the centroid determination of the PSF with limitedphoton counts. A typical 1σ error becomesσstat ∼ 0.2◦ atσD,4−10keV = 7.

Considering the large positional uncertainties of MAXI,it is difficult to directly match them with those in opti-cal/infrared catalogs with large number densities. However,since the MAXI sources represent brightest X-ray popula-tions, a significant fraction of them are expected to be in-cluded by other X-ray catalogs at similar flux levels covering

Page 7: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

The 37-Month MAXI/GSC Source Catalog in the High Galactic-Latitude Sky 7

0.38

0.4

1 1.5 2 2.5 3

Photon index

Co

nv

ersi

on

fac

tor

([10

-11 e

rgs

cm-2

s-1

]/[m

Cra

b])

1.1

1.2

1.3

Co

nv

ersi

on

fac

tor

([10

-11 e

rgs

cm-2

s-1

]/[m

Cra

b])

0

0.5

Har

dn

ess

rati

o

Co

nv

ersi

on

fac

tor

([10

-11 e

rgs

cm-2

s-1

]/[m

Cra

b])

0 0.1 0.2 0.3 0.4

20 21 22 23 24

Log NH (cm-2

)

Co

nv

ersi

on

fac

tor

([10

-11 e

rgs

cm-2

s-1

]/[m

Cra

b])

1.2

1.3

1.4

1.5

Co

nv

ersi

on

fac

tor

([10

-11 e

rgs

cm-2

s-1

]/[m

Cra

b])

0

0.5

1

Har

dn

ess

rati

o

Co

nv

ersi

on

fac

tor

([10

-11 e

rgs

cm-2

s-1

]/[m

Cra

b])

FIG. 6.— (Top) Hardness ratio between the 4–10 keV and 3–4 keV bands (HR) given as a function of a spectral parameter. (Middle) The conversion factorfrom a count rate (defined as that relative to the Crab one) to an energy flux in the 4–10 keV band for different spectral parameters in units of [10−11 ergs cm−2

s−1]/[mCrab]. (Bottom) The same as above but in the 3–4 keV band. (Left) The parameter is the photon index of a power law with no absorption. (Right) Theparameter is the absorption column density for a power law with a photon index of 1.8.

100

101

102

103

104

10-12

10-11

10-10

10-9

10-8

10-7

10-64

-10

keV

det

ecti

on

sig

nif

ican

ce

4-10 keV flux (ergs cm-2

s-1

)

0

20

40

60

80

100

100

101

102

103

104

Nu

mb

er o

f so

urc

es

4-10 keV detection significance

0

20

40

60

80

100

120

10-12

10-11

10-10

10-9

10-8

10-7

10-6

Nu

mb

er o

f so

urc

es4-10 keV flux (ergs cm

-2 s

-1)

FIG. 7.— Correlation between the flux and the detection significance in the 4–10 keV band (left), histogram of the 4–10 keV flux (middle), and that of 4–10keV detection significance (right) for all the sources in the catalog.

10-3

10-2

10-1

100

101

102

103

104

1σ s

tat (d

eg)

4-10 keV detection significance

FIG. 8.— Correlation between the 4–10 keV detection significance(sD,4−10keV) and the 1σ positional error (σstat).

a wide sky area. Hence, as the first step of identification work,we cross-match our sources with two major X-ray catalogs todetermine the most likely counterparts: the Swift/BAT hardX-ray (14–195 keV) all-sky survey 70-month catalog (here-after, BAT70; Baumgartner et al. 2012) and the Meta-Catalogof X-Ray Detected Clusters of Galaxies (hereafter, MCXC;Piffaretti et al. 2011). The latter is based on the ROSAT all-sky survey and ROSAT serendipitous surveys performed inthe energy bands below∼2 keV. While BAT70 provides an X-ray sample including heavily obscured objects, MCXC com-plements the identification of galaxy clusters, which are hardto be detected above 10 keV due to their soft spectra.

The cross-matching of the MAXI sources with these cata-logs is carried out in the following way. We firstly search for

counterparts from the BAT70 catalog. Then, for those withoutBAT counterparts, we use the MCXC. Finally, we also per-form cross-matching with the first MAXI/GSC source cata-log (hereafter, GSC7; Hiroi et al. 2011). Basically, we refer tothe positions of the optical/infrared counterparts in these cat-alogs instead of the X-ray positions, except for a few sourcesin the first MAXI/GSC catalog that do not have unique opti-cal counterparts. As the position errors of the MAXI sources,we consider both statistical error (σstat) and systematic error(σsys) related to the instrument calibration and attitude deter-mination of MAXI. Since the two errors are independent ofeach other, we define the total 1σ position error (σposi) as theroot sum squares:

σposi≡√σ2

stat+σ2sys. (4)

In the matching process, we set the 1σ systematic erroras σsys = 0.05◦ on the basis of the previous work (Hiroiet al. 2011), and use an error circle with a radius ofr =2.5σposi, which corresponds to 95% confidence level in the2-dimensional space giving a typical increment in theC valueby 6.0. The position errors in the reference catalogs are ig-nored, since they are much smaller than those of the MAXIsources.

The cross-matching results are listed in columns (11)–(15)of table 1 for each source. The locations of the MAXI sourcesin the Galactic coordinates are plotted in figure 9. The num-bers of matched MAXI sources in a single or two reference

Page 8: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

8 K. Hiroi

FIG. 9.— Locations of all the MAXI sources in the Galactic coordinates. The center is at (l ,b) = (0◦, 0◦). The radii of the circles are proportional to thelogarithm of the fluxes. Different colors correspond to different types: unidentified X-ray sources in BAT70 (black); galaxies (cyan); galaxy clusters (green);Seyfert galaxies, blazars (purple); CVs/Stars (magenta); X-ray binaries (red); confused sources (orange); sources without counterparts in BAT70 or MCXC(gray).

TABLE 2NUMBER OF MATCHED MAXI SOURCES.

Catalog name BAT70 MCXC GSC7 One catalog onlya

BAT70 185 (187)b 23 84 92MCXC ..... 123 (130)b 37 78GSC7 ..... ..... 114 (114)b 8

NOTE.— Numbers of MAXI sources matched with both catalogs are listed.aNumbers of MAXI sources matched only with one catalog given in the first column.bNumbers in parentheses represent those of total matched counterparts in each catalog.

TABLE 3CATEGORIES OF CATALOGED SOURCES.

Category Number of sources

unidentified 5galaxies 8

galaxy clusters 114Seyfert galaxies 100

blazars 15CVs/Stars 30

X-ray binaries 20confused 4

unmatched 204

catalogs in any combination from the three reference catalogsare summarized in table 2. We also show the total numbers ofcounterparts in each reference catalog with parentheses; herewe count more than one objects in the same reference cata-log if they are located within the error radius of the MAXIsource. In such cases, we adopt the one with the smallest an-gular separation from the MAXI position as the most likelycounterpart used for the definition of source type. As a result,we find that 296 out of the 500 sources in the present cataloghave one or more counterparts. The numbers of each sourcetype are as shown in table 3: 2 unidentified X-ray sources inBAT70, 8 galaxies, 114 galaxy clusters, 100 Seyfert galaxies,15 blazars, 30 CVs/Stars, 20 X-ray (neutron/black-hole) bina-ries, 4 confused objects, and 204 sources without counterpartsin BAT70 or MCXC.

In the above procedure, some of the MAXI sources maybe matched to those in the BAT70 catalog and MCXC bychance. Here we estimate the number of such coincidentalmatch,NCM, calculated as

NCM = ρBAT70×SBAT70 +ρMCXC ×SMCXC, (5)

where ρBAT70(MCXC) and SBAT70(MCXC) represent the sourcenumber densities of BAT70 (MCXC) at|b|> 10◦ and the to-tal areas of the error circles of the MAXI sources used forthe cross-matching with those catalogs. Specifically, we usethe following values:ρBAT70 = 0.025 (deg−2), ρMCXC = 0.050(deg−2), SBAT70 = 236.8 (deg2), andSMCXC = 173.9 (deg2). Wethus estimateNCM = 10.3, which is∼3% of the total numberof the matched sources.

4.4. Position Accuracy

We here examine the actual positional error of MAXI as afunction of detection significance in the 4–10 keV band on thebasis of the cross matching result. We calculate the angularseparation between the MAXI position and that of the mostlikely counterpart for each object. Figure 10 shows the his-tograms of the angular separation for all the matched sourcesin different significance bins (left:sD,4−10keV = 7− 12, mid-dle: σD,4−10keV = 12− 80, and right: sD,4−10keV > 80). Fig-ure 11 plots 90% error radii as a function of 4–10 keV detec-tion significance that are directly obtained from the observedhistograms. The black crosses represent those in the bins ofsD,4−10keV =7-9, 9-12, 12-25, 25-80, and> 80, from left toright. We fit these data with the form of

σ90%posi =

√(A/sD,4−10keV)B +C2, (6)

whereA, B, andC are free parameters. The blue curve infigure 11 represents the best-fit withA = 2.93±0.47, B =1.80±0.22, andC=0.09±0.01. The slopeB is close to 2.0as expected from the theory. From this result, we estimate the90% systematic error to be≈0.09◦, which is consistent withthat derived in the previous study (Hiroi et al. 2011).

Page 9: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

The 37-Month MAXI/GSC Source Catalog in the High Galactic-Latitude Sky 9

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Nu

mb

er o

f so

urc

es

Angular separation (deg)

sD, 4-10 keV = 7 - 12

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1

Nu

mb

er o

f so

urc

es

Angular separation (deg)

sD, 4-10 keV = 12 - 80

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

Nu

mb

er o

f so

urc

es

Angular separation (deg)

sD, 4-10 keV >80

FIG. 10.— Histograms of the angular separation between the positions of the MAXI sources and those of their most-likely counterparts in the referencecatalogs. The left, center, and right panel include the objects with the significance level ofsD,4−10keV = 7–12, 12–80, and>80, respectively.

0.1

1

10 100 1000

An

gu

lar

sep

arat

ion

(d

eg)

4-10 keV detection significance

FIG. 11.— 90% error radius of MAXI sources as a function of detection sig-nificance in the 4–10 keV band. The black points denote the data and the blue

curve represents the best-fit model with the form of√

(A/sD,4−10keV)B +C2,

whereA = 2.9±0.5,B = 1.8±0.2, andC=0.09±0.01.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

10-11

10-10

10-9

Har

dnes

s ra

tio

4-10 keV flux (ergs cm-2

s-1

)

OthersGalactic objectsGalaxy clusters

AGNs

FIG. 12.— Flux in the 4–10 keV band versus HR plot for the catalogedsources with different types: AGNs (blue squares), galaxy clusters (greencircles), Galactic/LMC/SMC objects (red triangles), and others (i.e., sourceswithout unique identification; gray diamonds). The typical errors of the HR atf4−10keV of 10−10 and 10−11 ergs cm−2 s−1 are∼0.01 and∼0.09, respectively.For visuality, two points with the largest fluxes off4−10keV > 10−9 cm−2 s−1,corresponding to Sco X-1 and Cyg X-2, are excluded from this figure.

4.5. Hardness Ratio Distribution

Figure 12 plots the diagram between the 4–10 keV flux andhardness ratio (HR) for the cataloged sources with differenttypes. The blue squares and green circles represent AGNsand galaxy clusters, respectively. The red triangles corre-spond to Galactic objects and large/small Magellanic cloud(LMC/SMC) objects. Sources without unique counterpartsbased on the catalog matching described above (i.e., thosewith no counterpart or multiple ones) are denoted as the graydiamonds. Figure 13 displays the histograms of HR for each

10

30

50

70

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Hardness ratio

Nu

mb

er o

f so

urc

es

Others

2

4

6

8

10

Galactic/LMC/SMC

10

20

30

40

Galaxy clusters

10

20

30

40

AGNs

FIG. 13.— Histograms of HR shown in figure 12 for each type: from topto bottom, AGNs, galaxy clusters, Galactic/LMC/SMC, and others.

102

103

104

105

10-12

10-11

10-10

10-9

Are

a (d

eg2)

4-10 keV flux (ergs cm-2

s-1

)

FIG. 14.— Area curve with detection significance ofsD,4−10keV> 7 plottedagainst 4–10 keV flux for the MAXI/GSC 37-month survey at|b| > 10◦.

type. TheHR distribution of galaxy clusters is located atlower values than that of AGNs. This is consistent with the ex-pectation that galaxy clusters have softer spectra than AGNsin the 3–10 keV range.

4.6. Log N-log S Relation

Page 10: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

10 K. Hiroi

10-4

10-3

10-2

10-1

10-12

10-11

10-10

10-9

N (

>S)

(d

eg-2

)

4-10 keV flux (ergs cm-2

s-1

)

FIG. 15.— LogN-log S relation in the 4–10 keV band derived from theMAXI/GSC 37-month survey at|b| > 10◦. All the 500 sources are includedin the calculation. The gray-shaded area represents the 1σ statistical errorregion calculated from the source counts.

We derive the source number counts (logN-log S relation)in the 4–10 keV band based on the MAXI/GSC 37-month cat-alog. For this calculation, we need the so-called area curve,which represents a survey area guaranteed for detection of asource given as a function of flux. In the same way as in Hiroiet al. (2011), we estimate the sensitivity at each sky positionon the basis of the background photon counts and “effective”exposure (i.e., exposure× detector area). Figure 14 displaysthe area curve in the 4–10 keV band for the detection signif-icance ofsD,4−10keV> 7. As noticed from the figure, the sen-sitivity at the deepest exposure reaches to∼0.4 mCrab (∼5×10−12 ergs cm−2 s−1 in the 4–10 keV band), which is consis-tent with the faintest flux level of the cataloged sources.

Dividing the flux distribution of the detected sources by thesurvey area, we obtain the logN-log S relation in the differ-ential form. Figure 15 shows the logN-log S relation of allthe MAXI sources in the integral form, where the total num-ber densityN(> S) for sources with fluxes aboveS is plotted.The results at fluxes above 1.5×10−11 ergs cm−2 s−1 perfectlymatch with those of Hiroi et al. (2011) derived from the 7-month data. In the faintest range below 7×10−12 ergs cm−2

s−1, however, the number density is slightly (by∼10%) largerthan that extrapolated from the brighter flux range. This ismost probably attributable to the effects by source confusion,which is unavoidable at faintest fluxes close to a confusionlimit determined by the PSF size. The effects may have tobe taken into account in future studies using this catalog, de-pending on the scientific goals.

5. CONCLUSION

We present the second MAXI/GSC source catalog in thehigh Galactic-latitude sky based on the 37-month data in the4–10 keV band observed from 2009 September to 2012 Oc-tober. The accuracy of the background model is significantlyimproved from our previous work (Hiroi et al. 2011) by con-sidering the dependence of the background rate on the “VC”monitor count sensitive to high energy particles. Through theimage fitting to tangentially-projected images with the Pois-son likelihood algorithm, we finally detect 500 X-ray sourcesat |b|> 10◦ with the detection significancesD,4−10keV≥ 7. Thelimiting sensitivity is∼ 0.6 mCrab, or 7.5×10−12 ergs cm−2

s−1 (4–10 keV) for 50% of the survey area, which is the high-est ever achieved among all-sky missions covering this energyband. Performing cross-matching with other X-ray sourcecatalogs, we find that 296 sources have one or more than onecounterparts. The identification work of a complete samplefrom this catalog is on-going, which will be reported in futurepapers.

This work makes use of the HEALPix (Górski et al. 2005)package. This work was partly supported by the Grant-in-Aidfor JSPS Fellows for young researchers (KH), Scientific Re-search 23540265 (YU), and by the grant-in-aid for the GlobalCOE Program “The Next Generation of Physics, Spun fromUniversality and Emergence” from the Ministry of Education,Culture, Sports, Science and Technology (MEXT) of Japan.

REFERENCES

Baumgartner, W. H., et al. 2010, ApJS, submittedBaumgartner, W. H., Tueller, J., Markwardt, C. B., et al. 2012,

arXiv:1212.3336Beckmann, V., Gehrels, N., Shrader, C. R., & Soldi, S. 2006, ApJ, 638, 642Beckmann, V., Soldi, S., Ricci, C., et al. 2009, A&A, 505, 417Bird, A. J., Malizia, A., Bazzano, A., et al. 2007, ApJS, 170, 175Bird, A. J., Bazzano, A., Bassani, L., et al. 2010, ApJS, 186, 1Cash, W. 1979, ApJ, 228, 939Cusumano, G., La Parola, V., Segreto, A., et al. 2010, A&A, 524, A64Eguchi, S., Hiroi, K., Ueda, Y., et al. 2009, Astrophysics with All-Sky X-Ray

Observations, 44Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759Hayashida, K., Inoue, H., Koyama, K., Awaki, H., Takano, S., 1989, PASJ,

41, 373Hiroi, K., Ueda, Y., Isobe, N., et al. 2011, PASJ, 63, 677Krivonos, R., Revnivtsev, M., Lutovinov, A., Sazonov, S., Churazov, E., &

Sunyaev, R. 2007, A&A, 475, 775

Matsuoka, M., Kawasaki, K., Ueno, S., et al. 2009, PASJ, 61, 999Mihara, T., Nakajima, M., Sugizaki, M., et al. 2011, PASJ, 63, 623Piffaretti, R., Arnaud, M., Pratt, G. W., Pointecouteau, E., & Melin, J.-B.

2011, A&A, 534, A109Sugizaki, M., Mihara, T., Serino, M., et al. 2011, PASJ, 63, 635Tawa, N., Hayashida, K., Nagai, M., et al. 2008, PASJ, 60, 11Tueller, J., Mushotzky, R. F., Barthelmy, S., et al. 2008, ApJ, 681, 113Tueller, J., Baumgartner, W. H., Markwardt, C. B., et al. 2010, ApJS, 186,

378Ueda, Y., Hiroi, K., Isobe, N., et al. 2011, PASJ, 63, 937Voges, W., Aschenbach, B., Boller, T., et al. 1999, A&A, 349, 389Voges, W., Aschenbach, B., Boller, T., et al. 2000, IAU Circ., 7432, 3

Page 11: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

PR

OP

ER

TIE

SO

FS

OU

RC

ES

INT

HE

SE

CO

NDM

AX

I/G

SC

CA

TA

LO

G.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

12M

AX

IJ00

00−7

740.

0-7

7.4

0.17

010

.48.

0±0.

87.

61.

9±0.

30.

15±

0.08

22M

AX

IJ00

04+

160

1.1

16.0

0.14

17.

510

.0±1.

34.

61.

7±0.

40.

31±

0.12

RX

CJ0

005.

3+16

121.

344

16.2

110.

1164

Gal

axy

Clu

ster

M3

2MA

XIJ

0004

+72

61.

272

.70.

118

11.1

10.0±

0.9

12.3

3.6±

0.3

-0.0

5±0.

064

2MA

XIJ

0008

−691

2.1

-69.

20.

120

9.2

6.7±

0.7

5.8

1.5±

0.3

0.20±

0.10

52M

AX

IJ00

09−8

172.

5-8

1.8

0.25

09.

85.

4±0.

56.

11.

6±0.

30.

05±

0.10

62M

AX

IJ00

11−1

122.

8-1

1.2

0.12

29.

09.

7±1.

16.

52.

2±0.

30.

18±

0.09

72M

AX

IJ00

12−1

523.

1-1

5.2

0.18

47.

67.

5±1.

07.

52.

5±0.

30.

00±

0.09

MA

CS

J001

1.7−1

523

2.92

8-1

5.38

90.

378

Gal

axy

Clu

ster

M8

2MA

XIJ

0012

−294

3.1

-29.

50.

148

17.0

9.1±

0.5

10.0

3.5±

0.4

-0.0

9±0.

069

2MA

XIJ

0021

+28

65.

428

.70.

132

8.3

11.1±

1.3

9.1

3.4±

0.4

0.03±

0.08

RX

CJ0

020.

6+28

405.

170

28.6

750.

094

Gal

axy

Clu

ster

M10

2MA

XIJ

0023

−193

5.8

-19.

30.

130

10.1

10.8±

1.1

9.4

3.1±

0.3

0.06±

0.07

112M

AX

IJ00

37−7

909.

3-7

9.1

0.13

017

.08.

9±0.

59.

92.

5±0.

30.

07±

0.06

2MA

SX

J003

4166

5−790

5204

8.57

0-7

9.08

90.

074

Sy1

B12

2MA

XIJ

0041

−285

10.3

-28.

60.

119

7.6

8.2±

1.1

4.4

1.5±

0.3

0.28±

0.12

RX

CJ0

042.

1−283

210

.536

-28.

536

0.10

82G

alax

yC

lust

erM

132M

AX

IJ00

41−0

9210

.4-9

.20.

030

43.9

53.3±

1.2

41.5

16.5±

0.4

0.03±

0.02

AB

ELL

85(1

)10

.408

-9.3

420.

0551

Gal

axy

Clu

ster

BM

G14

2MA

XIJ

0043

+41

210

.841

.30.

045

26.6

38.8±

1.5

27.8

12.2±

0.4

0.02±

0.03

M31

(2)

10.6

6841

.200

Gal

axy

BG

(A)

152M

AX

IJ00

43+

247

10.9

24.7

0.20

57.

58.

3±1.

18.

83.

2±0.

4-0

.07±

0.09

Zw

Cl2

3510

.967

24.4

020.

083

Gal

axy

Clu

ster

M16

2MA

XIJ

0044

−238

11.0

-23.

80.

209

7.3

7.8±

1.1

1.7

0.6±

0.3

0.64±

0.18

NG

C23

5A10

.720

-23.

541

0.02

22S

y1B

172M

AX

IJ00

47−7

5411

.8-7

5.4

0.15

98.

56.

6±0.

88.

42.

1±0.

30.

01±

0.08

182M

AX

IJ00

48+

320

12.2

32.0

0.07

716

.021

.4±1.

37.

32.

8±0.

40.

42±

0.06

Mrk

348

(3)

12.1

9631

.957

0.01

5S

y2/F

SR

QB

G19

2MA

XIJ

0051

−725

12.8

-72.

60.

038

29.6

24.1±

0.8

21.1

5.7±

0.3

0.16±

0.03

2E00

50.1−

7247

(4)

12.9

72-7

2.53

0H

MX

BG

202M

AX

IJ00

52+

176

13.0

17.6

0.13

610

.112

.2±1.

27.

72.

9±0.

40.

16±

0.08

Mrk

1148

12.9

7817

.433

0.06

4S

y1B

212M

AX

IJ00

55+

463

13.9

46.3

0.12

09.

813

.1±1.

37.

02.

7±0.

40.

24±

0.08

1RX

SJ0

0552

8.0+

4611

43(5

)13

.833

46.2

16C

V/D

QH

erB

G22

2MA

XIJ

0055

+25

914

.026

.00.

173

7.9

9.4±

1.2

9.1

3.3±

0.4

-0.0

4±0.

08A

115

13.9

9926

.378

0.19

71G

alax

yC

lust

erM

232M

AX

IJ00

56−0

1114

.1-1

.20.

060

21.5

26.1±

1.2

23.8

9.4±

0.4

-0.0

4±0.

03R

XC

J005

6.3−0

112

(6)

14.0

76-1

.217

0.04

42G

alax

yC

lust

erM

G24

2MA

XIJ

0102

−222

15.5

-22.

30.

140

9.5

10.5±

1.1

13.6

4.7±

0.3

-0.1

5±0.

0625

2MA

XIJ

0105

−241

16.4

-24.

20.

216

7.6

7.6±

1.0

7.0

2.5±

0.4

0.01±

0.10

RX

CJ0

104.

5−240

0(C

)16

.146

-24.

000

0.16

03G

alax

yC

lust

erM

(B)

262M

AX

IJ01

07−4

6816

.8-4

6.8

0.24

810

.312

.0±1.

25.

22.

0±0.

40.

32±

0.10

ES

O24

3−G

026

16.4

08-4

7.07

20.

0193

Gal

axy

B27

2MA

XIJ

0111

−148

18.0

-14.

90.

388

7.7

7.9±

1.0

9.8

3.3±

0.3

-0.1

2±0.

08M

rk11

5218

.459

-14.

846

0.05

27S

y1.5

BM

282M

AX

IJ01

17−7

3419

.3-7

3.4

0.00

428

5.0

318.

5±1.

113

9.3

54.9±

0.4

0.31±

0.00

SM

CX

-1(7

)19

.271

-73.

443

HM

XB

/NS

BG

292M

AX

IJ01

23+

342

20.8

34.3

0.12

711

.315

.2±1.

314

.55.

8±0.

4-0

.08±

0.06

SH

BL

J012

308.

7+34

2049

(8)

20.7

8634

.347

0.27

2B

LLa

cB

G30

2MA

XIJ

0124

−588

21.0

-58.

80.

065

18.6

17.9±

1.0

15.0

4.3±

0.3

0.15±

0.04

Fai

rall

920

.941

-58.

806

0.04

7S

y1B

312M

AX

IJ01

24−3

4921

.0-3

5.0

0.06

918

.622

.5±1.

214

.35.

4±0.

40.

16±

0.04

NG

C52

6A20

.977

-35.

065

0.01

91S

y1.5

B32

2MA

XIJ

0126

+08

121

.58.

20.

177

8.4

10.3±

1.2

9.3

3.5±

0.4

-0.0

2±0.

0833

2MA

XIJ

0134

−082

23.6

-8.2

0.17

47.

17.

9±1.

15.

92.

0±0.

30.

12±

0.11

RX

CJ0

132.

6−080

423

.170

-8.0

720.

1489

Gal

axy

Clu

ster

M34

2MA

XIJ

0151

+36

128

.036

.10.

087

11.2

14.9±

1.3

17.5

7.7±

0.4

-0.2

2±0.

05R

XC

J015

2.7+

3609

28.1

9536

.151

0.01

63G

alax

yC

lust

erM

352M

AX

IJ01

57−8

3829

.3-8

3.9

0.18

87.

75.

9±0.

85.

91.

6±0.

30.

09±

0.11

362M

AX

IJ01

57−5

2829

.4-5

2.8

0.09

19.

211

.1±1.

29.

53.

0±0.

30.

09±

0.08

372M

AX

IJ02

02−7

2730

.7-7

2.8

0.12

810

.98.

3±0.

84.

41.

1±0.

20.

43±

0.10

382M

AX

IJ02

05−0

2031

.4-2

.10.

147

9.6

11.3±

1.2

7.5

2.7±

0.4

0.16±

0.08

392M

AX

IJ02

06−1

6631

.6-1

6.6

0.17

98.

79.

2±1.

16.

72.

2±0.

30.

16±

0.09

402M

AX

IJ02

06+

153

31.7

15.3

0.13

09.

813

.1±1.

36.

32.

5±0.

40.

26±

0.09

RX

J020

6.3+

1511

31.5

9815

.188

0.24

8G

alax

yC

lust

erM

412M

AX

IJ02

07+

751

31.8

75.1

0.28

38.

27.

3±0.

93.

21.

0±0.

30.

41±

0.14

422M

AX

IJ02

13−6

3733

.4-6

3.8

0.22

310

.06.

9±0.

75.

51.

4±0.

30.

22±

0.10

432M

AX

IJ02

24+

186

36.1

18.6

0.08

012

.014

.3±1.

29.

63.

5±0.

40.

14±

0.07

442M

AX

IJ02

28+

314

37.1

31.4

0.10

312

.318

.0±1.

510

.94.

3±0.

40.

15±

0.06

NG

C93

1(9

)37

.060

31.3

120.

0167

Sy1

.5B

G45

2MA

XIJ

0231

−440

37.8

-44.

10.

171

8.6

10.5±

1.2

9.4

3.7±

0.4

-0.0

4±0.

08R

XC

J023

2.2−4

420

38.0

70-4

4.34

70.

2836

Gal

axy

Clu

ster

M46

2MA

XIJ

0232

−090

38.1

-9.1

0.16

77.

99.

2±1.

28.

73.

1±0.

4-0

.01±

0.09

472M

AX

IJ02

33+

324

38.4

32.5

0.10

611

.416

.6±1.

59.

83.

9±0.

40.

17±

0.07

NG

C97

338

.584

32.5

060.

0162

Sy2

B

Page 12: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

—C

ON

TIN

UE

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

482M

AX

IJ02

36+

025

39.1

2.5

0.14

27.

78.

1±1.

14.

91.

8±0.

40.

20±

0.12

492M

AX

IJ02

38−3

0839

.7-3

0.8

0.19

19.

19.

6±1.

16.

32.

2±0.

40.

17±

0.09

502M

AX

IJ02

39−5

2239

.9-5

2.3

0.07

014

.113

.5±1.

011

.43.

7±0.

30.

09±

0.06

512M

AX

IJ02

43−5

8240

.8-5

8.2

0.12

512

.711

.1±0.

911

.43.

2±0.

30.

06±

0.06

522M

AX

IJ02

51+

468

42.9

46.9

0.15

57.

78.

9±1.

25.

32.

0±0.

40.

19±

0.11

2MA

SX

J025

0272

2+46

4729

542

.613

46.7

91G

alax

yB

532M

AX

IJ02

54+

416

43.6

41.7

0.02

843

.663

.5±1.

551

.726

.7±0.

5-0

.12±

0.01

RX

CJ0

254.

4+41

34(1

0)43

.623

41.5

720.

0172

Gal

axy

Clu

ster

MG

542M

AX

IJ02

57+

197

44.3

19.7

0.18

08.

19.

5±1.

24.

61.

7±0.

40.

30±

0.11

XY

Ari

44.0

3819

.441

CV

/DQ

Her

B55

2MA

XIJ

0258

+13

544

.613

.50.

029

43.3

63.1±

1.5

40.9

19.5±

0.5

0.03±

0.02

AB

ELL

401

(11)

44.7

3713

.582

0.07

48G

alax

yC

lust

erB

MG

562M

AX

IJ02

59+

060

44.8

6.0

0.15

28.

29.

7±1.

28.

73.

3±0.

4-0

.02±

0.08

A40

044

.412

6.00

60.

0238

Gal

axy

Clu

ster

M57

2MA

XIJ

0300

+44

445

.144

.50.

052

24.7

33.0±

1.3

26.6

11.7±

0.4

-0.0

4±0.

03R

XC

J030

0.7+

4427

(12)

45.1

8844

.463

0.03

Gal

axy

Clu

ster

MG

582M

AX

IJ03

00−1

0745

.2-1

0.7

0.09

815

.514

.9±1.

08.

83.

0±0.

30.

24±

0.06

MC

G−0

2−08

−038

45.0

18-1

0.82

50.

0326

Sy1

B59

2MA

XIJ

0303

−726

46.0

-72.

70.

140

7.6

4.7±

0.6

6.9

1.7±

0.2

-0.0

5±0.

10E

SO

031−

G00

846

.897

-72.

834

0.02

76S

y1.2

B60

2MA

XIJ

0306

−233

46.6

-23.

40.

189

7.4

8.2±

1.1

3.1

1.1±

0.3

0.44±

0.14

612M

AX

IJ03

07−1

1547

.0-1

1.6

0.34

47.

17.

7±1.

15.

31.

8±0.

30.

17±

0.11

622M

AX

IJ03

08+

410

47.1

41.0

0.05

025

.837

.6±1.

533

.017

.1±0.

5-0

.16±

0.02

Alg

ol(1

3)47

.042

40.9

58A

lgol

Type

Ecl

ipsi

ngbi

nary

G63

2MA

XIJ

0313

−773

48.3

-77.

40.

184

8.2

6.4±

0.8

6.1

1.5±

0.2

0.16±

0.10

642M

AX

IJ03

17−4

4349

.4-4

4.3

0.08

515

.120

.1±1.

316

.27.

1±0.

4-0

.04±

0.05

RX

CJ0

317.

9−441

4(1

4)49

.494

-44.

239

0.07

52G

alax

yC

lust

erM

G65

2MA

XIJ

0319

+41

549

.941

.50.

004

276.

263

7.6±

2.3

202.

820

1.7±

1.0

0.02±

0.00

Per

seus

Clu

ster

(15)

49.9

5141

.512

0.01

76G

alax

yC

lust

erB

MG

(C)

662M

AX

IJ03

26+

287

51.5

28.8

0.09

313

.616

.6±1.

218

.67.

3±0.

4-0

.15±

0.04

UX

Ari

(16)

51.6

4728

.715

RS

CV

nG

672M

AX

IJ03

29−5

2852

.3-5

2.8

0.13

810

.110

.3±1.

08.

62.

7±0.

30.

11±

0.08

RX

CJ0

330.

0−523

552

.503

-52.

596

0.06

24G

alax

yC

lust

erM

682M

AX

IJ03

30+

438

52.7

43.9

0.06

718

.026

.3±1.

58.

23.

6±0.

40.

41±

0.06

GK

Per

(17)

52.7

9943

.905

CV

/DQ

Her

BG

692M

AX

IJ03

34−3

6053

.5-3

6.1

0.13

211

.212

.9±1.

29.

63.

6±0.

40.

07±

0.07

NG

C13

65(1

8)53

.402

-36.

140

0.00

55S

y1.8

BG

702M

AX

IJ03

35+

321

54.0

32.2

0.11

311

.014

.7±1.

39.

63.

8±0.

40.

11±

0.07

4C+

32.1

454

.126

32.3

081.

258

QS

OB

712M

AX

IJ03

36+

006

54.1

0.6

0.08

216

.319

.8±1.

225

.910

.3±0.

4-0

.23±

0.03

HR

1099

(19)

54.1

970.

588

RS

CV

nG

722M

AX

IJ03

39+

100

54.8

10.1

0.05

025

.531

.0±1.

229

.112

.7±0.

4-0

.11±

0.03

RX

CJ0

338.

6+09

58(2

0)54

.670

9.97

40.

0347

Gal

axy

Clu

ster

MG

732M

AX

IJ03

42−2

1455

.5-2

1.4

0.10

213

.514

.6±1.

111

.83.

8±0.

30.

11±

0.06

ES

O54

8−G08

155

.516

-21.

244

0.01

45S

y1B

742M

AX

IJ03

43−5

3655

.9-5

3.7

0.05

223

.124

.7±1.

123

.87.

9±0.

30.

01±

0.03

RX

CJ0

342.

8−533

8(2

1)55

.725

-53.

635

0.05

9G

alax

yC

lust

erM

G75

2MA

XIJ

0343

+67

655

.967

.70.

206

7.3

6.4±

0.9

5.3

1.5±

0.3

0.15±

0.11

762M

AX

IJ03

45+

008

56.3

0.8

0.15

98.

510

.3±1.

24.

11.

5±0.

40.

39±

0.12

772M

AX

IJ03

48−1

2057

.2-1

2.0

0.14

18.

59.

0±1.

14.

91.

6±0.

30.

30±

0.11

QS

OB

0347−

121

57.3

47-1

1.99

10.

18B

LLa

cB

M78

2MA

XIJ

0354

−738

58.6

-73.

90.

155

13.8

9.2±

0.7

12.9

3.3±

0.3

-0.0

4±0.

05M

S03

53.3−

7411

58.1

23-7

4.03

10.

127

Gal

axy

Clu

ster

M79

2MA

XIJ

0354

−402

58.7

-40.

30.

184

7.1

8.7±

1.2

3.9

1.5±

0.4

0.32±

0.13

802M

AX

IJ03

55+

311

58.9

31.1

0.00

427

4.7

567.

3±2.

116

8.1

133.

7±0.

80.

16±

0.00

XP

er(2

2)58

.846

31.0

46H

MX

B/N

SB

G81

2MA

XIJ

0358

−819

59.7

-81.

90.

122

8.9

5.9±

0.7

7.2

1.9±

0.3

0.02±

0.09

822M

AX

IJ04

05+

381

61.5

38.2

0.08

711

.415

.2±1.

312

.95.

6±0.

4-0

.06±

0.06

832M

AX

IJ04

08−6

4462

.2-6

4.4

0.18

58.

77.

3±0.

87.

52.

0±0.

30.

09±

0.09

842M

AX

IJ04

13+

106

63.3

10.6

0.02

938

.551

.4±1.

333

.114

.5±0.

40.

08±

0.02

852M

AX

IJ04

23−7

5266

.0-7

5.3

0.22

79.

66.

2±0.

66.

71.

7±0.

30.

09±

0.09

862M

AX

IJ04

24−5

7166

.2-5

7.1

0.10

712

.213

.4±1.

19.

02.

6±0.

30.

25±

0.06

1H04

19−5

77(2

4)66

.504

-57.

200

0.10

4S

y1.5

BG

872M

AX

IJ04

25−1

9866

.4-1

9.8

0.15

29.

49.

7±1.

07.

72.

5±0.

30.

13±

0.08

IWE

ri66

.480

-19.

758

CV

/AM

HE

RB

882M

AX

IJ04

25−0

8666

.4-8

.70.

104

14.1

13.7±

1.0

13.4

4.8±

0.4

-0.0

3±0.

05R

XC

J042

5.8−0

833

66.4

64-8

.559

0.03

97G

alax

yC

lust

erM

892M

AX

IJ04

31−6

1368

.0-6

1.4

0.02

648

.645

.4±0.

942

.513

.5±0.

30.

05±

0.02

AB

ELL

3266

(25)

67.8

00-6

1.40

60.

0589

Gal

axy

Clu

ster

BM

G90

2MA

XIJ

0433

+05

468

.45.

50.

064

19.0

25.4±

1.3

20.3

8.1±

0.4

0.01±

0.04

3C12

0(2

6)68

.296

5.35

40.

033

Sy1

BG

912M

AX

IJ04

33−1

3168

.5-1

3.2

0.03

938

.939

.7±1.

037

.814

.6±0.

4-0

.06±

0.02

RX

CJ0

433.

6−131

568

.410

-13.

259

0.03

26G

alax

yC

lust

erM

922M

AX

IJ04

37+

206

69.3

20.6

0.15

67.

66.

5±0.

98.

13.

0±0.

4-0

.17±

0.09

932M

AX

IJ04

37−1

0669

.4-1

0.7

0.11

310

.912

.5±1.

29.

43.

2±0.

30.

12±

0.07

MC

G−0

2−12

−050

69.5

59-1

0.79

60.

0364

Sy1

.2B

942M

AX

IJ04

39−4

6870

.0-4

6.9

0.38

97.

68.

1±1.

16.

42.

5±0.

40.

02±

0.10

2MA

SX

J043

7281

4−471

1298

69.3

67-4

7.19

10.

053

Sy1

B95

2MA

XIJ

0440

−048

70.1

-4.8

0.17

510

.38.

6±0.

86.

42.

3±0.

40.

11±

0.09

Page 13: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

—C

ON

TIN

UE

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

962M

AX

IJ04

42−2

7170

.5-2

7.2

0.26

29.

210

.1±1.

16.

82.

4±0.

30.

17±

0.09

IRA

S04

392−2

713

70.3

44-2

7.13

90.

0835

Sy1

.5B

972M

AX

IJ04

43+

288

70.8

28.8

0.13

19.

711

.8±1.

24.

71.

7±0.

40.

38±

0.10

UG

C03

142

70.9

4528

.972

0.02

17S

y1B

982M

AX

IJ04

47−2

0771

.9-2

0.8

0.24

07.

17.

3±1.

07.

62.

5±0.

3-0

.02±

0.10

RX

CJ0

448.

2−202

872

.051

-20.

470

0.07

2G

alax

yC

lust

erM

992M

AX

IJ04

49−0

9472

.4-9

.40.

225

7.3

6.8±

0.9

3.2

1.1±

0.4

0.32±

0.15

100

2MA

XIJ

0450

−035

72.6

-3.5

0.13

710

.913

.2±1.

26.

82.

5±0.

40.

28±

0.08

101

2MA

XIJ

0451

−585

72.9

-58.

60.

141

8.8

8.4±

0.9

4.5

1.2±

0.3

0.38±

0.11

102

2MA

XIJ

0453

−752

73.4

-75.

30.

123

19.0

13.4±

0.7

15.6

4.1±

0.3

0.03±

0.04

ES

O03

3−G

002

73.9

96-7

5.54

10.

0181

Sy2

B10

32M

AX

IJ04

53+

070

73.4

7.0

0.14

88.

310

.0±1.

225

.810

.3±0.

4-0

.51±

0.05

104

2MA

XIJ

0457

−696

74.4

-69.

60.

075

19.0

15.0±

0.8

9.8

2.6±

0.3

0.31±

0.05

105

2MA

XIJ

0502

+24

775

.624

.70.

113

13.6

16.2±

1.2

8.1

3.1±

0.4

0.27±

0.07

V10

62Ta

u75

.615

24.7

56N

ova

B10

62M

AX

IJ05

04−2

3976

.2-2

4.0

0.16

38.

08.

8±1.

13.

11.

0±0.

30.

47±

0.13

2MA

SX

J050

5457

5−235

1139

76.4

41-2

3.85

40.

035

Sy2

HII

B10

72M

AX

IJ05

08−0

4477

.2-4

.40.

209

7.1

7.6±

1.1

3.5

1.2±

0.4

0.34±

0.14

108

2MA

XIJ

0509

+67

777

.567

.80.

104

12.4

10.8±

0.9

11.6

3.5±

0.3

0.01±

0.06

87G

B05

0246

.4+

6733

4176

.984

67.6

230.

314

QS

OB

109

2MA

XIJ

0510

+16

777

.616

.70.

064

18.1

28.7±

1.6

13.6

5.4±

0.4

0.27±

0.04

110

2MA

XIJ

0514

−399

78.6

-40.

00.

022

53.6

78.2±

1.5

51.5

24.6±

0.5

0.02±

0.01

NG

C18

51(3

0)78

.527

-40.

044

LMX

B/N

Sin

glob

ular

cB

G(D

)11

12M

AX

IJ05

15−6

1678

.9-6

1.6

0.19

08.

66.

8±0.

86.

71.

8±0.

30.

10±

0.09

112

2MA

XIJ

0516

−001

79.1

-0.1

0.06

418

.420

.8±1.

116

.96.

3±0.

40.

04±

0.04

Ark

120

(31)

79.0

48-0

.150

0.03

23S

y1B

G11

32M

AX

IJ05

16−4

5579

.2-4

5.6

0.15

19.

412

.6±1.

37.

63.

0±0.

40.

16±

0.08

114

2MA

XIJ

0516

−102

79.2

-10.

20.

184

8.4

8.7±

1.0

6.7

2.2±

0.3

0.13±

0.09

MC

G−0

2−14

−009

79.0

88-1

0.56

20.

0285

Sy1

B11

52M

AX

IJ05

16+

172

79.2

17.2

0.15

08.

713

.7±1.

68.

03.

2±0.

40.

17±

0.08

RX

CJ0

516.

3+17

1279

.086

17.2

090.

115

Gal

axy

Clu

ster

M11

62M

AX

IJ05

17+

065

79.4

6.5

0.14

19.

211

.0±1.

212

.54.

8±0.

4-0

.14±

0.07

RX

CJ0

516.

6+06

2679

.155

6.43

80.

0284

Gal

axy

Clu

ster

M11

72M

AX

IJ05

18−3

2579

.6-3

2.5

0.12

38.

39.

4±1.

17.

42.

7±0.

40.

07±

0.09

ES

O36

2−18

79.8

99-3

2.65

80.

0125

Sy1

.5B

118

2MA

XIJ

0520

−719

80.1

-71.

90.

005

241.

027

8.1±

1.2

191.

391

.3±0.

5-0

.00±

0.00

LMC

X-2

(32)

80.1

17-7

1.96

5LM

XB

BG

119

2MA

XIJ

0522

+63

180

.663

.20.

147

8.8

8.7±

1.0

7.9

2.4±

0.3

0.08±

0.08

120

2MA

XIJ

0523

−363

80.8

-36.

30.

117

10.8

12.7±

1.2

9.6

3.5±

0.4

0.08±

0.07

PK

S05

21−36

80.7

42-3

6.45

90.

0553

BL

Lac

BM

121

2MA

XIJ

0529

−327

82.3

-32.

70.

039

34.6

42.1±

1.2

17.7

6.7±

0.4

0.35±

0.03

TV

Col

(33)

82.3

56-3

2.81

8C

V/D

QH

erB

G12

22M

AX

IJ05

29−1

1482

.5-1

1.5

0.14

37.

67.

7±1.

09.

13.

0±0.

3-0

.10±

0.09

123

2MA

XIJ

0532

−663

83.2

-66.

40.

013

93.8

91.2±

1.0

51.2

16.7±

0.3

0.28±

0.01

LMC

X-4

(34)

83.2

07-6

6.37

1H

MX

B/N

SB

G12

42M

AX

IJ05

33−0

2483

.4-2

.50.

207

8.6

10.4±

1.2

8.9

3.3±

0.4

0.01±

0.08

125

2MA

XIJ

0535

−580

83.8

-58.

10.

067

16.1

14.9±

0.9

10.0

2.9±

0.3

0.26±

0.05

TW

Pic

83.7

11-5

8.02

8C

VD

QH

erB

M12

62M

AX

IJ05

35−0

5283

.8-5

.30.

027

46.1

61.7±

1.3

54.9

26.2±

0.5

-0.1

3±0.

01T

rape

zium

Clu

ster

(35)

83.8

19-5

.387

Sta

rC

lust

erB

G12

72M

AX

IJ05

39−6

4084

.8-6

4.1

0.00

714

6.4

170.

7±1.

219

4.4

100.

5±0.

5-0

.29±

0.00

LMC

X-3

(36)

84.7

35-6

4.08

4H

MX

B/N

SB

G12

82M

AX

IJ05

39−6

9685

.0-6

9.7

0.00

716

2.6

165.

9±1.

020

6.1

106.

6±0.

5-0

.32±

0.00

LMC

X-1

(37)

84.9

11-6

9.74

3H

MX

B/N

SB

G12

92M

AX

IJ05

41−0

1985

.3-2

.00.

098

13.9

16.9±

1.2

16.1

6.2±

0.4

-0.0

6±0.

0513

02M

AX

IJ05

41−0

8985

.3-8

.90.

172

7.3

7.2±

1.0

2.2

0.7±

0.3

0.52±

0.17

131

2MA

XIJ

0542

−407

85.6

-40.

80.

104

11.7

14.2±

1.2

8.4

3.2±

0.4

0.19±

0.07

BV

H20

0773

85.7

12-4

1.00

10.

642

Gal

axy

Clu

ster

M13

22M

AX

IJ05

42+

609

85.6

60.9

0.07

416

.620

.2±1.

211

.53.

8±0.

30.

27±

0.05

BY

Cam

(38)

85.7

0460

.859

CV

/AM

Her

BG

133

2MA

XIJ

0547

+59

486

.859

.50.

177

7.4

9.0±

1.2

9.8

3.2±

0.3

-0.0

5±0.

0813

42M

AX

IJ05

49−6

2187

.5-6

2.2

0.13

79.

57.

6±0.

88.

52.

5±0.

30.

00±

0.08

135

2MA

XIJ

0550

−320

87.6

-32.

00.

071

13.9

21.9±

1.6

17.3

6.9±

0.4

0.02±

0.05

136

2MA

XIJ

0552

−073

88.1

-7.4

0.02

153

.271

.1±1.

333

.513

.3±0.

40.

27±

0.02

NG

C21

10(4

0)88

.047

-7.4

560.

0078

Sy2

BG

137

2MA

XIJ

0552

−208

88.2

-20.

80.

184

8.0

8.2±

1.0

9.9

3.3±

0.3

-0.1

0±0.

08R

XC

J055

2.8−2

103

88.2

18-2

1.05

70.

0989

Gal

axy

Clu

ster

M13

82M

AX

IJ05

53−8

1988

.3-8

1.9

0.18

98.

06.

6±0.

83.

60.

9±0.

30.

40±

0.13

139

2MA

XIJ

0554

+46

488

.746

.50.

044

25.2

33.7±

1.3

23.2

9.2±

0.4

0.09±

0.03

MC

G+

08−1

1−01

1(4

1)88

.723

46.4

390.

0205

Sy1

.5B

G14

02M

AX

IJ05

56−3

3189

.2-3

3.1

0.01

482

.714

0.7±

1.7

83.3

46.4±

0.6

-0.0

0±0.

0114

12M

AX

IJ05

58+

540

89.6

54.1

0.07

013

.916

.9±1.

27.

62.

7±0.

40.

34±

0.07

V40

5A

ur89

.497

53.8

96C

V/D

QH

erB

142

2MA

XIJ

0558

−499

89.7

-49.

90.

156

7.1

7.8±

1.1

6.5

2.2±

0.3

0.09±

0.10

143

2MA

XIJ

0601

−397

90.3

-39.

70.

131

8.8

10.7±

1.2

11.0

4.3±

0.4

-0.0

9±0.

07R

XC

J060

1.7−3

959

90.4

40-3

9.99

30.

0468

Gal

axy

Clu

ster

M

Page 14: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

—C

ON

TIN

UE

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

144

2MA

XIJ

0607

−352

91.9

-35.

30.

125

8.8

10.5±

1.2

5.2

1.9±

0.4

0.29±

0.10

RX

CJ0

605.

8−351

891

.470

-35.

301

0.13

92G

alax

yC

lust

erM

145

2MA

XIJ

0613

−656

93.3

-65.

70.

177

8.9

6.4±

0.7

10.2

2.7±

0.3

-0.1

3±0.

0714

62M

AX

IJ06

14−2

1793

.7-2

1.8

0.13

68.

99.

5±1.

17.

52.

4±0.

30.

12±

0.09

147

2MA

XIJ

0615

+71

294

.071

.30.

167

8.2

7.2±

0.9

1.6

0.4±

0.3

0.69±

0.17

Mrk

393

.901

71.0

370.

0135

Sy2

B14

82M

AX

IJ06

23−0

9595

.9-9

.60.

156

7.9

8.4±

1.1

2.2

0.7±

0.3

0.59±

0.16

SW

IFT

J062

406.

05−09

3855

.096

.025

-9.6

49S

RC

/X-R

AY

B14

92M

AX

IJ06

27−5

4396

.9-5

4.3

0.07

510

.525

.5±2.

425

.910

.0±0.

4-0

.09±

0.05

RX

CJ0

627.

2−542

8(4

2)96

.810

-54.

470

0.05

06G

alax

yC

lust

erM

150

2MA

XIJ

0632

+73

898

.273

.90.

163

12.3

10.9±

0.9

6.9

2.0±

0.3

0.29±

0.08

151

2MA

XIJ

0634

−751

98.7

-75.

20.

142

8.3

6.8±

0.8

7.6

1.9±

0.2

0.08±

0.09

PK

S06

37−75

298

.944

-75.

271

0.65

1S

y1B

152

2MA

XIJ

0639

+27

910

0.0

27.9

0.25

47.

65.

6±0.

72.

20.

8±0.

40.

39±

0.20

153

2MA

XIJ

0640

−257

100.

2-2

5.7

0.21

67.

67.

8±1.

07.

82.

6±0.

3-0

.01±

0.09

ES

O49

0−IG

026

100.

049

-25.

895

0.02

48S

y1.2

B15

42M

AX

IJ06

41−5

4010

0.4

-54.

00.

123

9.4

9.7±

1.0

10.1

3.1±

0.3

0.02±

0.07

155

2MA

XIJ

0644

+55

410

1.2

55.4

0.11

512

.013

.9±1.

26.

32.

2±0.

40.

34±

0.08

156

2MA

XIJ

0656

−560

104.

2-5

6.1

0.09

311

.512

.2±1.

19.

62.

8±0.

30.

17±

0.07

Bul

letC

lust

er10

4.62

2-5

5.95

30.

296

Gal

axy

Clu

ster

BM

157

2MA

XIJ

0706

−573

106.

7-5

7.3

0.19

57.

44.

8±0.

63.

81.

1±0.

30.

18±

0.14

158

2MA

XIJ

0707

+64

110

6.9

64.1

0.20

57.

16.

6±0.

97.

52.

2±0.

3-0

.01±

0.10

VII

Zw

118

106.

805

64.6

000.

0797

Sy1

.0B

159

2MA

XIJ

0710

+59

210

7.6

59.2

0.08

614

.815

.4±1.

015

.45.

1±0.

3-0

.00±

0.05

2MA

SX

J071

0300

5+59

0820

2(4

3)10

7.62

559

.139

0.12

5B

LLa

cB

G16

02M

AX

IJ07

15−3

6310

8.8

-36.

40.

298

8.1

9.7±

1.2

11.5

4.3±

0.4

-0.1

5±0.

07R

XC

J071

7.1−3

621

109.

295

-36.

360

0.03

2G

alax

yC

lust

erM

161

2MA

XIJ

0715

+44

210

9.0

44.3

0.11

311

.114

.8±1.

39.

83.

9±0.

40.

11±

0.07

162

2MA

XIJ

0717

−494

109.

3-4

9.5

0.23

37.

17.

4±1.

04.

21.

5±0.

40.

25±

0.13

163

2MA

XIJ

0721

+55

511

0.4

55.6

0.14

99.

610

.8±1.

112

.34.

5±0.

4-0

.12±

0.07

RX

CJ0

721.

3+55

4711

0.34

355

.786

0.03

81G

alax

yC

lust

erM

164

2MA

XIJ

0723

−731

110.

9-7

3.2

0.14

69.

77.

5±0.

86.

61.

6±0.

30.

20±

0.09

165

2MA

XIJ

0730

+10

011

2.7

10.0

0.11

110

.514

.0±1.

34.

21.

7±0.

40.

47±

0.10

BG

CM

i11

2.87

19.

940

CV

/DQ

Her

B16

62M

AX

IJ07

40+

497

115.

249

.80.

158

7.3

8.9±

1.2

7.4

2.8±

0.4

0.03±

0.10

Mrk

7911

5.63

749

.810

0.02

22S

y1.2

B16

72M

AX

IJ07

42−5

4711

5.5

-54.

70.

205

9.1

8.7±

1.0

7.5

2.2±

0.3

0.12±

0.09

2MA

SX

J074

1091

9−544

7461

115.

288

-54.

796

Gal

axy

B16

82M

AX

IJ07

42+

745

115.

674

.50.

226

7.1

6.0±

0.8

7.2

2.0±

0.3

-0.0

2±0.

10R

XC

J074

1.7+

7414

115.

437

74.2

480.

2149

Gal

axy

Clu

ster

M16

92M

AX

IJ07

44+

288

116.

128

.80.

152

7.4

8.2±

1.1

7.5

2.7±

0.4

-0.0

1±0.

0917

02M

AX

IJ07

45−5

3011

6.3

-53.

10.

213

9.8

9.4±

1.0

7.6

2.3±

0.3

0.14±

0.08

V04

36C

ar(4

4)11

6.24

3-5

2.95

2C

V/D

QH

erG

171

2MA

XIJ

0751

+14

911

7.8

15.0

0.09

112

.421

.2±1.

76.

33.

0±0.

50.

40±

0.08

PQ

Gem

117.

823

14.7

40C

V/D

QH

erB

172

2MA

XIJ

0751

+18

211

7.9

18.2

0.17

18.

49.

6±1.

26.

92.

6±0.

40.

10±

0.09

173

2MA

XIJ

0752

+22

111

8.2

22.2

0.35

38.

16.

2±0.

84.

61.

6±0.

40.

11±

0.12

174

2MA

XIJ

0758

+63

211

9.6

63.2

0.24

87.

26.

9±1.

07.

32.

2±0.

30.

01±

0.10

175

2MA

XIJ

0801

+16

212

0.3

16.2

0.14

18.

010

.6±1.

37.

32.

8±0.

40.

11±

0.09

176

2MA

XIJ

0804

+05

212

1.0

5.2

0.14

48.

09.

7±1.

22.

50.

9±0.

40.

55±

0.14

Mrk

1210

121.

024

5.11

40.

0135

Sy2

B17

72M

AX

IJ08

08+

757

122.

275

.70.

134

9.0

8.5±

0.9

10.4

3.0±

0.3

-0.0

3±0.

07P

G08

04+

761

122.

744

76.0

450.

1S

y1B

178

2MA

XIJ

0814

+62

712

3.7

62.7

0.11

48.

28.

4±1.

08.

72.

7±0.

30.

01±

0.08

MS

0811

.6+

6301

123.

999

62.8

860.

312

Gal

axy

Clu

ster

M17

92M

AX

IJ08

15−5

7212

4.0

-57.

20.

079

14.5

14.1±

1.0

18.3

5.5±

0.3

-0.0

9±0.

0418

02M

AX

IJ08

17−0

7412

4.4

-7.4

0.02

631

.232

.5±1.

026

.49.

9±0.

40.

04±

0.02

RX

CJ0

817.

4−073

0(4

6)12

4.35

2-7

.513

0.07

04G

alax

yC

lust

erM

G18

12M

AX

IJ08

17+

017

124.

41.

70.

094

9.4

10.7±

1.1

8.0

2.9±

0.4

0.09±

0.08

182

2MA

XIJ

0823

+08

212

5.8

8.2

0.23

77.

56.

9±0.

94.

61.

7±0.

40.

15±

0.12

183

2MA

XIJ

0825

+73

312

6.3

73.3

0.10

312

.511

.2±0.

97.

42.

1±0.

30.

28±

0.07

184

2MA

XIJ

0827

−642

126.

8-6

4.3

0.18

77.

86.

2±0.

86.

71.

8±0.

30.

07±

0.10

185

2MA

XIJ

0831

+66

012

7.8

66.0

0.17

37.

26.

4±0.

99.

32.

7±0.

3-0

.13±

0.09

RX

CJ0

830.

9+65

5112

7.74

365

.850

0.18

18G

alax

yC

lust

erM

186

2MA

XIJ

0831

−701

127.

9-7

0.1

0.15

49.

97.

3±0.

72.

50.

6±0.

20.

59±

0.13

187

2MA

XIJ

0835

−040

129.

0-4

.10.

159

8.0

9.4±

1.2

6.2

2.2±

0.4

0.17±

0.10

188

2MA

XIJ

0839

+48

512

9.8

48.5

0.12

210

.312

.5±1.

26.

42.

4±0.

40.

25±

0.09

EIU

Ma

129.

592

48.6

34C

V/D

QH

erB

189

2MA

XIJ

0840

−125

130.

0-1

2.6

0.15

19.

79.

6±1.

06.

92.

2±0.

30.

17±

0.09

3C20

612

9.96

1-1

2.24

30.

1976

QS

OB

190

2MA

XIJ

0840

+70

813

0.2

70.8

0.10

011

.910

.8±0.

96.

31.

8±0.

30.

33±

0.08

[HB

89]0

836+

710

130.

351

70.8

952.

172

Bla

zar

BM

191

2MA

XIJ

0846

+14

213

1.7

14.2

0.23

37.

48.

0±1.

14.

71.

8±0.

40.

19±

0.12

2MA

SX

J084

5185

0+14

2034

513

1.32

714

.343

0.06

06S

y1.9

B

Page 15: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

—C

ON

TIN

UE

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

192

2MA

XIJ

0854

−074

133.

6-7

.50.

214

7.8

7.9±

1.0

6.2

2.1±

0.3

0.09±

0.10

193

2MA

XIJ

0856

−247

134.

0-2

4.8

0.14

510

.411

.1±1.

18.

42.

8±0.

30.

12±

0.08

194

2MA

XIJ

0909

−096

137.

3-9

.60.

021

58.6

71.2±

1.2

49.2

19.6±

0.4

0.09±

0.01

AB

ELL

754

(47)

137.

209

-9.6

370.

0542

Gal

axy

Clu

ster

BM

G19

52M

AX

IJ09

10+

524

137.

752

.50.

194

9.5

11.5±

1.2

5.1

1.8±

0.4

0.35±

0.10

196

2MA

XIJ

0918

−119

139.

5-1

2.0

0.07

217

.019

.0±1.

121

.47.

4±0.

3-0

.09±

0.04

RX

CJ0

918.

1−120

5(4

8)13

9.52

7-1

2.09

30.

0539

Gal

axy

Clu

ster

MG

197

2MA

XIJ

0920

−079

140.

2-7

.90.

092

14.7

17.0±

1.2

10.3

3.6±

0.4

0.21±

0.06

MC

G−0

1−24

−012

140.

193

-8.0

560.

0196

Sy2

B19

82M

AX

IJ09

21−2

2414

0.4

-22.

40.

230

8.3

9.2±

1.1

8.3

2.7±

0.3

0.05±

0.09

199

2MA

XIJ

0922

+30

114

0.6

30.1

0.23

97.

18.

6±1.

25.

21.

9±0.

40.

18±

0.12

RX

CJ0

920.

4+30

3014

0.10

930

.515

0.29

52G

alax

yC

lust

erM

200

2MA

XIJ

0923

+22

814

0.8

22.9

0.13

09.

210

.3±1.

16.

52.

3±0.

40.

20±

0.09

MC

G+

04−2

2−04

214

0.92

922

.909

0.03

23S

y1.2

B20

12M

AX

IJ09

23+

521

141.

052

.10.

074

17.0

20.7±

1.2

15.2

5.7±

0.4

0.09±

0.04

202

2MA

XIJ

0924

−316

141.

0-3

1.6

0.02

547

.563

.5±1.

346

.220

.2±0.

40.

01±

0.02

2MA

SX

J092

3537

1−314

1305

(49)

140.

974

-31.

692

0.04

22S

y1.9

BG

203

2MA

XIJ

0945

−140

146.

5-1

4.1

0.14

59.

59.

2±1.

04.

21.

3±0.

30.

39±

0.11

NG

C29

9214

6.42

5-1

4.32

60.

0077

Sy2

BM

204

2MA

XIJ

0947

+28

814

6.9

28.9

0.19

17.

18.

2±1.

24.

21.

5±0.

40.

28±

0.13

205

2MA

XIJ

0947

−308

146.

9-3

0.9

0.02

062

.082

.9±1.

343

.218

.9±0.

40.

18±

0.01

MC

G−0

5−23

−016

(50)

146.

917

-30.

949

0.00

85S

y2B

G20

62M

AX

IJ09

49+

757

147.

375

.70.

255

7.3

6.5±

0.9

6.3

1.8±

0.3

0.09±

0.10

207

2MA

XIJ

0953

−763

148.

4-7

6.3

0.16

19.

87.

7±0.

87.

41.

9±0.

30.

15±

0.08

208

2MA

XIJ

0955

−694

148.

8-6

9.4

0.28

29.

17.

3±0.

84.

91.

3±0.

30.

31±

0.11

209

2MA

XIJ

0956

+69

414

9.2

69.4

0.04

827

.624

.2±0.

922

.97.

1±0.

30.

05±

0.03

MA

XIJ

0957

+69

3(5

1)14

9.30

069

.400

conf

used

(E)

210

2MA

XIJ

1000

−313

150.

2-3

1.3

0.09

113

.314

.3±1.

18.

63.

1±0.

40.

19±

0.07

2MA

SX

J095

9426

3−311

2581

149.

928

-31.

216

0.03

7S

y1B

211

2MA

XIJ

1007

+66

215

1.8

66.3

0.19

88.

36.

5±0.

84.

21.

2±0.

30.

27±

0.12

212

2MA

XIJ

1009

−311

152.

4-3

1.2

0.09

813

.916

.8±1.

213

.65.

0±0.

40.

05±

0.05

213

2MA

XIJ

1016

−274

154.

1-2

7.5

0.21

38.

79.

4±1.

16.

72.

4±0.

40.

13±

0.09

214

2MA

XIJ

1020

−034

155.

1-3

.40.

165

8.2

9.6±

1.2

9.0

3.2±

0.4

-0.0

0±0.

08A

RK

241

155.

418

-3.4

540.

0408

Sy1

B21

52M

AX

IJ10

23+

199

155.

919

.90.

064

19.5

23.2±

1.2

15.8

5.8±

0.4

0.14±

0.04

NG

C32

27(5

2)15

5.87

719

.865

0.00

39S

y1.5

BG

216

2MA

XIJ

1025

+49

915

6.3

49.9

0.25

07.

18.

6±1.

28.

53.

1±0.

4-0

.05±

0.09

RX

CJ1

022.

5+50

0615

5.62

750

.102

0.15

8G

alax

yC

lust

erM

217

2MA

XIJ

1028

+72

915

7.2

73.0

0.20

27.

57.

0±0.

93.

40.

9±0.

30.

41±

0.13

CG

CG

333−0

3815

8.59

873

.014

0.02

2G

alax

yB

218

2MA

XIJ

1030

−351

157.

7-3

5.2

0.14

08.

910

.8±1.

212

.44.

5±0.

4-0

.12±

0.07

219

2MA

XIJ

1031

−143

158.

0-1

4.3

0.10

911

.111

.7±1.

17.

62.

4±0.

30.

22±

0.08

2MA

SS

iJ10

3154

3−141

651

157.

976

-14.

281

0.08

6S

y1B

220

2MA

XIJ

1036

−275

159.

1-2

7.6

0.04

626

.532

.1±1.

236

.814

.6±0.

4-0

.16±

0.02

RX

CJ1

036.

6−273

1(5

3)15

9.17

4-2

7.52

40.

0126

Gal

axy

Clu

ster

MG

221

2MA

XIJ

1037

−104

159.

4-1

0.5

0.22

37.

16.

8±1.

07.

52.

5±0.

3-0

.05±

0.10

222

2MA

XIJ

1103

−234

165.

8-2

3.4

0.10

512

.313

.8±1.

117

.86.

2±0.

3-0

.15±

0.05

2MA

SX

J110

3376

5−232

9307

(54)

165.

907

-23.

492

0.18

6B

LLa

cB

G22

32M

AX

IJ11

04+

382

166.

138

.20.

011

107.

118

2.2±

1.7

111.

470

.9±0.

6-0

.09±

0.01

Mrk

421

(55)

166.

114

38.2

090.

03B

LLa

cB

G22

42M

AX

IJ11

05+

724

166.

472

.40.

048

24.6

24.8±

1.0

13.8

4.1±

0.3

0.33±

0.04

NG

C35

16(5

6)16

6.69

872

.569

0.00

88S

y1.5

BG

225

2MA

XIJ

1108

−056

167.

1-5

.60.

216

7.2

7.9±

1.1

5.0

1.8±

0.4

0.19±

0.12

226

2MA

XIJ

1116

−768

169.

2-7

6.8

0.17

39.

37.

2±0.

812

.73.

2±0.

3-0

.16±

0.07

227

2MA

XIJ

1123

+12

017

0.9

12.0

0.32

58.

46.

7±0.

85.

92.

2±0.

40.

00±

0.10

228

2MA

XIJ

1127

+19

017

1.8

19.0

0.20

97.

97.

3±0.

94.

91.

7±0.

40.

17±

0.12

2MA

SX

J112

7163

2+19

0919

817

1.81

819

.156

0.10

55S

y1.8

B22

92M

AX

IJ11

29−1

4417

2.3

-14.

50.

096

11.6

12.6±

1.1

9.1

3.0±

0.3

0.16±

0.07

RX

CJ1

130.

3−143

417

2.58

1-1

4.58

30.

1068

Gal

axy

Clu

ster

M23

02M

AX

IJ11

32+

146

173.

114

.60.

138

8.8

10.4±

1.2

8.3

3.2±

0.4

0.04±

0.08

RX

CJ1

132.

8+14

2817

3.22

114

.469

0.08

34G

alax

yC

lust

erM

231

2MA

XIJ

1136

+67

517

4.0

67.6

0.09

015

.214

.4±0.

916

.95.

1±0.

3-0

.04±

0.04

2MA

SX

J113

6300

9+67

3704

2(5

7)17

4.12

567

.618

0.13

42B

LLa

cB

G23

22M

AX

IJ11

38−1

1917

4.7

-11.

90.

286

7.5

7.3±

1.0

6.1

2.0±

0.3

0.09±

0.10

233

2MA

XIJ

1139

+22

017

4.8

22.1

0.15

59.

09.

2±1.

05.

41.

9±0.

40.

23±

0.10

234

2MA

XIJ

1139

−376

174.

9-3

7.7

0.04

029

.739

.7±1.

321

.68.

4±0.

40.

21±

0.03

NG

C37

83(5

8)17

4.75

7-3

7.73

90.

0097

Sy1

BG

235

2MA

XIJ

1143

+59

217

5.9

59.2

0.18

78.

39.

9±1.

27.

72.

4±0.

30.

14±

0.09

MC

G+

10−1

7−06

117

6.38

858

.978

0.00

99G

alax

yB

236

2MA

XIJ

1144

+71

717

6.0

71.7

0.05

920

.420

.1±1.

014

.14.

2±0.

30.

22±

0.04

DO

Dra

(59)

175.

910

71.6

89C

V/D

QH

erB

G23

72M

AX

IJ11

44+

198

176.

219

.80.

052

24.5

28.9±

1.2

31.1

12.4±

0.4

-0.1

3±0.

03A

1367

(60)

176.

152

19.7

590.

0214

Gal

axy

Clu

ster

MG

238

2MA

XIJ

1145

−182

176.

4-1

8.2

0.06

815

.016

.2±1.

112

.74.

1±0.

30.

13±

0.05

239

2MA

XIJ

1149

−077

177.

4-7

.80.

192

7.1

7.6±

1.1

6.4

2.2±

0.4

0.05±

0.11

Page 16: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

—C

ON

TIN

UE

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

240

2MA

XIJ

1151

−119

177.

8-1

1.9

0.15

59.

19.

3±1.

06.

82.

3±0.

30.

14±

0.09

241

2MA

XIJ

1155

+23

417

8.8

23.5

0.13

510

.712

.6±1.

212

.24.

5±0.

4-0

.04±

0.06

RX

CJ1

155.

3+23

2417

8.82

723

.407

0.14

27G

alax

yC

lust

erM

242

2MA

XIJ

1158

+56

217

9.7

56.3

0.17

78.

08.

2±1.

07.

32.

5±0.

30.

03±

0.09

RX

CJ1

200.

3+56

1318

0.09

256

.230

0.06

5G

alax

yC

lust

erM

243

2MA

XIJ

1159

−307

179.

9-3

0.8

0.19

27.

08.

5±1.

28.

52.

7±0.

30.

01±

0.09

244

2MA

XIJ

1203

+44

518

0.8

44.6

0.12

115

.518

.8±1.

213

.15.

2±0.

40.

08±

0.05

NG

C40

5118

0.79

044

.531

0.00

23S

y1.5

B24

52M

AX

IJ12

09+

476

182.

447

.60.

200

7.3

8.0±

1.1

3.1

1.1±

0.4

0.40±

0.15

246

2MA

XIJ

1210

+39

418

2.7

39.4

0.01

591

.812

2.6±

1.3

31.6

15.1±

0.5

0.45±

0.01

NG

C41

51(6

2)18

2.63

639

.406

0.00

33S

y1.5

BG

247

2MA

XIJ

1217

+07

318

4.4

7.3

0.12

49.

311

.3±1.

26.

12.

3±0.

40.

24±

0.09

NG

C42

3518

4.29

17.

192

0.00

8S

y1B

248

2MA

XIJ

1219

+03

618

4.8

3.7

0.10

213

.816

.7±1.

214

.95.

7±0.

4-0

.02±

0.05

249

2MA

XIJ

1220

+30

018

5.0

30.1

0.04

625

.734

.4±1.

325

.310

.1±0.

40.

06±

0.03

250

2MA

XIJ

1220

+75

218

5.2

75.3

0.13

210

.87.

7±0.

77.

02.

0±0.

30.

12±

0.08

Mrk

205

185.

433

75.3

110.

0708

BL

Lac

BM

251

2MA

XIJ

1227

−091

186.

9-9

.10.

197

8.3

9.2±

1.1

5.1

1.7±

0.3

0.27±

0.11

252

2MA

XIJ

1228

−486

187.

1-4

8.6

0.09

414

.217

.2±1.

29.

83.

7±0.

40.

21±

0.06

1RX

SJ1

2275

8.8−4

8534

318

6.99

5-4

8.89

6C

V?

B25

32M

AX

IJ12

29+

021

187.

32.

20.

021

61.4

82.1±

1.3

44.3

19.4±

0.4

0.16±

0.01

254

2MA

XIJ

1230

+12

418

7.6

12.5

0.01

012

4.3

196.

4±1.

614

5.2

104.

0±0.

7-0

.24±

0.00

Virg

oga

laxy

clus

ter

(65)

187.

706

12.3

910.

0043

6G

alax

yClu

ster

G25

52M

AX

IJ12

37−3

8718

9.4

-38.

70.

093

13.9

16.9±

1.2

10.0

3.7±

0.4

0.19±

0.06

V10

25C

en(6

6)18

9.56

9-3

8.71

3C

V/D

QH

ER

BG

256

2MA

XIJ

1240

−049

190.

0-5

.00.

083

16.3

18.7±

1.1

12.6

4.7±

0.4

0.14±

0.05

257

2MA

XIJ

1240

−116

190.

2-1

1.7

0.21

17.

38.

1±1.

13.

81.

3±0.

30.

36±

0.13

WA

RP

J124

0.4−1

147

190.

104

-11.

793

0.19

3G

alax

yC

lust

erM

258

2MA

XIJ

1249

−412

192.

3-4

1.2

0.01

564

.193

.4±1.

570

.236

.3±0.

5-0

.09±

0.01

RX

CJ1

248.

7−411

8(6

8)19

2.20

0-4

1.30

80.

0114

Gal

axy

Clu

ster

MG

259

2MA

XIJ

1252

−291

193.

2-2

9.2

0.02

157

.984

.5±1.

553

.923

.6±0.

40.

08±

0.01

260

2MA

XIJ

1253

−127

193.

4-1

2.7

0.23

37.

57.

9±1.

05.

11.

7±0.

30.

21±

0.11

RX

CJ1

255.

7−123

919

3.92

5-1

2.65

50.

0585

Gal

axy

Clu

ster

M26

12M

AX

IJ12

54−0

6319

3.5

-6.4

0.23

08.

79.

2±1.

15.

21.

8±0.

40.

24±

0.11

RX

CJ1

254.

0−064

219

3.51

1-6

.701

0.19

62G

alax

yC

lust

erM

262

2MA

XIJ

1256

−305

194.

2-3

0.6

0.10

310

.914

.5±1.

317

.56.

7±0.

4-0

.17±

0.05

RX

CJ1

257.

2−302

219

4.32

0-3

0.37

70.

0554

Gal

axy

Clu

ster

M26

32M

AX

IJ12

57−1

7319

4.3

-17.

40.

056

20.4

22.8±

1.1

23.1

8.0±

0.3

-0.0

3±0.

03R

XC

J125

7.1−1

724

(70)

194.

290

-17.

400

0.04

73G

alax

yC

lust

erM

G26

42M

AX

IJ12

58+

016

194.

61.

60.

167

7.3

8.0±

1.1

6.7

2.4±

0.4

0.05±

0.10

265

2MA

XIJ

1259

−043

194.

8-4

.40.

068

21.0

23.5±

1.1

18.0

6.7±

0.4

0.07±

0.04

RX

CJ1

259.

3−041

119

4.84

0-4

.195

0.08

45G

alax

yC

lust

erM

266

2MA

XIJ

1259

+27

919

4.9

28.0

0.00

716

1.1

254.

4±1.

612

1.5

77.4±

0.6

0.04±

0.01

Com

aC

lust

er(7

1)19

4.95

327

.981

0.02

31G

alax

yC

lust

erB

MG

267

2MA

XIJ

1259

−017

194.

9-1

.70.

089

14.7

17.3±

1.2

16.7

6.2±

0.4

-0.0

4±0.

05R

XC

J125

8.6−0

145

194.

671

-1.7

570.

0845

Gal

axy

Clu

ster

M26

82M

AX

IJ13

04+

192

196.

219

.30.

173

7.4

8.5±

1.2

8.7

3.1±

0.4

-0.0

5±0.

09R

XC

J130

3.7+

1916

195.

940

19.2

710.

0643

Gal

axy

Clu

ster

M26

92M

AX

IJ13

07−4

0019

6.9

-40.

00.

129

10.0

12.2±

1.2

2.7

1.0±

0.4

0.60±

0.12

270

2MA

XIJ

1311

−014

198.

0-1

.50.

103

13.1

15.4±

1.2

13.1

4.8±

0.4

0.03±

0.05

RX

CJ1

311.

4−012

019

7.87

5-1

.335

0.18

32G

alax

yC

lust

erM

271

2MA

XIJ

1325

−429

201.

4-4

3.0

0.00

716

4.7

300.

2±1.

866

.034

.1±0.

50.

48±

0.01

Cen

A(7

2)20

1.36

5-4

3.01

90.

0018

Sy2

BG

272

2MA

XIJ

1327

−272

201.

8-2

7.2

0.07

417

.420

.0±1.

218

.06.

4±0.

40.

01±

0.04

RX

CJ1

326.

9−271

020

1.72

5-2

7.18

30.

0458

Gal

axy

Clu

ster

M27

32M

AX

IJ13

29−3

1520

2.4

-31.

50.

025

52.1

63.3±

1.2

51.8

22.7±

0.4

-0.0

4±0.

01R

XC

J132

9.7−3

136

202.

429

-31.

602

0.04

88G

alax

yC

lust

erM

274

2MA

XIJ

1332

+59

320

3.0

59.3

0.18

48.

18.

2±1.

010

.13.

2±0.

3-0

.09±

0.08

275

2MA

XIJ

1335

−341

203.

9-3

4.2

0.04

430

.736

.2±1.

221

.98.

7±0.

40.

15±

0.03

MC

G−0

6−30

−015

(75)

203.

974

-34.

296

0.00

77S

y1.2

BG

276

2MA

XIJ

1338

+04

620

4.6

4.6

0.05

818

.622

.4±1.

29.

73.

5±0.

40.

36±

0.05

NG

C52

52(7

7)20

4.56

64.

543

0.02

3S

y1.9

BG

277

2MA

XIJ

1347

−328

206.

9-3

2.8

0.01

465

.687

.7±1.

359

.726

.1±0.

40.

05±

0.01

AB

ELL

3571

(78)

206.

871

-32.

866

0.03

91G

alax

yC

lust

erB

MG

278

2MA

XIJ

1348

+02

420

7.1

2.4

0.17

38.

39.

0±1.

12.

80.

9±0.

30.

52±

0.14

SW

IFT

J134

7.7+

0212

206.

852

2.31

2B

279

2MA

XIJ

1348

−117

207.

2-1

1.7

0.14

29.

210

.2±1.

16.

42.

1±0.

30.

23±

0.09

RX

CJ1

347.

5−114

420

6.87

5-1

1.74

90.

4516

Gal

axy

Clu

ster

M28

02M

AX

IJ13

48+

267

207.

226

.70.

034

35.8

41.8±

1.2

35.7

14.2±

0.4

-0.0

2±0.

02R

XC

J134

8.8+

2635

(79)

207.

221

26.5

960.

0622

Gal

axy

Clu

ster

MG

281

2MA

XIJ

1349

−302

207.

3-3

0.2

0.02

162

.375

.7±1.

247

.118

.7±0.

40.

14±

0.01

IC43

29A

(80)

207.

330

-30.

309

0.01

6S

y1.2

BM

G28

22M

AX

IJ13

53−7

3920

8.4

-73.

90.

062

9.9

7.7±

0.8

5.8

1.5±

0.3

0.24±

0.09

283

2MA

XIJ

1357

+21

420

9.3

21.5

0.20

98.

08.

4±1.

12.

20.

8±0.

30.

57±

0.16

284

2MA

XIJ

1357

−094

209.

3-9

.50.

191

7.9

8.6±

1.1

6.2

2.1±

0.3

0.15±

0.10

285

2MA

XIJ

1358

−478

209.

7-4

7.9

0.05

820

.327

.2±1.

321

.08.

4±0.

40.

03±

0.03

RX

CJ1

358.

9−475

020

9.73

7-4

7.83

90.

074

Gal

axy

Clu

ster

M28

62M

AX

IJ14

00+

032

210.

13.

20.

119

10.6

11.4±

1.1

9.7

3.4±

0.4

0.04±

0.07

287

2MA

XIJ

1406

−300

211.

7-3

0.0

0.18

07.

98.

6±1.

14.

61.

5±0.

30.

29±

0.12

2MA

SX

J140

8067

4−302

3537

212.

028

-30.

398

0.02

35S

y1.4

B

Page 17: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

—C

ON

TIN

UE

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

288

2MA

XIJ

1408

−508

212.

0-5

0.9

0.05

820

.722

.3±1.

118

.06.

3±0.

40.

07±

0.04

RX

CJ1

407.

8−510

0(8

2)21

1.96

9-5

1.00

90.

0966

Gal

axy

Clu

ster

MG

289

2MA

XIJ

1409

−428

212.

5-4

2.8

0.12

49.

913

.3±1.

39.

23.

5±0.

40.

11±

0.07

RX

CJ1

410.

4−424

621

2.61

9-4

2.77

70.

049

Gal

axy

Clu

ster

M29

02M

AX

IJ14

13−0

3021

3.3

-3.1

0.02

649

.660

.3±1.

232

.112

.5±0.

40.

22±

0.02

NG

C55

06(8

3)21

3.31

2-3

.208

0.00

62S

y1.9

BG

291

2MA

XIJ

1417

+25

321

4.4

25.3

0.06

319

.828

.8±1.

520

.68.

1±0.

40.

08±

0.03

NG

C55

48(8

4)21

4.49

825

.137

0.01

72S

y1.5

BG

292

2MA

XIJ

1417

−128

214.

5-1

2.9

0.30

07.

26.

0±0.

83.

21.

0±0.

30.

31±

0.15

293

2MA

XIJ

1419

−265

214.

9-2

6.6

0.10

39.

210

.1±1.

15.

61.

9±0.

30.

28±

0.10

ES

O51

1−G03

021

4.84

3-2

6.64

50.

0224

Sy1

B29

42M

AX

IJ14

20−7

7921

5.1

-78.

00.

071

8.1

6.8±

0.8

4.4

0.9±

0.2

0.41±

0.11

295

2MA

XIJ

1420

+48

321

5.2

48.3

0.18

68.

910

.8±1.

28.

93.

3±0.

40.

04±

0.08

296

2MA

XIJ

1420

−485

215.

2-4

8.6

0.19

59.

710

.7±1.

17.

72.

8±0.

40.

11±

0.08

297

2MA

XIJ

1422

−380

215.

7-3

8.1

0.19

39.

311

.2±1.

211

.84.

4±0.

4-0

.09±

0.07

298

2MA

XIJ

1423

+37

921

5.9

37.9

0.16

39.

412

.6±1.

311

.54.

6±0.

4-0

.05±

0.07

BV

H20

07N

S10

216.

269

37.9

710.

163

Gal

axy

Clu

ster

M29

92M

AX

IJ14

23+

250

216.

025

.00.

179

7.7

11.2±

1.5

5.8

2.1±

0.4

0.27±

0.10

NG

C56

1021

6.09

524

.614

0.01

69S

y2B

300

2MA

XIJ

1428

−730

217.

1-7

3.0

0.06

29.

07.

0±0.

87.

51.

8±0.

20.

11±

0.09

301

2MA

XIJ

1429

+42

521

7.4

42.5

0.07

814

.218

.9±1.

315

.36.

7±0.

4-0

.04±

0.05

1ES

1426

+42

8(8

5)21

7.13

642

.672

0.12

9B

LLa

cB

MG

302

2MA

XIJ

1436

−364

219.

1-3

6.4

0.10

612

.414

.5±1.

27.

22.

6±0.

40.

30±

0.07

303

2MA

XIJ

1437

+58

821

9.4

58.8

0.15

210

.09.

6±1.

08.

52.

7±0.

30.

07±

0.08

Mrk

817

219.

092

58.7

940.

0314

Sy1

.5B

304

2MA

XIJ

1441

−386

220.

3-3

8.6

0.19

87.

18.

4±1.

25.

21.

9±0.

40.

18±

0.12

305

2MA

XIJ

1446

+15

222

1.6

15.3

0.17

69.

811

.9±1.

27.

82.

9±0.

40.

14±

0.08

306

2MA

XIJ

1454

−243

223.

6-2

4.3

0.14

39.

09.

8±1.

110

.73.

6±0.

3-0

.06±

0.07

307

2MA

XIJ

1455

−381

223.

9-3

8.1

0.15

69.

19.

8±1.

17.

12.

5±0.

40.

11±

0.09

RX

CJ1

456.

2−382

622

4.05

1-3

8.44

00.

115

Gal

axy

Clu

ster

M30

82M

AX

IJ14

59+

217

224.

921

.70.

160

9.2

10.4±

1.1

11.1

3.9±

0.4

-0.0

7±0.

07A

2009

225.

085

21.3

620.

153

Gal

axy

Clu

ster

M30

92M

AX

IJ15

03−4

2122

5.8

-42.

10.

099

12.4

15.0±

1.2

21.2

8.4±

0.4

-0.2

6±0.

0431

02M

AX

IJ15

03+

108

225.

810

.90.

103

12.8

15.6±

1.2

9.6

3.5±

0.4

0.19±

0.06

311

2MA

XIJ

1503

−027

226.

0-2

.70.

090

12.4

14.5±

1.2

11.7

4.1±

0.4

0.07±

0.06

RX

CJ1

504.

1−024

822

6.03

2-2

.805

0.21

53G

alax

yC

lust

erM

312

2MA

XIJ

1510

−815

227.

7-8

1.5

0.11

99.

07.

4±0.

83.

40.

9±0.

30.

47±

0.12

2MA

SX

J151

4421

7−812

3377

228.

675

-81.

394

0.06

84S

y1.2

B31

32M

AX

IJ15

11+

059

227.

85.

90.

025

48.3

64.5±

1.3

42.8

18.7±

0.4

0.06±

0.02

314

2MA

XIJ

1512

−213

228.

0-2

1.4

0.12

79.

710

.3±1.

17.

72.

5±0.

30.

14±

0.08

2MA

SX

J151

1597

9−211

9015

227.

999

-21.

317

0.04

46S

y1/N

LB

315

2MA

XIJ

1513

+42

322

8.4

42.4

0.21

97.

48.

9±1.

25.

02.

0±0.

40.

19±

0.12

NG

C58

9922

8.76

342

.050

0.00

86S

y2B

316

2MA

XIJ

1521

+08

223

0.4

8.2

0.09

121

.824

.1±1.

120

.59.

0±0.

4-0

.06±

0.03

317

2MA

XIJ

1522

+27

823

0.6

27.9

0.07

017

.621

.1±1.

219

.37.

3±0.

4-0

.03±

0.04

RX

CJ1

522.

4+27

42(8

8)23

0.61

027

.709

0.07

23G

alax

yC

lust

erM

G31

82M

AX

IJ15

23+

304

230.

830

.50.

119

11.5

13.5±

1.2

12.6

4.9±

0.4

-0.0

5±0.

0631

92M

AX

IJ15

23−3

0023

1.0

-30.

10.

314

8.2

8.6±

1.1

4.9

1.7±

0.3

0.26±

0.11

320

2MA

XIJ

1535

+58

123

3.9

58.1

0.14

38.

18.

0±1.

07.

22.

3±0.

30.

06±

0.09

Mrk

290

233.

968

57.9

030.

0296

Sy1

B32

12M

AX

IJ15

39−0

3123

4.8

-3.2

0.12

711

.613

.6±1.

28.

83.

1±0.

30.

18±

0.07

RX

CJ1

540.

1−031

823

5.03

1-3

.308

0.15

33G

alax

yC

lust

erM

322

2MA

XIJ

1539

+21

923

4.9

22.0

0.15

98.

38.

9±1.

18.

32.

9±0.

40.

01±

0.09

A21

0723

4.91

021

.789

0.04

11G

alax

yC

lust

erM

323

2MA

XIJ

1545

+36

123

6.5

36.2

0.20

97.

59.

1±1.

28.

43.

3±0.

4-0

.05±

0.09

A21

2423

6.25

036

.066

0.06

54G

alax

yC

lust

erM

324

2MA

XIJ

1546

−834

236.

6-8

3.4

0.15

97.

66.

1±0.

810

.02.

7±0.

3-0

.16±

0.08

RX

CJ1

539.

5−833

523

4.89

1-8

3.59

20.

0728

Gal

axy

Clu

ster

M32

52M

AX

IJ15

48−1

3623

7.1

-13.

60.

092

13.3

13.9±

1.0

8.0

2.6±

0.3

0.27±

0.07

NG

C59

9523

7.10

4-1

3.75

80.

0252

Sy2

B32

62M

AX

IJ15

51−2

2423

8.0

-22.

50.

167

8.8

9.0±

1.0

5.0

1.7±

0.3

0.28±

0.11

327

2MA

XIJ

1552

+85

023

8.2

85.1

0.19

88.

68.

1±0.

95.

51.

6±0.

30.

24±

0.10

LED

A10

0168

241.

849

85.0

300.

183

Sy1

B32

82M

AX

IJ15

55−7

9323

8.8

-79.

30.

105

8.9

7.0±

0.8

8.4

2.1±

0.3

0.04±

0.08

PK

S15

49−79

239.

245

-79.

234

0.15

01S

y1B

329

2MA

XIJ

1555

+11

223

9.0

11.2

0.15

710

.511

.0±1.

09.

73.

5±0.

40.

01±

0.07

330

2MA

XIJ

1558

+27

223

9.6

27.2

0.03

130

.956

.3±1.

834

.715

.2±0.

40.

10±

0.02

AB

ELL

2142

(90)

239.

567

27.2

250.

0909

Gal

axy

Clu

ster

BM

G33

12M

AX

IJ15

59−1

3823

9.9

-13.

80.

115

11.4

11.7±

1.0

9.8

3.3±

0.3

0.07±

0.07

332

2MA

XIJ

1600

+25

624

0.2

25.7

0.13

39.

712

.9±1.

31.

90.

7±0.

40.

71±

0.13

333

2MA

XIJ

1601

−758

240.

4-7

5.9

0.03

818

.415

.9±0.

916

.34.

2±0.

30.

10±

0.04

RX

CJ1

601.

7−754

4(9

2)24

0.44

5-7

5.74

60.

153

Gal

axy

Clu

ster

MG

334

2MA

XIJ

1602

+16

124

0.7

16.2

0.05

024

.733

.0±1.

328

.312

.4±0.

4-0

.07±

0.03

335

2MA

XIJ

1603

−099

240.

9-9

.90.

217

8.3

9.0±

1.1

6.6

2.2±

0.3

0.13±

0.10

Page 18: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

—C

ON

TIN

UE

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

336

2MA

XIJ

1605

−196

241.

3-1

9.7

0.15

715

.714

.7±0.

912

.84.

6±0.

40.

02±

0.05

337

2MA

XIJ

1607

−727

241.

8-7

2.8

0.12

211

.28.

0±0.

76.

21.

5±0.

20.

27±

0.09

2MA

SX

J160

5233

0−725

3565

241.

347

-72.

899

Gal

axy

B33

82M

AX

IJ16

13+

812

243.

481

.20.

271

7.7

6.4±

0.8

3.5

1.0±

0.3

0.35±

0.14

CG

CG

367−0

0924

4.83

081

.046

0.02

74S

y2B

339

2MA

XIJ

1614

+66

024

3.6

66.0

0.16

59.

17.

5±0.

88.

22.

4±0.

30.

01±

0.08

Mrk

876

243.

488

65.7

190.

129

Sy1

B34

02M

AX

IJ16

15−0

6024

3.9

-6.0

0.06

023

.028

.0±1.

220

.27.

6±0.

40.

10±

0.03

RX

CJ1

615.

7−060

8(9

3)24

3.94

5-6

.146

0.20

3G

alax

yC

lust

erM

G34

12M

AX

IJ16

15−1

0924

3.9

-10.

90.

223

9.9

11.0±

1.1

9.2

3.3±

0.4

0.03±

0.07

342

2MA

XIJ

1616

+25

824

4.0

25.9

0.20

57.

07.

4±1.

14.

71.

7±0.

40.

18±

0.12

343

2MA

XIJ

1617

+50

424

4.4

50.4

0.24

77.

96.

9±0.

91.

20.

4±0.

40.

67±

0.22

344

2MA

XIJ

1619

−281

244.

8-2

8.2

0.04

528

.734

.8±1.

224

.59.

4±0.

40.

09±

0.03

2MA

SS

J161

9333

4−280

7397

(94)

244.

889

-28.

128

Sym

b/N

SB

G34

52M

AX

IJ16

19+

066

244.

86.

60.

169

8.5

9.0±

1.1

5.1

1.8±

0.4

0.25±

0.11

346

2MA

XIJ

1619

−155

245.

0-1

5.6

<0.

001

7747

.417

8839

.2±

23.1

4889

.352

508.

2±10

.70.

05±

0.00

Sco

X-1

(95)

244.

980

-15.

640

LMX

B/N

SB

G34

72M

AX

IJ16

22−2

3124

5.6

-23.

10.

154

8.1

10.8±

1.3

9.3

3.4±

0.4

0.01±

0.08

348

2MA

XIJ

1626

−333

246.

7-3

3.3

0.06

220

.424

.5±1.

217

.86.

7±0.

40.

09±

0.04

RX

CJ1

626.

3−332

9(9

6)24

6.58

6-3

3.48

90.

1098

Gal

axy

Clu

ster

MG

349

2MA

XIJ

1627

−245

246.

8-2

4.6

0.05

325

.931

.2±1.

229

.311

.6±0.

4-0

.07±

0.03

MA

XIJ

1627

−243

(97)

246.

800

-24.

400

SR

C/X

-RA

Y(F

)35

02M

AX

IJ16

28+

396

247.

239

.60.

036

33.3

48.5±

1.5

39.4

18.8±

0.5

-0.0

8±0.

02R

XC

J162

8.6+

3932

(98)

247.

158

39.5

490.

0299

Gal

axy

Clu

ster

MG

351

2MA

XIJ

1632

−674

248.

1-6

7.5

0.00

622

0.0

259.

3±1.

213

1.6

52.3±

0.4

0.24±

0.00

4U16

26−6

7(9

9)24

8.07

0-6

7.46

2LM

XB

BG

352

2MA

XIJ

1632

+05

724

8.2

5.8

0.06

518

.021

.2±1.

217

.66.

5±0.

40.

03±

0.04

RX

CJ1

632.

7+05

34(1

00)

248.

194

5.57

10.

1514

Gal

axy

Clu

ster

MG

353

2MA

XIJ

1633

−756

248.

4-7

5.6

0.06

119

.015

.9±0.

816

.44.

4±0.

30.

09±

0.04

354

2MA

XIJ

1638

−643

249.

6-6

4.4

0.01

110

2.9

105.

1±1.

083

.630

.3±0.

40.

06±

0.01

TrA

Clu

ster

(102

)24

9.56

7-6

4.34

70.

0508

Gal

axy

Clu

ster

BM

G35

52M

AX

IJ16

39+

468

249.

846

.90.

114

10.6

12.9±

1.2

9.4

3.6±

0.4

0.09±

0.07

RX

CJ1

640.

3+46

4225

0.08

946

.706

0.22

8G

alax

yC

lust

erM

356

2MA

XIJ

1646

−735

251.

5-7

3.5

0.12

911

.88.

8±0.

715

.44.

0±0.

3-0

.16±

0.05

RX

CJ1

645.

4−733

425

1.35

9-7

3.58

20.

069

Gal

axy

Clu

ster

M35

72M

AX

IJ16

47−2

2925

1.9

-22.

90.

105

11.8

14.2±

1.2

10.4

3.6±

0.4

0.12±

0.06

358

2MA

XIJ

1653

+39

825

3.5

39.8

0.03

239

.357

.2±1.

536

.417

.4±0.

50.

04±

0.02

Mrk

501

(103

)25

3.46

839

.760

0.03

37B

LLa

cB

G35

92M

AX

IJ16

58+

353

254.

535

.40.

007

174.

431

7.8±

1.8

79.1

47.2±

0.6

0.38±

0.01

Her

X-1

(104

)25

4.45

835

.342

LMX

B/N

SB

G36

02M

AX

IJ16

59−1

5125

4.8

-15.

10.

016

69.1

83.9±

1.2

77.9

34.1±

0.4

-0.1

1±0.

01M

AX

IJ16

59−1

5225

4.75

6-1

5.25

8X

RB

/BH

B36

12M

AX

IJ17

04+

785

256.

078

.60.

028

46.5

42.4±

0.9

39.3

13.0±

0.3

0.03±

0.02

AB

ELL

2256

(106

)25

5.93

178

.718

0.05

81G

alax

yC

lust

erB

MG

362

2MA

XIJ

1704

−011

256.

2-1

.20.

093

14.4

16.6±

1.2

13.4

4.9±

0.4

0.05±

0.05

363

2MA

XIJ

1705

−617

256.

4-6

1.8

0.07

715

.914

.7±0.

919

.75.

9±0.

3-0

.10±

0.04

SW

IFT

J179

616.

4−614

240

256.

500

-61.

717

tran

sien

tB

364

2MA

XIJ

1706

+24

025

6.6

24.1

0.05

322

.327

.1±1.

218

.06.

7±0.

40.

14±

0.03

4U17

00+

24(1

07)

256.

644

23.9

72LM

XB

/NS

BG

365

2MA

XIJ

1708

−810

257.

2-8

1.0

0.31

27.

36.

0±0.

84.

51.

2±0.

30.

26±

0.12

366

2MA

XIJ

1712

+64

125

8.2

64.1

0.07

68.

88.

9±1.

011

.23.

4±0.

3-0

.08±

0.07

RX

CJ1

712.

7+64

0325

8.19

764

.061

0.08

09G

alax

yC

lust

erM

367

2MA

XIJ

1715

+20

125

8.9

20.1

0.21

37.

06.

6±0.

94.

71.

7±0.

40.

14±

0.13

Zw

Cl8

182

259.

043

20.3

570.

1306

Gal

axy

Clu

ster

M36

82M

AX

IJ17

17−6

2825

9.3

-62.

90.

075

14.8

14.2±

1.0

1.3

0.4±

0.3

0.85±

0.10

NG

C63

00(1

08)

259.

248

-62.

821

0.00

37S

y2B

G36

92M

AX

IJ17

18−7

3425

9.5

-73.

40.

101

17.0

12.4±

0.7

12.2

3.1±

0.3

0.13±

0.05

370

2MA

XIJ

1720

+26

726

0.1

26.8

0.10

411

.313

.0±1.

17.

92.

9±0.

40.

19±

0.07

RX

CJ1

720.

1+26

3726

0.03

926

.627

0.16

44G

alax

yC

lust

erM

371

2MA

XIJ

1721

+33

826

0.4

33.8

0.20

88.

310

.1±1.

26.

62.

6±0.

40.

12±

0.10

372

2MA

XIJ

1722

+31

526

0.7

31.5

0.17

88.

711

.7±1.

38.

73.

5±0.

40.

05±

0.08

373

2MA

XIJ

1731

−058

262.

8-5

.90.

131

9.5

11.4±

1.2

4.0

1.4±

0.4

0.44±

0.11

1RX

SJ1

7302

1.5−0

5593

326

2.59

1-5

.992

CV

/DQ

Her

B37

42M

AX

IJ17

40−5

9926

5.1

-60.

00.

154

10.7

9.9±

0.9

8.2

2.3±

0.3

0.16±

0.07

1RX

SJ1

7375

1.2−6

0040

8(C

)()

264.

463

-60.

069

B(G

)37

52M

AX

IJ17

41+

059

265.

35.

90.

115

10.5

12.8±

1.2

9.8

3.6±

0.4

0.07±

0.07

376

2MA

XIJ

1741

−539

265.

4-5

4.0

0.15

67.

47.

4±1.

05.

11.

6±0.

30.

21±

0.11

377

2MA

XIJ

1742

+03

726

5.5

3.8

0.10

112

.213

.5±1.

111

.24.

1±0.

40.

03±

0.06

378

2MA

XIJ

1742

+18

426

5.6

18.5

0.09

811

.413

.6±1.

210

.23.

8±0.

40.

08±

0.07

4C+

18.5

1(1

09)

265.

529

18.4

560.

186

QS

OB

G37

92M

AX

IJ17

51−6

3726

7.9

-63.

80.

171

9.5

8.0±

0.8

6.2

1.6±

0.3

0.23±

0.09

RX

CJ1

752.

0−634

826

8.02

3-6

3.81

60.

133

Gal

axy

Clu

ster

M38

02M

AX

IJ17

53−0

1326

8.4

-1.3

0.00

425

5.1

495.

9±1.

919

2.3

145.

3±0.

80.

06±

0.00

SW

IFT

J175

3.5−0

127

(110

)26

8.36

8-1

.452

LMX

B/B

HC

BG

381

2MA

XIJ

1759

+68

426

9.9

68.5

0.20

69.

36.

8±0.

75.

11.

5±0.

30.

20±

0.11

382

2MA

XIJ

1800

+08

227

0.1

8.2

0.07

713

.915

.7±1.

16.

22.

3±0.

40.

38±

0.08

V23

01O

ph27

0.14

68.

170

CV

/AM

Her

B38

32M

AX

IJ18

06+

101

271.

510

.10.

215

7.9

8.8±

1.1

9.0

3.4±

0.4

-0.0

9±0.

08R

XC

J180

4.4+

1002

271.

119

10.0

390.

1525

Gal

axy

Clu

ster

M

Page 19: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

—C

ON

TIN

UE

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

384

2MA

XIJ

1807

+05

927

1.9

6.0

0.05

122

.525

.9±1.

213

.65.

3±0.

40.

24±

0.04

V42

6O

ph(1

11)

271.

966

5.86

4C

V/D

war

fnov

aB

G38

52M

AX

IJ18

16+

498

274.

149

.90.

025

48.4

64.7±

1.3

25.9

10.3±

0.4

0.35±

0.02

AM

Her

(112

)27

4.05

549

.868

CV

/AM

Her

BG

386

2MA

XIJ

1824

+64

327

6.2

64.3

0.10

013

.813

.5±1.

014

.84.

8±0.

3-0

.04±

0.05

387

2MA

XIJ

1825

+30

627

6.4

30.7

0.11

111

.714

.2±1.

213

.45.

2±0.

4-0

.06±

0.06

RX

CJ1

825.

3+30

26(1

14)

276.

345

30.4

420.

065

Gal

axy

Clu

ster

MG

388

2MA

XIJ

1825

−370

276.

5-3

7.0

0.00

621

9.1

399.

4±1.

810

6.5

63.5±

0.6

0.35±

0.00

4U18

22−3

71(1

13)

276.

445

-37.

105

LMX

BB

G38

92M

AX

IJ18

34+

327

278.

732

.80.

059

21.8

29.1±

1.3

16.7

7.3±

0.4

0.13±

0.04

3C38

2(1

15)

278.

764

32.6

960.

0579

Sy1

BG

390

2MA

XIJ

1835

−328

279.

0-3

2.9

0.02

941

.755

.7±1.

334

.915

.3±0.

40.

09±

0.02

XB

1832

−330

(116

)27

8.93

2-3

2.99

1LM

XB

/NS

BG

391

2MA

XIJ

1836

−594

279.

0-5

9.4

0.07

015

.614

.8±0.

913

.94.

0±0.

30.

09±

0.05

Fai

rall

4927

9.24

3-5

9.40

20.

0202

Sy2

B39

22M

AX

IJ18

37−5

7027

9.4

-57.

10.

219

7.5

6.7±

0.9

4.0

1.1±

0.3

0.32±

0.13

SW

IFT

J183

905.

82−57

1507

.627

9.77

6-5

7.25

2S

RC

/X-R

AY

B39

32M

AX

IJ18

38−6

5427

9.6

-65.

50.

048

29.1

25.4±

0.9

9.2

2.5±

0.3

0.55±

0.04

ES

O10

3−035

(117

)27

9.58

5-6

5.42

80.

0133

Sy2

BG

394

2MA

XIJ

1842

+79

728

0.6

79.7

0.03

932

.430

.8±0.

924

.77.

7±0.

30.

13±

0.03

3C39

0.3

(118

)28

0.53

879

.771

0.05

61S

y1B

MG

395

2MA

XIJ

1844

−373

281.

1-3

7.3

0.19

67.

48.

3±1.

12.

81.

0±0.

40.

45±

0.15

RX

CJ1

844.

5−372

428

1.13

2-3

7.40

50.

203

Gal

axy

Clu

ster

M39

62M

AX

IJ18

45−6

2628

1.4

-62.

60.

158

8.5

7.1±

0.8

5.3

1.5±

0.3

0.21±

0.11

Fai

rall

5128

1.22

5-6

2.36

50.

0142

Sy1

B39

72M

AX

IJ18

52−7

8328

3.0

-78.

40.

065

19.7

16.3±

0.8

15.1

3.9±

0.3

0.15±

0.04

398

2MA

XIJ

1854

−310

283.

7-3

1.1

0.02

158

.177

.6±1.

333

.013

.1±0.

40.

32±

0.02

V12

23S

gr(1

20)

283.

759

-31.

163

CV

/DQ

Her

BG

399

2MA

XIJ

1858

+29

028

4.6

29.1

0.15

28.

510

.3±1.

27.

42.

8±0.

40.

09±

0.09

400

2MA

XIJ

1900

−248

285.

1-2

4.8

0.00

420

3.9

322.

0±1.

614

9.7

95.3±

0.6

0.05±

0.00

HE

TE

J190

0.1−2

455

(121

)28

5.03

6-2

4.92

1LM

XB

/msP

SR

BG

401

2MA

XIJ

1900

−748

285.

1-7

4.8

0.25

68.

76.

6±0.

88.

62.

1±0.

20.

01±

0.08

402

2MA

XIJ

1912

−194

288.

1-1

9.5

0.19

57.

98.

5±1.

19.

13.

1±0.

3-0

.05±

0.08

403

2MA

XIJ

1915

−626

288.

8-6

2.6

0.19

99.

77.

8±0.

86.

41.

7±0.

30.

19±

0.09

404

2MA

XIJ

1919

−525

289.

9-5

2.6

0.17

79.

09.

0±1.

08.

22.

6±0.

30.

05±

0.08

405

2MA

XIJ

1919

−297

290.

0-2

9.8

0.19

27.

88.

6±1.

14.

21.

5±0.

40.

31±

0.12

PK

S19

16−30

028

9.86

7-2

9.96

90.

1668

Sy1

.9B

406

2MA

XIJ

1921

−587

290.

3-5

8.8

0.04

627

.026

.2±1.

025

.78.

0±0.

30.

04±

0.03

ES

O14

1−G

055

(122

)29

0.30

9-5

8.67

00.

036

Sy1

BG

407

2MA

XIJ

1921

+44

029

0.3

44.0

0.01

868

.810

8.6±

1.6

54.4

30.3±

0.6

0.08±

0.01

AB

ELL

2319

(123

)29

0.18

943

.962

0.05

57G

alax

yC

lust

erB

MG

408

2MA

XIJ

1922

−171

290.

6-1

7.1

0.03

436

.842

.9±1.

237

.414

.3±0.

4-0

.01±

0.02

SW

IFT

J192

2.7−1

716

290.

654

-17.

284

XR

B/u

Qua

sar?

B40

92M

AX

IJ19

24+

502

291.

150

.30.

124

9.1

12.2±

1.3

4.4

1.7±

0.4

0.41±

0.10

CH

Cyg

(124

)29

1.13

850

.241

Sym

b/W

DB

G41

02M

AX

IJ19

29−4

9729

2.4

-49.

80.

156

8.6

9.9±

1.2

7.3

2.1±

0.3

0.21±

0.09

411

2MA

XIJ

1933

−802

293.

3-8

0.2

0.09

313

.611

.2±0.

813

.63.

6±0.

30.

01±

0.05

412

2MA

XIJ

1936

−513

294.

1-5

1.3

0.12

410

.511

.3±1.

18.

22.

7±0.

30.

15±

0.08

2MA

SX

J193

8043

7−510

9497

294.

518

-51.

164

0.04

Sy1

.2B

413

2MA

XIJ

1937

−060

294.

3-6

.00.

075

16.7

19.1±

1.1

15.6

5.8±

0.4

0.04±

0.04

2MA

SX

J193

7329

9−061

3046

294.

388

-6.2

180.

0103

Sy1

.5B

414

2MA

XIJ

1941

−102

295.

4-1

0.3

0.03

437

.444

.6±1.

222

.38.

1±0.

40.

29±

0.02

415

2MA

XIJ

1947

−766

296.

9-7

6.7

0.11

610

.68.

7±0.

88.

12.

0±0.

30.

17±

0.08

RX

CJ1

947.

3−762

329

6.83

0-7

6.39

20.

217

Gal

axy

Clu

ster

M41

62M

AX

IJ19

50−5

2229

7.7

-52.

20.

144

9.7

10.1±

1.0

8.4

2.8±

0.3

0.09±

0.08

417

2MA

XIJ

1950

−110

297.

7-1

1.0

0.17

77.

28.

3±1.

16.

22.

1±0.

30.

13±

0.10

418

2MA

XIJ

1952

+70

829

8.1

70.8

0.16

09.

17.

9±0.

95.

01.

4±0.

30.

28±

0.11

419

2MA

XIJ

1954

−554

298.

5-5

5.4

0.24

88.

06.

6±0.

810

.33.

3±0.

3-0

.21±

0.08

RX

CJ1

952.

2−550

329

8.06

9-5

5.06

20.

06G

alax

yC

lust

erM

420

2MA

XIJ

1959

+65

129

9.9

65.1

0.03

140

.642

.9±1.

148

.618

.2±0.

4-0

.13±

0.02

QS

OB

1959

+65

0(1

26)

299.

999

65.1

480.

047

BL

Lac

BG

421

2MA

XIJ

2005

−712

301.

4-7

1.2

0.12

99.

77.

4±0.

87.

01.

7±0.

20.

17±

0.09

422

2MA

XIJ

2006

−107

301.

6-1

0.7

0.19

87.

47.

7±1.

04.

61.

5±0.

30.

24±

0.12

423

2MA

XIJ

2009

−487

302.

3-4

8.8

0.11

49.

911

.1±1.

111

.14.

0±0.

4-0

.05±

0.07

PK

S20

05−48

930

2.35

6-4

8.83

20.

071

BL

Lac

B42

42M

AX

IJ20

09−6

1130

2.4

-61.

10.

089

13.2

12.1±

0.9

12.1

3.4±

0.3

0.08±

0.06

NG

C68

60(1

27)

302.

195

-61.

100

0.01

49S

y1B

G42

52M

AX

IJ20

11+

604

303.

060

.40.

205

7.9

8.3±

1.0

7.8

2.5±

0.3

0.03±

0.09

426

2MA

XIJ

2012

−568

303.

2-5

6.8

0.02

452

.351

.5±1.

045

.015

.4±0.

30.

04±

0.01

AB

ELL

3667

(128

)30

3.12

5-5

6.81

60.

0556

Gal

axy

Clu

ster

BM

G42

72M

AX

IJ20

14−2

4430

3.6

-24.

40.

136

9.0

10.0±

1.1

7.7

2.6±

0.3

0.10±

0.08

RX

CJ2

014.

8−243

030

3.70

7-2

4.50

80.

1612

Gal

axy

Clu

ster

M42

82M

AX

IJ20

18+

156

304.

715

.70.

278

7.0

9.4±

1.3

7.1

2.7±

0.4

0.06±

0.10

429

2MA

XIJ

2033

+21

930

8.4

22.0

0.13

210

.312

.1±1.

26.

52.

3±0.

40.

26±

0.09

4C+

21.5

530

8.38

421

.773

0.17

35Q

SO

B43

02M

AX

IJ20

34−3

5330

8.6

-35.

40.

132

12.0

14.3±

1.2

12.9

4.7±

0.4

-0.0

1±0.

0643

12M

AX

IJ20

37−3

0630

9.4

-30.

70.

142

10.1

11.2±

1.1

4.1

1.4±

0.3

0.44±

0.11

Page 20: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

—C

ON

TIN

UE

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

432

2MA

XIJ

2042

+75

131

0.7

75.2

0.05

522

.921

.4±0.

917

.45.

2±0.

30.

15±

0.04

4C+

74.2

6(1

29)

310.

655

75.1

340.

104

Sy1

BG

433

2MA

XIJ

2043

−324

310.

8-3

2.5

0.19

47.

27.

2±1.

010

.23.

7±0.

4-0

.22±

0.08

434

2MA

XIJ

2043

−714

310.

9-7

1.4

0.21

28.

06.

9±0.

98.

02.

0±0.

30.

06±

0.09

435

2MA

XIJ

2044

−106

311.

1-1

0.6

0.03

536

.142

.5±1.

231

.411

.6±0.

40.

09±

0.02

Mrk

509

(130

)31

1.04

1-1

0.72

30.

0344

Sy1

.2B

G43

62M

AX

IJ21

07−2

1731

6.8

-21.

70.

123

8.9

7.7±

0.9

6.3

2.0±

0.3

0.11±

0.10

437

2MA

XIJ

2108

−439

317.

1-4

3.9

0.23

07.

89.

5±1.

23.

21.

2±0.

40.

44±

0.14

438

2MA

XIJ

2114

−588

318.

6-5

8.9

0.13

09.

38.

2±0.

97.

52.

1±0.

30.

13±

0.08

CD

Ind

318.

904

-58.

698

CV

/AM

HE

RB

439

2MA

XIJ

2115

+82

131

8.8

82.1

0.13

710

.19.

6±0.

99.

32.

7±0.

30.

07±

0.07

2MA

SX

J211

4012

8+82

0448

331

8.50

582

.080

0.08

4S

y1B

440

2MA

XIJ

2130

+12

232

2.5

12.2

0.01

110

5.7

166.

9±1.

697

.054

.0±0.

60.

01±

0.01

4U21

29+

12(1

31)

322.

493

12.1

67LM

XB

ingl

obul

arcl

usB

G44

12M

AX

IJ21

31−3

3432

2.9

-33.

50.

220

7.3

8.4±

1.1

6.7

2.4±

0.4

0.07±

0.10

6dF

J213

2022−

3342

5432

3.00

9-3

3.71

50.

0293

Sy1

B44

22M

AX

IJ21

36−6

2432

4.1

-62.

40.

061

21.1

18.4±

0.9

14.6

4.1±

0.3

0.20±

0.04

1RX

SJ2

1362

3.1−6

2240

0(1

32)

324.

096

-62.

400

0.05

88S

y1B

G44

32M

AX

IJ21

38−6

4332

4.5

-64.

30.

122

10.9

9.6±

0.9

9.6

2.5±

0.3

0.10±

0.07

444

2MA

XIJ

2144

+38

332

6.2

38.4

<0.

001

1171

.965

49.6

±5.

678

1.7

2176

.6±2.

8-0

.01±

0.00

Cyg

X-2

(133

)32

6.17

238

.322

LMX

B/N

SB

G44

52M

AX

IJ21

47−6

9332

6.8

-69.

40.

231

8.2

5.6±

0.7

6.0

1.5±

0.3

0.10±

0.10

446

2MA

XIJ

2148

−073

327.

1-7

.40.

191

8.1

8.8±

1.1

5.3

1.9±

0.4

0.21±

0.11

447

2MA

XIJ

2148

−166

327.

2-1

6.7

0.20

57.

44.

9±0.

74.

91.

5±0.

30.

02±

0.12

448

2MA

XIJ

2150

+14

232

7.5

14.2

0.17

110

.212

.4±1.

27.

22.

8±0.

40.

18±

0.08

449

2MA

XIJ

2150

−192

327.

7-1

9.2

0.11

311

.712

.1±1.

011

.43.

6±0.

30.

04±

0.06

6dF

J214

9581−

1859

2432

7.49

2-1

8.99

00.

1581

Sy1

B45

02M

AX

IJ21

51−7

2332

7.8

-72.

30.

196

7.8

5.4±

0.7

5.1

1.3±

0.2

0.17±

0.11

451

2MA

XIJ

2151

−304

328.

0-3

0.5

0.09

912

.715

.3±1.

210

.83.

9±0.

40.

12±

0.06

PK

S21

49−30

632

7.98

1-3

0.46

52.

345

Bla

zar

B45

22M

AX

IJ21

52−5

7632

8.1

-57.

70.

088

14.7

13.4±

0.9

13.8

4.3±

0.3

0.01±

0.05

453

2MA

XIJ

2154

+17

832

8.7

17.8

0.10

812

.114

.7±1.

211

.24.

3±0.

40.

06±

0.06

RX

CJ2

153.

5+17

4132

8.39

817

.687

0.23

29G

alax

yC

lust

erM

454

2MA

XIJ

2157

−061

329.

5-6

.10.

181

7.2

8.2±

1.1

6.0

2.1±

0.4

0.11±

0.11

EU

VE

J215

7−06.

132

9.36

3-6

.173

Sta

rB

455

2MA

XIJ

2200

−600

330.

2-6

0.0

0.05

920

.719

.4±0.

919

.55.

7±0.

30.

06±

0.04

RX

CJ2

201.

9−595

6(1

34)

330.

483

-59.

949

0.09

8G

alax

yC

lust

erM

G45

62M

AX

IJ22

00+

105

330.

210

.60.

153

8.2

9.6±

1.2

3.7

1.3±

0.4

0.41±

0.12

Mrk

520

330.

172

10.5

520.

0266

Sy1

.9B

457

2MA

XIJ

2201

−317

330.

5-3

1.8

0.06

520

.825

.2±1.

26.

42.

2±0.

40.

57±

0.05

NG

C71

72(1

35)

330.

508

-31.

870

0.00

87S

y2B

G45

82M

AX

IJ22

09−1

2533

2.4

-12.

50.

107

11.9

13.4±

1.1

12.4

4.2±

0.3

0.02±

0.06

459

2MA

XIJ

2213

−891

333.

3-8

9.2

0.26

47.

15.

7±0.

85.

51.

5±0.

30.

11±

0.11

460

2MA

XIJ

2216

−032

334.

2-3

.30.

131

11.0

12.5±

1.1

10.6

3.9±

0.4

0.03±

0.07

461

2MA

XIJ

2216

−647

334.

2-6

4.8

0.22

37.

65.

5±0.

75.

31.

4±0.

30.

13±

0.11

RX

CJ2

218.

0−651

133

4.52

3-6

5.18

50.

0951

Gal

axy

Clu

ster

M46

22M

AX

IJ22

18−0

8333

4.5

-8.4

0.04

728

.333

.6±1.

210

.43.

7±0.

40.

49±

0.04

FO

AQ

R(1

37)

334.

481

-8.3

51C

V/D

QH

erB

G46

32M

AX

IJ22

18−3

8833

4.7

-38.

90.

143

9.7

9.8±

1.0

7.5

2.7±

0.4

0.08±

0.08

RX

CJ2

218.

6−385

333

4.66

8-3

8.89

80.

1411

Gal

axy

Clu

ster

M46

42M

AX

IJ22

23−0

1733

6.0

-1.8

0.08

912

.714

.7±1.

28.

93.

2±0.

40.

20±

0.07

RX

CJ2

223.

8−013

833

5.97

0-1

.638

0.09

06G

alax

yC

lust

erM

465

2MA

XIJ

2225

+01

233

6.5

1.2

0.19

47.

18.

4±1.

24.

21.

5±0.

40.

29±

0.13

466

2MA

XIJ

2235

−259

338.

8-2

5.9

0.06

519

.322

.5±1.

215

.85.

6±0.

40.

14±

0.04

467

2MA

XIJ

2235

−381

339.

0-3

8.1

0.15

213

.914

.0±1.

011

.44.

3±0.

40.

03±

0.06

468

2MA

XIJ

2238

−126

339.

6-1

2.6

0.16

78.

18.

4±1.

06.

02.

0±0.

30.

17±

0.10

Mrk

915

339.

194

-12.

545

0.02

41S

y1B

469

2MA

XIJ

2241

+29

734

0.5

29.7

0.14

87.

58.

4±1.

112

.04.

5±0.

4-0

.24±

0.07

470

2MA

XIJ

2247

−524

341.

9-5

2.5

0.09

613

.314

.0±1.

112

.04.

0±0.

30.

07±

0.06

471

2MA

XIJ

2249

−641

342.

4-6

4.2

0.13

18.

77.

7±0.

911

.33.

0±0.

3-0

.08±

0.07

RX

CJ2

249.

9−642

534

2.48

8-6

4.42

90.

094

Gal

axy

Clu

ster

M47

22M

AX

IJ22

50−4

4534

2.5

-44.

60.

163

8.9

11.9±

1.3

8.7

3.4±

0.4

0.06±

0.08

RX

CJ2

248.

7−443

134

2.18

1-4

4.52

90.

3475

Gal

axy

Clu

ster

M47

32M

AX

IJ22

52−3

2334

3.2

-32.

40.

123

9.5

10.5±

1.1

8.2

2.9±

0.4

0.08±

0.08

474

2MA

XIJ

2253

+16

634

3.4

16.7

0.04

922

.930

.6±1.

324

.510

.7±0.

4-0

.03±

0.03

475

2MA

XIJ

2254

−174

343.

5-1

7.4

0.03

928

.933

.0±1.

125

.28.

9±0.

40.

10±

0.03

MR

2251

−178

(140

)34

3.52

4-1

7.58

20.

064

Sy1

BG

476

2MA

XIJ

2255

−030

343.

8-3

.00.

042

31.4

38.1±

1.2

17.1

6.5±

0.4

0.32±

0.03

477

2MA

XIJ

2255

−274

343.

9-2

7.4

0.21

67.

28.

1±1.

14.

61.

6±0.

30.

24±

0.12

478

2MA

XIJ

2300

+25

034

5.0

25.0

0.15

69.

710

.1±1.

06.

72.

4±0.

40.

16±

0.09

KA

Z32

034

4.88

724

.918

0.03

45S

y1B

479

2MA

XIJ

2301

−591

345.

3-5

9.1

0.17

78.

36.

8±0.

84.

51.

2±0.

30.

29±

0.12

2MA

SX

J230

1362

6−591

3210

345.

401

-59.

222

0.14

9S

y1B

Page 21: Riken - K H Y U M H M S R S T K M S N M S N K M T …maxi.riken.jp/references/Hiroi2013.pdf2 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama

TA

BL

E1

—C

ON

TIN

UE

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

MA

XI

Cou

nter

part

No.

Nam

eR

.A.

Dec

l.σ

stat

[a]

s D,4

−10k

eVf 4

−10k

eV[b

]s D

,3−4

keV

f 3−4

keV

[c]

HR

Nam

e[d]

R.A

.D

ecl.

zTy

pe[e

]F

lag[f

]N

ote[g

]

480

2MA

XIJ

2303

+08

634

5.8

8.7

0.07

117

.821

.7±1.

216

.96.

6±0.

40.

03±

0.04

NG

C74

6934

5.81

58.

874

0.01

63S

y1.2

BM

481

2MA

XIJ

2304

−187

346.

1-1

8.8

0.17

77.

07.

4±1.

14.

51.

5±0.

30.

25±

0.12

PK

S23

00−18

345.

762

-18.

690

0.12

83S

y1B

482

2MA

XIJ

2304

−085

346.

2-8

.60.

040

31.3

38.0±

1.2

27.1

10.5±

0.4

0.09±

0.02

Mrk

926

(142

)34

6.18

1-8

.686

0.04

69S

y1.5

BG

483

2MA

XIJ

2312

−220

348.

0-2

2.1

0.13

19.

610

.3±1.

19.

03.

0±0.

30.

05±

0.08

484

2MA

XIJ

2316

−424

349.

1-4

2.4

0.12

410

.514

.1±1.

39.

03.

5±0.

40.

13±

0.07

485

2MA

XIJ

2318

+00

134

9.5

0.2

0.12

011

.113

.4±1.

29.

63.

6±0.

40.

10±

0.07

NG

C76

0334

9.73

60.

244

0.02

95S

y1.5

B48

62M

AX

IJ23

18+

188

349.

718

.80.

150

8.5

10.4±

1.2

12.7

4.6±

0.4

-0.1

5±0.

07R

XC

J231

8.5+

1842

(C)

349.

612

18.7

240.

0389

Gal

axy

Clu

ster

M(H

)48

72M

AX

IJ23

19+

421

349.

942

.10.

142

9.4

12.5±

1.3

8.9

3.9±

0.4

0.03±

0.08

RX

CJ2

320.

2+41

4635

0.06

041

.779

0.14

Gal

axy

Clu

ster

M48

82M

AX

IJ23

23+

221

350.

822

.10.

245

7.5

7.8±

1.0

1.9

0.7±

0.3

0.58±

0.18

489

2MA

XIJ

2324

+16

635

1.0

16.7

0.15

310

.312

.4±1.

29.

83.

7±0.

40.

05±

0.07

A25

8935

0.97

316

.809

0.04

16G

alax

yC

lust

erM

490

2MA

XIJ

2324

−121

351.

1-1

2.1

0.11

111

.411

.3±1.

011

.74.

1±0.

4-0

.05±

0.06

RX

CJ2

325.

3−120

735

1.33

3-1

2.12

70.

0852

Gal

axy

Clu

ster

M49

12M

AX

IJ23

30−0

2235

2.7

-2.2

0.19

27.

89.

1±1.

26.

22.

2±0.

40.

15±

0.10

492

2MA

XIJ

2339

+26

935

4.8

27.0

0.17

810

.210

.3±1.

012

.44.

6±0.

4-0

.16±

0.06

RX

CJ2

338.

4+26

5935

4.60

727

.012

0.03

09G

alax

yC

lust

erM

493

2MA

XIJ

2344

+09

235

6.2

9.3

0.11

010

.312

.5±1.

212

.74.

9±0.

4-0

.09±

0.06

RX

CJ2

344.

9+09

1135

6.23

89.

198

0.04

Gal

axy

Clu

ster

M49

42M

AX

IJ23

48−2

8035

7.1

-28.

00.

079

15.9

18.9±

1.2

20.0

7.5±

0.4

-0.0

9±0.

04R

XC

J234

7.7−2

808

356.

930

-28.

141

0.03

Gal

axy

Clu

ster

M49

52M

AX

IJ23

54+

286

358.

628

.60.

119

10.3

12.4±

1.2

13.8

5.3±

0.4

-0.1

3±0.

0649

62M

AX

IJ23

54−1

6935

8.7

-16.

90.

156

9.1

8.9±

1.0

6.1

2.0±

0.3

0.18±

0.10

497

2MA

XIJ

2356

−106

359.

2-1

0.7

0.25

27.

47.

4±1.

06.

62.

3±0.

30.

03±

0.10

498

2MA

XIJ

2358

−346

359.

6-3

4.7

0.10

513

.415

.7±1.

216

.56.

3±0.

4-0

.10±

0.05

499

2MA

XIJ

2359

−307

359.

8-3

0.8

0.12

110

.211

.7±1.

19.

93.

5±0.

40.

04±

0.07

H23

56−3

0935

9.78

3-3

0.62

80.

1651

BL

Lac

B50

02M

AX

IJ23

59−0

6835

9.9

-6.8

0.19

57.

17.

5±1.

14.

21.

5±0.

40.

23±

0.13

2MA

SX

J000

0487

6−070

9117

0.20

3-7

.153

Gal

axy

B

aT

he1σ

stat

istic

alpo

sitio

ner

ror

inun

itsof

degr

ee.

The

reex

ists

anad

ditio

nals

yste

mat

icer

ror

of≈

0.09

◦(9

0%).

See

sect

ion

4.4

for

deta

ils.

bT

heob

serv

ed4–

10ke

Vflu

xin

units

of10−1

2er

gscm

−2s−1

,con

vert

edfr

omC

rab

units

byas

sum

ing

the

Cra

b-lik

esp

ectr

um;1

mC

rab

=1.

21×

10−1

1er

gscm

−2s−1

.c

The

obse

rved

3–4

keV

flux

inun

itsof

10−12

ergs

cm−2

s−1,c

onve

rted

from

Cra

bun

itsby

assu

min

gth

eC

rab-

like

spec

trum

;1m

Cra

b=

3.98

×10

−12

ergs

cm−2

s−1.

dT

henu

mbe

rsin

pare

nthe

ses

repr

esen

tsou

rce

iden

tifica

tion

ones

inth

eG

SC

7ca

talo

g.e

Sy:

Sey

fert

gala

xy,L

(H)M

XB

:low

(hig

h)-m

ass

X-r

aybi

nary

,Sym

b:sy

mbi

otic

star

,WD

:whi

tedw

arf,

NS

:neu

tron

star

,BH

:bla

ckho

leca

ndid

ate,

CV

:cat

acly

smic

varia

ble,

msP

SR

:mill

isec

ond

puls

ar,F

SR

Q:fl

at-s

pect

rum

radi

oqu

asar

fC

ross

-mat

chin

gfla

g:B

,M,a

ndG

repr

esen

ttha

tthe

sour

ceha

sm

ore

one

orm

ore

coun

terp

arts

inth

eB

AT70

,MC

XC

,and

GS

C7

cata

log,

resp

ectiv

ely.

The

coun

terp

artn

ame

liste

din

colu

mn

(11)

isqu

oted

from

the

cata

log

expr

esse

dby

the

leftm

ostl

ette

rin

this

colu

mn.

g(A

)W

ech

ange

the

coun

terp

artn

ame

from

SW

IFT

J004

2.7+

4111

toM

31ta

king

into

acco

untt

hean

gula

rre

solu

tion

ofM

AX

I/GS

C.(

B)

RX

CJ0

105.

5−2

439

isan

othe

rco

unte

rpar

toft

his

sour

ce.

(C)

We

chan

geth

eco

unte

rpar

tnam

efr

omN

GC

1275

toP

erse

usC

lust

erta

king

into

acco

unt

the

angu

lar

reso

lutio

nof

MA

XI/G

SC

.(D

)W

ech

ange

the

coun

terp

art

nam

efr

omC

XO

J051

406.

4−4

0023

8to

NG

C18

51ta

king

into

acco

unt

the

angu

lar

reso

lutio

nof

MA

XI/G

SC

.(E

)S

ince

MA

XI

J095

7+69

3is

aco

nfus

edso

urce

cons

istin

gof

M81

,M

82,

and

1RX

SJ0

9575

5.0+

6903

10,

we

use

the

posi

tion

dete

rmin

edby

the

MA

XI/G

SC

7-m

onth

surv

eyfo

rth

ecr

oss-

mat

chin

g.(F

)S

ince

the

posi

tion

accu

racy

of3E

GJ1

627

−241

9,th

eco

unte

rpar

tofM

AX

IJ09

57+

693,

islo

w,w

eus

eth

epo

sitio

nde

term

ined

byth

eM

AX

I/GS

C7-

mon

thsu

rvey

for

the

cros

s-m

atch

ing.

(G)

ES

O13

9-G

012

isan

othe

rco

unte

rpar

toft

his

sour

ce.

(H)

AB

ELL

2572

bis

anot

her

coun

terp

arto

fthi

sso

urce

.