Reduced dimensionality - ETH Z · PDF fileSupraconductivité

79
Reduced dimensionality T. Giamarchi http://dpmc.unige.ch/gr_giamarchi/

Transcript of Reduced dimensionality - ETH Z · PDF fileSupraconductivité

Reduced dimensionality

T. Giamarchi

http://dpmc.unige.ch/gr_giamarchi/

TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAA

References

TG, arXiv/0605472 (Salerno lectures)

TG arXiv/1007.1030

(Les Houches-Singapore)

M.A. Cazalilla et al. arXiv/1101.5337 (RMP)

TG, Quantum physics in one dimension,

Oxford (2004)

Plan of the lectures

• Why one dimensional systems

• 1D: Luttinger liquids

• Multicomponent systems

• Mott transition in one dimension

• Beyond Luttinger liquids

How to describe solids ?

• Understood: free electrons

• Real systems : Coulomb interaction

E » 10 000 K !

• Properties of realistic systems ?

• Free electron theory works

quite well : Landau Fermi liquid

• Transistor 1956

• Supraconductivité

• Magnétorésistance

géante

(1913),1972,

1973,1987,2003

2007

Doped SrTiO3

CMR-manganites

Organics, fullerenes,

novel compounds

largest polarization

reached by the

field effect in oxides

FM-insulator

FM-M

High-Tc cuprates SC metal AF-insulator

SC

AF-M

Silicon, GaAs semiconductor (Wigner, FQHE)

n 2D ( e / cm 2 ) 10 15 10

7 10 9 10

13 10 11 10

5

AF-insulator

FM-I

insulator / semiconductor / metal metal

Densities

Need to understand interactions !

Ferroelectrics, High Tc, Manganites, Oxydes,

Organics,, nanomaterials....

10 23 particules + Interactions:

Crucial fundamental problem

``non Fermi liquids’’

tomorrow’s materials

1 μm

Pb

Future electronic

Need to worry about reduced dimensionality

One dimension is specially

interesting

• No individual excitation can exist (only

collective ones)

• Strong quantum fluctuations

Difficult to order

One dimensional systems

Organic conductors

c

b

D. Jaccard et al., J. Phys. C, 13 L89 (2001)

Cees Dekker

CARBON NANOTUBES

O.M Ausslander et al., Science 298 1354 (2001)

Quantum wires

Spin chains and ladders

Ladder systems Spin chains

Spin dimer systems B. C. Watson et al., PRL 86 5168 (2001)

M. Klanjsek et al.,

PRL 101 137207 (2008)

B. Thielemann et al.,

arXiv:0809.0440 (2008)

Cold atoms

superfluid

insulator

T. Stoferle et al.

PRL 92 130403 (2004)

M. Greiner et al.

Nature 415 39 (2002)

1D physics (Luttinger Liquids)

Cold atoms

Cold atoms: Interferences

s0L h Ãy(r) Ã(0) i

but K large (42) ½ » ½0 hydrodynamic ?

S. Hofferberth et al. Nat. Phys 4

489 (2008)

Methods

• Analytic methods:

• Exact methods (Bethe ansatz)

• Field theory (Bosonization)

• Conformal invariance

• Numerical methods:

• DMRG (real time dynamics of

quantum systems)

Finite temperature DMRG

Specific heat of spin chain

How to make a theory

60’: A. Larkin, I. Dzialoshinskii, L. Gorkov, Bichkov

E. Lieb, D. Mathis

70’: A. Luther, V.J. Emery

80’: F.D.M. Haldane

Good excitations: collective ones Tomonaga Luttinger

Luttinger liquid

S(q,!) J.S. Caux et al PRA 74 031605 (2006)

Luttinger parameters

Luttinger parameters

Attractive Hubbard model

TG + B. S. Shastry PRB 51 10915 (1995)

Spin dimer systems B. C. Watson et al., PRL 86 5168 (2001)

M. Klanjsek et al.,

PRL 101 137207 (2008)

B. Thielemann et al.,

arXiv:0809.0440 (2008)

Luttinger parameters

M. Klanjsek et al., PRL 101 137207 (2008)

Red : Ladder (DMRG)

Green: Strong coupling (Jr 1 ) (BA)

Correlation functions

NMR relaxation rate:

Tc to ordered phase: 1/J’ = Â1D(Tc)

M. Klanjsek et al., PRL 101 137207 (2008)

R. Chitra, TG PRB 55 5816 (97); TG, AM Tsvelik PRB 59 11398 (99)

M. Klanjsek et al.,

PRL 101 137207 (2008)

NMR

LL: Cold atoms

Fractionalization

Neutron scattering

< Sr,t S0,0 >

Finite temperature

Conformal theory

b

c

Fermions

Right (+kF) and left (-kF) particles

Systems with « spins »

Spin

Spin-Charge Separation

Charge

Spinon Holon

Spin

Spin-Charge Separation

higher D ?

Charge

Energy increases with spin-charge separation

Confinement of spin-charge: « quasiparticle »

O.M Ausslander et al., Science

298 1354 (2001)

Y. Tserkovnyak et al., PRL 89

136805 (2002)

Y. Tserkovnyak et al., PRB 68

125312 (2003)

Proposal

• 87Rb |F=2,mF=-1i and |F=2,mF=1i good

potential candidates to observe spin-charge

separation

• No problem of temperature ( fermions)

• Phase separation

A. Kleine, C. Kollath et al. PRA 77 013607 (2008);

NJP 10 045025 (2008)

Effect of a lattice:

Mott transition

How to treat?

• Incommensurate: Q 2 0

• Commensutate: Q = 2 0

Competition

2 21[ ( ( , )) ( ( , )) ]2

xu

dxdS x u x

K

=

Beresinskii-

Kosterlitz-Thouless

transition

K=2

Mott insulator:

is locked

Density is fixed

Gap in the excitation spectrum n(k)

T. Kuhner et al. PRB 61

12474 (2000) TG, Physica B 230 975 (97)

Beyond Luttinger liquids

• Luttinger liquids: allows to treat additional effects

• 1D additional perturbation:

Lattice (Mott transition), disorder (Bose glass) etc.

Multicomponents, mixtures, …..

TG, cond-mat/0605472 (Salerno lectures) + book

Effect of disorder

Disorder: Bose Glass

TG + H. J. Schulz EPL 3 1287 (1987); PRB 37 325 (1988)

``Two’’ fourier components of disorder

Backward scattering (q » 2 0)

Responsible for localization (Bose Glass)

Pinning of a CDW of bosons

Tonks limit: Anderson localization of free

fermions

Bose glass phase

1D : TG + H. J. Schulz PRB 37 325 (1988)

Superfluid – Localized (Bose glass) transition

for K < 3/2

BKT like transition

Higher dimensions: M.P.A. Fisher et al. PRB 40 546 (1989)

Bose glass also exists (scaling theory)

continuous transition

Phase diagram

K

Db

1 3/2

Bose Glass

Superfluid

Numerics

S. Rapsch, U.

Schollwoeck, W.

Zwerger EPL 46

559 (1999)

Experiments with interactions !

L. Fallani et al. PRL 98, 130404 (2007)

Beyond Luttinger liquids

• Luttinger liquids: allows to treat additional effects

• 1D additional perturbation:

Lattice (Mott transition), disorder (Bose glass) etc.

Multicomponents, mixtures, …..

• Major deviations from Luttinger liquids

TG, cond-mat/0605472 (Salerno lectures) + book

Luttinger liquid + bath

or noise

Quantum physics with a bath

• Reasonable (?) understanding of isolated systems

• Many systems are subjected to an external bath

• How is the physics modified ?

Superconducting wire + gate

Trapped ions

Noise on the

electrodes: 1/f

noise

Disspative bath:

laser cooling

Polar molecules

Noise: EM waves

Bath ? : [immersion in a condensate]

E. Dalla Torre, E. Demler,TG,,E. Altman, Arxiv/0908.3345

Physics ? Phase transition ?

Coupled 1D chains:

deconfinememt

“Mott” potential: localizes atoms

Mott vs. Josephson

AF Ho, M.A. Cazalilla, TG, PRL 92 130403 (2004);

NJP 8 158 (2006).

R‟

R Josephson coupling: delocalizes atoms

10-6

10-5

10-4

10-3

10-2

10-1

1 1.5 2 2.5

J/

K

1D MI2D MI

Anisotropic 3D SF (BEC)

( = ) ( = ) ( = )( = )

Phase diagram

Array of atomic

„quantum dots‟

transverse

hopping

repulsion

c

b

D. Jaccard et al., J. Phys. C, 13 L89 (2001)

Deconfinement

0 5 10 15 20 25

60

80

100

200

400

600 TMTTF2PF

6

a

T*

IC

SDW

C

SDWSpin-Peierls

c

Act

ivat

ion e

ner

gy,

T* (

K)

Pressure (kbar)

P. Auban-Senzier, D. Jérome, C. Carcel and J.M. Fabre J de Physique IV, (2004)

A. Pashkin, M. Dressel, M. Hanfland, C. A. Kuntscher, arxiv/0909.4795

TG Chemical

Review 104 5037

(2004)

Back to the (self-consistent) bath S. Biermann, A. Georges, A. Lichtenstein, TG, PRL 87 276405 (2001)

C. Berthod et al. PRL 97, 136401 (2006)

Bath must be self consistently determined

Non Luttinger liquids

Interacting 1D system (Luttinger liquid):

e.g. bosons -- ``spin up’’

Add one particle of ``spin down’’, or flip a spin

G?(x; t) = h* js+(x; t)s¡(0;0)j *i

Example: two component bose-Hubbard model

Ferromagnetic liquid

M. B. Zvonarev, V. V. Cheianov, TG, PRL 99 240404 (2007)