Realistic Object Appearance using Bidirectional Texture Functions

48
Institute of Computer Science II Computer Graphics Realistic Object Appearance using Bidirectional Texture Functions Christopher Schwartz, Reinhard Klein 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 1 20/10/2011

description

C. Schwartz, R. Klein3D COFORM Star Day – VAST 2011, October 20 - Prato, Italy

Transcript of Realistic Object Appearance using Bidirectional Texture Functions

Page 1: Realistic Object Appearance using Bidirectional Texture Functions

Institute of Computer Science II

Computer Graphics

Realistic Object Appearance using Bidirectional Texture Functions Christopher Schwartz, Reinhard Klein

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 1 20/10/2011

Page 2: Realistic Object Appearance using Bidirectional Texture Functions

INTRODUCTION

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 2 20/10/2011

Page 3: Realistic Object Appearance using Bidirectional Texture Functions

Object Appearance

• Common presentation: Geometry (+ Texture)

• … but is this sufficient?

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 3 20/10/2011

Geometry only With texture Correct appearance

Page 4: Realistic Object Appearance using Bidirectional Texture Functions

Importance of Surface Appearance

• Same shape, different materials

• Different „look-and-feel“ • Important hints about the object • Misleading vs. better understanding

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 4 20/10/2011

Page 5: Realistic Object Appearance using Bidirectional Texture Functions

Object Appearance

• Impression of reflection of incident light

• Influenced by features on different scales

• Macroscopic

• Mesoscopic

• Microscopic

• Viewpoint and Illumination dependent

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 5 20/10/2011

Page 6: Realistic Object Appearance using Bidirectional Texture Functions

Form of Representation

Macroscopic scale

• 3D shape

• Explicit representation (e.g. polygon mesh)

Mesoscopic scale

• Individually resolved by human perception

• Statistical representation not accurate

• Explicit representation too costly

Microscopic scale

• Alignment of microscopic structures

• Statistical representation (e.g. BRDF)

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 6 20/10/2011

Page 7: Realistic Object Appearance using Bidirectional Texture Functions

Bidirectional Reflectance Distribution Function

• Opaque, uniform Materials • No texture!

• Ratio of incident irradiance to outgoing radiance • Defined over local

hemisphere

• Depends on • Solid angle of light ωi

• Solid angle of view ωo

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 7 20/10/2011

Page 8: Realistic Object Appearance using Bidirectional Texture Functions

Bidirectional Reflectance Distribution Function

• Example BRDF • sampled at discrete angles

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 8 20/10/2011

ωi

ωo

BRDF Tabulated Example: BRDF on Sphere Discrete sample positions on Hemisphere

Specular reflection

Page 9: Realistic Object Appearance using Bidirectional Texture Functions

Model-driven vs. Data-driven

• Matusik et al. 2003 [1]: Measured BRDF ground-truth data

• 100 real world materials

• 1° resolution for view- and light directions

• > 1,000,000 samples

• Ngan et al. 2005 [2]: Experimental analysis of BRDF models

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 9 20/10/2011

Page 10: Realistic Object Appearance using Bidirectional Texture Functions

Model-driven vs. Data-driven

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 10 20/10/2011

Red phenolic

Measured distribution from [1]

Fitted model (Cook-Torrance) from [2]

Page 11: Realistic Object Appearance using Bidirectional Texture Functions

Model-driven vs. Data-driven

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 11 20/10/2011

Red phenolic

Measured distribution from [1]

Fitted model (Cook-Torrance) from [2]

Page 12: Realistic Object Appearance using Bidirectional Texture Functions

Data-driven Reflectance

• Example Surface with Meso structure

• Results are „ABRDFs“ (apparent BRDFs [3])

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 12 20/10/2011

ωi

ωo

ωi

ωo

Specular reflection

Retro-reflection

Hard to fit with analytical model

influence from neighborhood

Page 13: Realistic Object Appearance using Bidirectional Texture Functions

Model-driven Reflectance

• Loss of Mesoscale depth impression…

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 13 20/10/2011

Fitted analytical SVBRDF Photograph McAllister 2002 [10]

Page 14: Realistic Object Appearance using Bidirectional Texture Functions

Data-driven Reflectance

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 14 20/10/2011

Texture Mesoscale approximated by Bump-mapping

Data-Driven (BTF)

Images taken from Müller et al. 2005 [7]

Page 15: Realistic Object Appearance using Bidirectional Texture Functions

Form of Representation

Macroscopic scale

• 3D shape

• Explicit representation (e.g. polygon mesh)

Mesoscopic scale

• Individually resolved by human perception

• Statistical representation not accurate

• Explicit representation too costly

Microscopic scale

• Alignment of microscopic structures

• Statistical representation (e.g. BRDF)

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 15 20/10/2011

Page 16: Realistic Object Appearance using Bidirectional Texture Functions

Form of Representation

Macroscopic scale

• 3D shape

• Explicit representation (e.g. polygon mesh)

Mesoscopic scale

• Individually resolved by human perception

• Statistical representation not accurate

• Explicit representation too costly

Microscopic scale

• Alignment of microscopic structures

• Statistical representation (e.g. BRDF)

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 16 20/10/2011

Data-driven: Image based

Page 17: Realistic Object Appearance using Bidirectional Texture Functions

Form of Representation

Macroscopic scale

• 3D shape

• Explicit representation (e.g. polygon mesh)

Mesoscopic scale

• Individually resolved by human perception

• Statistical representation not accurate

• Explicit representation too costly

Microscopic scale

• Alignment of microscopic structures

• Statistical representation (e.g. BRDF)

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 17 20/10/2011

Bidirectional Texture Function

Page 18: Realistic Object Appearance using Bidirectional Texture Functions

ACQUISITION

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 18 20/10/2011

Page 19: Realistic Object Appearance using Bidirectional Texture Functions

First use of BTF: CUReT Database

• 1996 – 1999 by Dana et al. [4] • 61 materials

• 205 different view- and light directions

• 24-bit RGB images

Manual placement of camera

BTF only partially measured

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 19 20/10/2011

Page 20: Realistic Object Appearance using Bidirectional Texture Functions

University of Bonn BTF Database

• 2001 – 2003 Sarlette et al. [5] • 6561 view and light directions

• 36-bit RGB images

• Fully automated

• 12 hrs per acquisition

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 20 20/10/2011

Page 21: Realistic Object Appearance using Bidirectional Texture Functions

University of Bonn Multiview Dome

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 21 20/10/2011

• 2004 – now by Sarlette et al.

• 22,801 view and light directions

• HDR images

• Fully automated

• No moving parts

• 2hrs per acquisition

Page 22: Realistic Object Appearance using Bidirectional Texture Functions

First Capture of Complete Objects with BTF

• Furukawa et al. 2002 [6] • Laser scanned geometry

• Separate BTF capture

Very sparse sampling

Alignment errors

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 22 20/10/2011

Photograph Rendering

Page 23: Realistic Object Appearance using Bidirectional Texture Functions

First Capture of Complete Objects with BTF

• Furukawa et al. 2002 [6] • Laser scanned geometry

• Separate BTF capture

Very sparse sampling

Alignment errors

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 23 20/10/2011

Photograph Rendering

Page 24: Realistic Object Appearance using Bidirectional Texture Functions

Integrated Acquisition of Objects with BTF

• Müller et al. 2005 [7] • Use University of Bonn Dome

• Dense sampling (22,801), 2hrs/acquisition

• Measurements integrated in one setup • No registration necessary

• Geometry via Shape-from-Silhouette

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 24 20/10/2011

Page 25: Realistic Object Appearance using Bidirectional Texture Functions

Integrated Acquisition of Objects with BTF

• Müller et al. 2005 Drawbacks:

No radiometric calibration

• Misleading colors

• Only LDR

Shape-from-Silhouette

• Not automatable

• Coarse geometry – Misleading Shape

– Blur due to misalignment

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 25 20/10/2011

Example from Havemann et al. 2008 [12]

Page 26: Realistic Object Appearance using Bidirectional Texture Functions

Integrated HQ Acquisition

• Holroyd et al. 2010 [17] • Integrated setup

• Geometry with Structured Light

• 42 view and light directions

• 5hrs per acquisition

Sparse sampling Model-driven

• Fit Cook-torrance BRDFs

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 26 20/10/2011

Photograph Rendering

Page 27: Realistic Object Appearance using Bidirectional Texture Functions

Integrated HQ Acquisition

• Holroyd et al. 2010 [17] • Integrated setup

• Geometry with Structured Light

• 42 view and light directions

• 5hrs per acquisition

Sparse sampling Model-driven

• Fit Cook-torrance BRDFs

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 27 20/10/2011

Photograph Rendering

Page 28: Realistic Object Appearance using Bidirectional Texture Functions

Integrated HQ Acquisition with BTF

• Schwartz et al. 2011 [8] • Use University of Bonn Dome

• Extended with projectors for Structured Light

• integrated measurement

• Rapid: 3.7 hrs per acquisition

• Proper calibration and HDR

• Geometry: Weinmann et al. 2011 [11]

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 28 20/10/2011

Visual Hull [7], [12] Laser Scan Proposed Method [11]

Page 29: Realistic Object Appearance using Bidirectional Texture Functions

Quality

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 29 20/10/2011

Page 30: Realistic Object Appearance using Bidirectional Texture Functions

Faithfulness

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 30 20/10/2011

Photographic picture

(tonemapped HDR)

BTF + Geometry Schwartz et al. 2011 [8]

(tonemapped HDR)

Page 31: Realistic Object Appearance using Bidirectional Texture Functions

Polynomial Texture Maps

• Malzbender et al. 2001 [9]: PTM

• Image-based, Sampling of Light (ωi)

Incomplete appearance information

• View-dependent part of reflectance missing

For 3D Objects: only one fixed viewpoint

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 31 20/10/2011

PTM

Texture

Page 32: Realistic Object Appearance using Bidirectional Texture Functions

Faithfulness

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 32 20/10/2011

Photographic picture

(tonemapped HDR)

BTF + Geometry Schwartz et al. 2011 [8]

(tonemapped HDR)

Polynomial Texture Map Malzbender et al. 2001 [9]

(Single view and LDR!)

Page 33: Realistic Object Appearance using Bidirectional Texture Functions

Multiview PTMs

• Gunawardane et al. 2009 [18]: • PTMs from multiple viewpoints

No macro scale

interpolation of views via optical flow

Limited amount of views

• Combining multiple objects is hard • incorrect silhouttes, occlusion,

shadows, etc.

• Full light transport (i.e. path-tracing) not possible

33 20/10/2011 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher

Schwartz

Page 34: Realistic Object Appearance using Bidirectional Texture Functions

Full Light Transport with BTFs

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 34 20/10/2011

Page 35: Realistic Object Appearance using Bidirectional Texture Functions

Full Light Transport with BTFs

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 35 20/10/2011

Page 36: Realistic Object Appearance using Bidirectional Texture Functions

COMPRESSION, RENDERING AND TRANSMISSION

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 36 20/10/2011

Page 37: Realistic Object Appearance using Bidirectional Texture Functions

Datasizes

• Schwartz et al. 2011 [8]:

• Uncompressed BTF: ≈ 500 GB per object

• Not feasible even for offline rendering…

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 37 20/10/2011

Page 38: Realistic Object Appearance using Bidirectional Texture Functions

BTF Compression

• Fitting analytical models

• Wu et al. 2011 [15]: SPMM

• Model-driven…

• lost meso-structure

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 38 20/10/2011

BTF

SPMM

Page 39: Realistic Object Appearance using Bidirectional Texture Functions

BTF Compression

• High degree of redundancy in the BTF

• Perform statistical data analysis

• Find low dimensional basis

• learn how to best describe the data

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 39 20/10/2011

Page 40: Realistic Object Appearance using Bidirectional Texture Functions

Compression using Statistical Analysis

• Organization of the discrete BTF

• As matrix

• As Tensor

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 40 20/10/2011

Angles ωi, ωo

Pix

els

(x,y

,co

lor)

Pixels (x,y)

ωo

Note: Color (or wavelength) can be additional dimension

Page 41: Realistic Object Appearance using Bidirectional Texture Functions

Full Matrix Factorization

• E.g. Liu et al. 2004 [14]: FMF

• Representation is compact and realtime renderable [5]

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 41 20/10/2011

...

M

… V

Angular components

“Eigen-ABRDFs“

U …

Spatial components

“Eigen-Textures“ SVD

TM USV

Importance

Page 42: Realistic Object Appearance using Bidirectional Texture Functions

Decorrelated Full Matrix Factorization

• Gero Müller 2009 [13]: DFMF

• Insight from image compression (e.g. JPEG)

• Human perception is more sensitive to variation in intensity than color

• Also: chromacity in images exhibits less variation

• Decorrelate the BTF data into luminance and chrominance – BTFRGB BTFY BTFU BTFV

• Use fewer components for chrominance channels U, V

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 42 20/10/2011

Page 43: Realistic Object Appearance using Bidirectional Texture Functions

FMF Rendering

• Uncompressed: ≈ 500GB

• Compressed: ≈ 640MB

• 32 components

• Even fits on the GPU

• Random access to BTF

• Angular combination a = (ωi, ωo)

• Pixel p = (x,y)

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 43 20/10/2011

com

po

nen

ts

Angular component #1

Spatial component #1

Angular component #2

Spatial component #2

pixel angles

BTF(a,p) = < , >

Page 44: Realistic Object Appearance using Bidirectional Texture Functions

Interactive Inspection via GPU Rendering

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 44 20/10/2011

Page 45: Realistic Object Appearance using Bidirectional Texture Functions

Streaming of BTF over the Internet

• Schwartz et al. 2011 [16]: • Spatial components

≈ natural images

• Angular components ≈ low frequency

• Apply additional wavelet compression

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 45 20/10/2011

0.4bpp Wavelet

16bpp Reference

Page 46: Realistic Object Appearance using Bidirectional Texture Functions

Streaming of BTF over the Internet

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 46 20/10/2011

0.87 MB First renderable

version

1 MB 7 MB 46.4 MB Fully

transmitted

534 GB Reference

Page 47: Realistic Object Appearance using Bidirectional Texture Functions

Questions?

Learn more about BTFs for Cultural Heritag on Wednesday [8] and Thursday [16]

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 47 20/10/2011

Page 48: Realistic Object Appearance using Bidirectional Texture Functions

References [1] “A Data-Driven Reflectance Model”, Matusik W., Pfister H., Brand M. and McMillan L., ACM TOG 22, 3(2003), 759-769. [2] “Experimental Analysis of BRDF models”, Ngan A., Durand F. and Matusik W., Proceedings of EGSR, 2005, 117-226. [3] „Image-based Rendering with Controllable Illumination“, Wong T., Heng P., Or S., and Ng W., Proceedings of EGWR, 1997, 13-22 [4] „Reflectance and Texture of Real-World Surfaces “, Dana K.J., van Ginneken B., Nayar S.K. and Koenderink J.J., Proceedings of CVPR, 1997, 151-157 [5] „Efficient and Realistic Visualization of Cloth“, Sattler M., Sarlette R. and Klein R., Proceedings of EGSR, 2003 [6]„Appearance based object modeling using texture database: acquisition, compression and rendering“, Furukawa R., Kawasaki H. Ikeuchi K. and Sakauchi M., Proceedings of EGRW 2002, 257-266 [7] „Rapid Synchronous Acquisition of Geometry and BTF for Cultural Heritage Artefacts“, Müller G., Bendels G.H. and Klein R., Proceedings of VAST, 2005 [8] „Integrated High-Quality Acquisition of Geometry and Appearance for Cultural Heritage”, Schwartz C., Weinmann W., Roland R. and Klein R., Proceedings of VAST, 2011 [9] „Polynomial Texture Maps“, Malzbender T., Gelb D. and Wolters H., Proceedings of SIGGRAPH, 2001 [10] „A Generalized Surface Appearance Representation For Computer Graphics“, McAllister D.K., PhD. Thesis, University of North Carolina at Chapel Hill, 2002 [11] „A Multi-Camera, Multi-Projector Super-Resolution Framework for Structured Light“, Weinmann M., Schwartz C., Ruiters R. and Klein R., Proceedings of 3DIMPVT, 2011, 397-404 [12] „The Presentation of Cultural Heritage Models in Epoch“, Havemann S., Settgast V., Fellner D., Willems G., Van Gool, L., Müller G., Schneider M. and Klein R., EPOCH Conference on Open Digital CH Systems, 2008 [13] „Data-Driven Methods for Compression and Editing of Spatially Varying Appearance“, Müller G., PhD. Thesis, University of Bonn, 2009 [14] „Synthesis and Rendering of Bidirectional Texture Functions on Arbitrary Surfaces“, Liu X., Hu Y., Zhang J. Tong X., Guo B. and Shum H.-Y., IEEE Transactions on Visualization and Computer Graphics 10 (3), 2004, 278-289 [15] „A Sparse Parametric Mixture Model for BTF Compression, Editing and Rendering“, Wu H., Dorsey J. and Rushmeier H., Computer Graphics Forum 30 (2), 2011, 465-473 [16] „WebGL-based Streaming and Presentation Framework for Bidirectional Texture Function“, Schwartz C., Ruiters R., Weinmann M. and Klein R., Proceedings of VAST, 2011 [17] „A coaxial optica scanner for synchronous acquisition of 3D geometry and surface reflectance“, Holroyd M., Lawrence J. and Zickler T., ACM Trans. Graph. 29 (4), 2010 [18] „Optimized Image Sampling for View and Light Interpolation“, Gunawardane P., Wang O., Scher S., Rickards I., Davis J. And Malzbender T., Proceedings of VAST, 2009 [19] „Principles and practices of robust, photography-based digital imaging techniques for museums.“, Mudge M., Schroer C., Ear G., Martinez K., Pagi H., Toler-Franklin C., Rusinkiewicz S., Palma G., Wochowiak M., Ashley M., Matthews N., Noble T. and Dellepiane M., Proceedings of VAST, 2010

3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz 48 20/10/2011