Queda livre

4
Exemplo Uma bola de futebol é chutada para cima com velocidade igual a 20m/s. (a) Calcule quanto tempo a bola vai demorar para retornar ao solo. (b) Qual a altura máxima atingida pela bola? Dado g=10m/s². (a) Neste exemplo, o movimento é uma combinação de um lançamento vertical para cima + um lançamento vertical para baixo (que neste caso também pode ser chamado de queda livre). Então, o mais indicado é calcularmos por partes: Movimento para cima: Movimento para baixo: Como não estamos considerando a resistência do ar, a velocidade final será igual à velocidade com que a bola foi lançada. Observamos, então, que nesta situação, onde a resistência do ar é desprezada, o tempo de subida é igual ao de decida. (b) Sabendo o tempo da subida e a velocidade de lançamento, podemos utilizar a função horária do deslocamento, ou então utilizar a Equação de Torricelli. Lembre-se de que estamos considerando apenas a subida, então t=2s ou

Transcript of Queda livre

Page 1: Queda livre

Exemplo

Uma bola de futebol é chutada para cima com velocidade igual a 20m/s. (a) Calcule quanto tempo a bola vai demorar para retornar ao solo. (b) Qual a altura máxima atingida pela bola? Dado g=10m/s².

(a)

Neste exemplo, o movimento é uma combinação de um lançamento vertical para cima + um lançamento vertical para baixo (que neste caso também pode ser chamado de queda livre). Então, o mais indicado é calcularmos por partes:

Movimento para cima:

Movimento para baixo:

Como não estamos considerando a resistência do ar, a velocidade final será igual à velocidade com que a bola foi lançada.

Observamos, então, que nesta situação, onde a resistência do ar é desprezada, o tempo de subida é igual ao de decida.

(b)

Sabendo o tempo da subida e a velocidade de lançamento, podemos utilizar a função horária do deslocamento, ou então utilizar a Equação de Torricelli.

Lembre-se de que estamos considerando apenas a subida, então t=2s

ou

Page 2: Queda livre

Queda LivreAo soltarmos uma folha de caderno dobrada ao meio e um caderno da mesma altura, observamos que o caderno, por ser mais pesado, chega primeiro ao solo. Sabemos que isso acontece porque a resistência do ar exerce uma ação sobre os corpos e, sendo o caderno o corpo com maior massa, este chega primeiro ao solo.

Quando um corpo se movimenta sujeito apenas à aceleração gravitacional, desprezando qualquer tipo de resistência, dizemos que este corpo está em queda livre. Logo, queda livre é um movimento que só existe no vácuo, pois, só assim, não temos a resistência do ar.

Esta é mais uma bela ilustração do grande Tainan Rocha.

Mas, você já tentou colocar a folha de caderno dobrada ao meio em cima do caderno e soltou o conjunto simulando uma queda livre? Se você ainda não tentou, tente agora mesmo!

Para a surpresa de muitos os dois caem ao mesmo tempo. Isso acontece porque colocando a folha em cima do caderno, estamos retirando praticamente toda a resistência do ar que antes atrapalhava o movimento da folha. E, assim, os dois corpos estão sujeitos a mesma aceleração.

Todos os corpos, abandonados ou lançados para cima, são atraídos pela Terra por uma aceleração chamada aceleração da gravidade ou aceleração gravitacional (g). Para a aceleração gravitacional, utilizamos g = 9,8 m/s2 que pode ser aproximado para g = 10 m/s2.

Considerando g constante, temos o movimento de queda livre um exemplo de movimento uniformemente variado. Para resolver os exercícios de queda livre podemos utilizar as seguintes equações:

S = S0 + V0.t + a. t2 / 2 (equação horária dos espaços)V = V0 + a. t (equação horária da velocidade)V2 = V02 + 2.a.∆S (equação de Torricelli)

Page 3: Queda livre

Vamos estudar um exemplo de queda livre:

Um corpo é lançado do solo verticalmente para cima com velocidade inicial de 20m/s. Desprezando-se os atritos com o ar e admitindo-se a aceleração da gravidade igual a 10 m/s2, calcule:

a) o tempo gasto pelo corpo para atingir o ponto mais alto da trajetória.b) a altura máxima atingida pelo corpo.

Resolução

a) quando o corpo chega ao ponto mais alto da trajetória ele pára. Logo, sua velocidade é igual a zero neste instante. Considerando o sentido da trajetória para cima, temos:

g = 10 m/s2;V0 = 20 m/sV = 0

V = V0 + a. t0 = 20 – 10.t10.t = 20t = 20/10t = 2s (o tempo gasto pelo corpo para atingir o ponto mais alto da trajetória)

b) no instante 2s o corpo atingi sua altura máxima, logo:

S = S0 + V0.t + a. t2 / 2

S = 0 + 20.2 - 10. 22 / 2S = 40 – 20S = 20 m (altura máxima)

No blog SEMCIÊNCIA encontrei um vídeo bem legal sobre queda, mas neste a resistência do ar é bem importante: Como fazer um ovo voar?