PTAR-UNSCH

download PTAR-UNSCH

of 57

Transcript of PTAR-UNSCH

  • 8/15/2019 PTAR-UNSCH

    1/57

     

    UNIVERSIDAD NACIONAL DE SAN CRISTOBAL DE HUAMANGAFACULTAD DE INGENIERIA, MINAS, GEOLOGIA Y CIVIL

    ESCUELA DE FORMACION PROFESIONAL DE INGENIERIA CIVIL

    AÑO DE LA

    CONSOLIDACIÓN

    DEL MAR DE GRAU

    2016

  • 8/15/2019 PTAR-UNSCH

    2/57

    UNIVERSIDAD NACIONAL DE SAN CRISTOBAL DE HUAMANGA 

    FACULTAD DE INGENIERIA MINAS, GEOLOGIA Y CIVIL

    ESCUELA DE FORMACION PROFESIONAL DE INGENIERA CIVIL

    CURSO: INGENIERIA DE RECURSOS HIDRÁULICOS

     (IC-545) 

    INFORME DE LA VISITA A LA

    PLANTA DE TRATAMIENTO DE

    AGUAS RESIDUALES-TOTORA

     DOCENTE: 

    Ing. LEÓN PALACIOS, Edward

     ALUMNOS: 

     ARIAS CAMPOS, Kevin Alejandro 

    BELLIDO ZAGA, Jossimar Junior 

    CARBAJAL SULCA, Wilber 

    HUANCA ARQUINIEGO, Ray

    QUICAÑO PRADO, Jenner QUINO QUISPE, William Pablo

    CÓDIGO: 

    16110979 

    16115725

    16105591 

    16115716

    1610507116105048 

  • 8/15/2019 PTAR-UNSCH

    3/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    1

    ÍNDICE I.  INTRODUCCIÓN ................................................................................................................... 3

    II.  OBJETIVOS:  .......................................................................................................................... 4

    III.  MARCO TEÓRICO: ............................................................................................................ 4

    3.1  AGUAS RESIDUALES .................................................................................................... 4

    3.1.1  Definición. ............................................................................................................. 4

    3.1.2  Clasificación de las aguas residuales. ............................................................... 4

    3.1.3  Tipos de Aguas Residuales. ................................................................................. 4

    3.2  Tratamiento de Aguas Residuales. ............................................................................. 5

    3.3  Usos del agua ................................................................................................................ 6

    3.4  Contaminación del agua .............................................................................................. 6

    3.4.1   Alteraciones Físicas.  ................................................................................................. 6

    3.4.2   Alteraciones Químicas .............................................................................................. 7

    3.4.3   Alteraciones Biológicas ............................................................................................ 7

    3.5  Aspectos medioambientales de las aguas .................................................................. 8

    3.5.1  Parámetros  físico – químicos en la evaluación de la calidad  del  agua .................. 8

    3.6  Normas de calidad del agua ...................................................................................... 11

    3.6.1  Ley  de recursos hídricos Nº   29338 ......................................................................... 11

    3.6.2  Estándares nacionales de calidad  ambiental   para aguas .................................... 12

    3.7  FISCALIZACIÓN AMBIENTAL EN AGUAS RESIDUALES .......................................... 14

    3.7.1  Entidad Prestadora de Servicios de Saneamiento (EPS Saneamiento) ......... 143.7.2  Entidad de Fiscalización Ambiental (EFA) ...................................................... 14

    3.7.3  Estándar de Calidad Ambiental (ECA) ............................................................. 15

    3.7.4  Fiscalización Ambiental  .................................................................................... 15

    3.7.5  Sistema Nacional de Evaluación y Fiscalización Ambiental (SINEFA) .......... 15

    3.8  Situación de las plantas de tratamiento de aguas residuales en el Perú  ............... 15

    3.9  Planta de tratamiento de aguas residuales “LA TOTORA” – Ayacucho ................. 17

    3.10  Problemática del vertido de las aguas de la PTAR “LA TOTORA” .......................... 17

    IV.  AFLUENTE Y EFLUENTE DE LA PTAR‐TOTORA ......................................................... 19

    V.  REDES DE ALCANTARILLADO .......................................................................................... 20

    VI.  ESTACIONES DE BOMBEO ............................................................................................ 20

    VII.  PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES TOTORA  ............................... 21

    7.1  UBICACIÓN ................................................................................................................. 21

    7.2  TRATAMIENTOS EN LA PTAR‐TOTORA .................................................................. 22

    7.3  CARACTERÍSTICAS DE LOS PRINCIPALES COMPONENTES DE LA PTAR ............ 25

  • 8/15/2019 PTAR-UNSCH

    4/57

  • 8/15/2019 PTAR-UNSCH

    5/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    3

    I.  INTRODUCCIÓN 

    Las aguas residuales sin un tratamiento apropiado, eliminadas en su punto de origen o

    recolectados y transportados, presentan un peligro de infección parasitaria (mediante el

    contacto directo con la materia fecal), hepatitis y varias enfermedades gastrointestinales,

    incluyendo el cólera y tifoidea (mediante la contaminación de la fuente de agua y la

    comida). Cabe mencionar que el agua de lluvia urbana puede contener los mismos

    contaminantes, a veces en concentraciones sorprendentemente altas.

    Los proyectos de aguas servidas son ejecutados a fin de evitar o aliviar los efectos de los

    contaminantes descritos anteriormente en cuanto al ambiente humano y natural.

    Las aguas residuales son generadas por residencias, instituciones y locales comerciales e

    industriales. Éstas pueden ser tratadas dentro del sitio en el cual son generadas (por

    ejemplo, tanques sépticos u otros medios de depuración) o bien pueden ser recogidas y

    llevadas mediante una red de tuberías –y eventualmente bombas– a una planta de

    tratamiento municipal. Los esfuerzos para recolectar y tratar las aguas residuales

    domésticas de la descarga están típicamente sujetas a regulaciones y estándares locales,

    estatales y nacionales (regulaciones y controles). A menudo ciertos contaminantes de

    origen industrial presentes en las aguas residuales requieren procesos de tratamiento

    especializado.

    A menos que sean correctamente planificados, ubicados, diseñados, construidos, operados

    y mantenidos, es probable que los proyectos de aguas servidas tengan un impacto total

    negativo y no produzcan todos los beneficios para los cuales se hizo la inversión, afectando

    además en forma negativa a otros aspectos del medio ambiente.

  • 8/15/2019 PTAR-UNSCH

    6/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    4

    II.  OBJETIVOS: 

    Analizar las características de los principales componentes de la PTAR‐Totora.

    Investigar el afluente y la red de alcantarillado mediante la cual llega a la PTAR‐

    Totora.

    Conocer la calidad del efluente de la PTAR‐Totora que se vierte al río Alameda.Realizar el reconocimiento del proceso constructivo de la PTAR‐Totora.

    Aplicar los conocimientos adquiridos en el aula.

    III.  MARCO TEÓRICO: 

    3.1   AGUAS RESIDUALES 

    3.1.1  Definición. 

    Son aquellas aguas cuyas características originales han sido modificadas por actividades

    humanas y que por su calidad requieren un tratamiento previo, antes de ser reusadas,

    vertidas a un cuerpo natural de agua o descargadas al sistema de alcantarillado.

    3.1.2  Clasificación  de las aguas residuales. 

    Aguas residuales industriales.  Son aquellas que resultan del desarrollo de un proceso

    productivo, incluyéndose a las provenientes de la actividad minera, agrícola, energética,

    agroindustrial, entre otras.

    Aguas residuales domésticas.  Son aquellas de origen residencial y comercial que contienen

    desechos fisiológicos, entre otros, provenientes de la actividad humana, y deben serdispuestas adecuadamente.

    Aguas residuales municipales. Son aquellas aguas residuales domésticas que pueden estar

    mezcladas con aguas de drenaje pluvial o con aguas residuales de origen industrial

    previamente tratadas, para ser admitidas en los sistemas de alcantarillado de tipo

    combinado.

    3.1.3  Tipos de  Aguas Residuales. 

    Aguas negras. Se llama aguas negras a aquel tipo de agua que se encuentra contaminada

    con sustancia fecal y orina, que justamente proceden de los desechos orgánicos tanto de

    animales como de los humanos. La denominación de aguas negras tiene sentido porque

    justamente la coloración que presentan las mismas es negra.

  • 8/15/2019 PTAR-UNSCH

    7/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    5

    Aguas grises. Las aguas grises son las aguas generadas por procesos domésticos como el

    lavado de ropa, loza y el baño de las personas. Las aguas grises son distintas a las aguas

    negras.

    3.2  Tratamiento de  Aguas Residuales. 

    El tratamiento de aguas residuales consiste en una serie de procesos físicos, químicos y

    biológicos que tienen como fin eliminar los contaminantes físicos, químicos y biológicos

    presentes en el agua efluente del uso humano.

    Las aguas residuales pueden provenir de actividades industriales o agrícolas y del uso

    doméstico.

    En el caso de agua urbana, los tratamientos de aguas residuales suelen incluir la siguiente

    secuencia:

    Pretratamiento:  Busca acondicionar el agua residual para facilitar los

    tratamientos propiamente dichos, y preservar la instalación de erosiones y

    taponamientos. Incluye equipos tales como rejas, tamices, desarenadores y

    desengrasadores.

    Tratamiento Primario o Tratamiento Físico‐Químico: Busca reducir la materia

    suspendida por medio de la precipitación o sedimentación, con o sin reactivos, o

    por medio de diversos tipos de oxidación química.

    Tratamiento Secundario o Tratamiento Biológico: Se emplea de forma masiva

    para eliminar la contaminación orgánica disuelta, la cual es costosa de eliminar portratamientos físico‐químicos. Suele aplicarse tras los anteriores. Consisten en la

    oxidación aerobia de la materia orgánica o su eliminación anaerobia en digestores

    cerrados. Ambos sistemas producen fangos en mayor o menor medida que, a su

    vez, deben ser tratados para su reducción, acondicionamiento y destino final.

    Tratamiento  Terciario  o  Tratamiento  Físico‐Químico‐Biológico:  Desde el

    punto de vista conceptual no aplica técnicas diferentes que los tratamientos

    primarios o secundarios, sino que utiliza técnicas de ambos tipos destinadas a

    pulir o afinar el vertido final, mejorando alguna de sus características. Si se emplea

    intensivamente pueden lograr hacer el agua de nuevo apta para el abastecimiento

    de necesidades agrícolas, industriales, e incluso para potabilización (reciclaje de

    efluentes).

  • 8/15/2019 PTAR-UNSCH

    8/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    6

    3.3  Usos del agua 

    El agua es el recurso que ha condicionado principalmente el desarrollo de la

    civilización. Los núcleos de población se han asentado, a lo largo de la historia, junto a

    los cursos de los ríos. La presencia de grandes fuentes de agua ha sido decisiva en el

    desarrollo de la sociedad humana, llegando a influir no sólo en el mero mantenimientode la vida, sino también en lo que se refiere al crecimiento económico y a la mejora de

    la calidad de vida. Este hecho permite constatar que el agua tiene importantes

    aplicaciones, que podrían resumirse en los siguientes puntos:

     

    Abastecimiento de agua potable.

     

    Sostenimiento de la fauna acuática.

     

    Producción agraria e industrial.

     

    Generación de energía.

     

    Navegación y recreo. 

    Evacuación de residuos

    Es evidente que todas estas actividades demandan agua; sin embargo, no todas ellas la

    consumen. La “demanda” es la cantidad de agua que se requiere para un uso determinado,

    mientras que el “consumo” es la cantidad de agua que deja de estar disponible después de

    su utilización, por no ser reaprovechable.

    Finalmente, la calidad del agua puede verse totalmente alterada según la utilización que se

    haga de ella. Así, algunos usos del agua generan las llamadas “aguas residuales”, es decir,

    los efluentes de actividades domésticas, agrarias o industriales.

    3.4  Contaminación del agua 

    La contaminación del agua puede definirse como la alteración de su calidad por la acción

    natural o humana que hace que no sea adecuada para la aplicación a la que se destina. Las

    alteraciones que puede sufrir el agua pueden ser físicas, químicas o biológicas.

    3.4.1  Alteraciones Físicas. 

    Propiedades  organolépticas.  Tales como color, olor (color debido a la presencia de

    materiales disueltos o suspendidos; olor a la presencia de productos químicos o a materia

    orgánica en descomposición o a organismos como las algas o los hongos).

    Temperatura. Esta variable está relacionada con diversos fenómenos que ocurren en el

    agua, como la solubilidad de gases y sales, así como en los procesos biológicos, La

    elevación de la temperatura del agua puede acelerar la putrefacción, aumentar la

    solubilidad de las sales y disminuir la de los gases.

  • 8/15/2019 PTAR-UNSCH

    9/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    7

    Materia  en  suspensión.  Generalmente el agua en movimiento transporta sólidos

    insolubles. Según el tamaño de las partículas, se pueden formar suspensiones, que pueden

    ser inestables y sedimentar cuando el agua queda en reposo, o pueden ser estables incluso

    con el agua en reposo. En el primer caso se habla de “sedimento”, mientras que en el

    segundo caso se habla de “turbidez”.

    Espuma.  Un agua formará espuma si contiene agentes tensoactivos, que son sustancias

    que disminuyen la tensión superficial de los líquidos y, por tanto, aumentan la estabilidad

    de las burbujas gaseosas que puedan formarse en la superficie. El ejemplo más

    representativo de agentes tensoactivos son los detergentes sintéticos, que son vertidos en

    las aguas naturales en grandes cantidades por su extendido uso industrial y doméstico.

    Radiactividad.  Todas las aguas presentan una determinada radiactividad natural, como

    consecuencia de la presencia de isótopos radiactivos solubles, en especial los de potasio,

    provenientes de diversos tipos de rocas, y que no suponen peligro para los seres vivos.

    3.4.2  Alteraciones Químicas 

    La presencia de compuestos químicos por encima de determinados niveles de

    concentración suele ser la que más afecta a la calidad del agua. Los compuestos orgánicos

    (hidrocarburos, pesticidas, detergentes) dan al agua un carácter reductor, ya que son

    capaces de combinarse con el oxígeno disuelto en ella. Los productos inorgánicos

    (nitrógeno, fósforo, sales, metales) varían de forma importante las propiedades del agua

    como su alcalinidad, carácter corrosivo o toxicidad.

    3.4.3  Alteraciones Biológicas 

    Las alteraciones biológicas del agua se refieren, principalmente, al desequilibrio

    provocado por un aumento del número de microorganismos presentes especialmente

    bacterias, protozoos y algas. Las bacterias son los microorganismos encargados de oxidar

    la materia orgánica del agua; los protozoos se alimentan de bacterias y, por tanto,

    equilibran las poblaciones de microorganismos; las algas poseen la capacidad fotosintética

    que les permite liberar oxígeno, manteniendo la concentración suficiente en el agua.

    Otro tipo de alteración biológica es la disminución de la flora y fauna acuáticas de un agua,provocada a menudo por la reducción de la concentración de oxígeno libre disuelto por

    debajo del valor mínimo ( > 4 mg/L) que permite la vida de los organismos superiores.

  • 8/15/2019 PTAR-UNSCH

    10/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    8

    3.5   Aspectos medioambientales de las aguas 

    3.5.1 Parámetros  físico – químicos en  la evaluación de  la calidad  

    del  agua 

    La calidad del agua ha de definirse en relación con el uso o actividad a que se le quiere

    dedicar, y por ello no podemos hablar de “buena” o “mala” calidad en abstracto, sino que

    cada actividad exige una calidad adecuada.

    Para evaluar los cambios que las diferentes aplicaciones del agua puedan originar en su

    calidad, empleamos parámetros físicos, químicos o biológicos. A estos parámetros se les

    denomina indicadores de calidad del agua. 

    Se pueden considerar los siguientes:

      Potencial de Hidrógeno,  pH.  Es un término usado para expresar el grado de

    acidez o alcalinidad de una solución y constituye un parámetro de interés en la

    caracterización de un cuerpo de agua, su variación indica las alteraciones

    producidas por agentes extraños.

     

    Temperatura. La temperatura del agua es un parámetro muy importante ya que

    ejerce una notable influencia en la solubilidad del oxígeno (un aumento de 10 ºC

    disminuye la solubilidad del oxígeno en un 20 %), lo que tiene un gran efecto sobre

    los seres vivos que puede contener, sobre la velocidad de las reacciones químicas y

    bioquímicas y en sus posibilidades de utilización. Por tanto, un agua cuya

    temperatura sea unos 10 – 15 ºC superior a su valor medio normal podríaconsiderarse como “térmicamente contaminada”.

      Conductividad.  Es la expresión numérica de la habilidad del agua para

    transportar una corriente eléctrica. Depende de la concentración total de

    sustancias disueltas ionizadas en el agua y de la temperatura a la cual se haga la

    determinación.

    ¿Por qué es importante medir la conductividad en el agua? 

     

    Para obtener un estimado rápido del contenido de sólidos totales disueltos;

    multiplicado por un factor que oscila entre 0,55 – 0,90 se puede obtener el

    contenido de sólidos disueltos en mg/L.

      Demanda  Bioquímica  de  Oxígeno  DBO5.  Es una prueba usada para la

    determinación de los requerimientos de oxígeno para la degradación

    bioquímica de la materia orgánica en las muestras de agua.

  • 8/15/2019 PTAR-UNSCH

    11/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    9

    Mide el oxígeno requerido por los organismos en sus procesos metabólicos al

    consumir materia orgánica presentes en las aguas residuales. Cuanto mayor

    sea el valor de este parámetro, más contaminada estará el agua.

     Aplicación 

     

    Es la única prueba que se aplica y da una medida de la cantidad de

    materia orgánica biológicamente oxidable presente en la muestra.

     

    La determinación es usada en estudios para medir la capacidad de

    purificación del curso de agua y para chequear la calidad del efluente.

     

    Contenido  en  sólidos.  El contenido en sólidos del agua es el parámetro más

    inmediato para medir la calidad del agua. Estos sólidos (totales) pueden estar

    disueltos, suspendidos (provocando turbidez) o ser sedimentables.

     

    Turbiedad. Es una expresión de la propiedad óptica de una muestra de agua, que

    hace que la luz sea dispersada y no transmitida a través de la suspensión

    ¿A qué se debe? 

     

    A la presencia de materia suspendida (arcilla, limo, sedimento, materia

    orgánica e inorgánica finamente dividida, plancton y otros organismos

    microscópicos)

       Alcalinidad.  Se debe generalmente a la presencia de bicarbonatos, carbonato e

    hidróxido y con menos frecuencia (ocasionalmente) a boratos, silicatos y fosfatos.

    Hay tres clases de alcalinidad: tipo hidróxido (OH‐), tipo carbonatos (CO3 =) y tipo

    bicarbonatos (HCO3 ‐).

    Con el fin de distinguir las clases de alcalinidad presentes en una muestra y de

    determinar las cantidades de cada una de ellas se efectúa una titulación con 0,02 N

    de H2SO4, usando dos indicadores sucesivamente (fenoftaleína y anaranjado de

    metilo)

    Significado Sanitario La alcalinidad del agua tiene poca importancia sanitaria. Aguas con alta

    alcalinidad, son usualmente de mal sabor, siendo rechazadas por el público.

     

    Dureza. Se define como la característica del agua que representa la concentración

    total de iones calcio y magnesio, expresada como carbonato de calcio.

  • 8/15/2019 PTAR-UNSCH

    12/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    10

    ¿Por qué es importante la medición de Dureza en el agua?. (17) 

    Las aguas duras son tan satisfactorias al consumo humano como las aguas

    blandas. Los problemas son de tipo doméstico e industrial: a mayor dureza

    mayor consumo de jabón y formación de incrustaciones sobre superficies

    metálicas.

     

    Cloruros. Las aguas naturales contienen cloruros en concentraciones que varían

    ampliamente. El contenido de cloruros aumenta normalmente, cuando se

    incrementa el contenido mineral.

    Aguas de vertientes y montañas usualmente tienen una concentración baja de

    Cloruros, mientras que aguas de río o subterráneas usualmente tienen una

    cantidad considerable.

    Significado Sanitario 

    Concentraciones cercanas a los 250 ppm (mg/L) de cloruros, da un sabor

    salado al agua, en caso de usarse para bebida son rechazada por mucha

    gente.

     

    Nitrito  –  NO2  Se encuentran en las aguas como estado intermedio de la

    descomposición biológica del nitrógeno orgánico. Se forma en condiciones

    aeróbicas a partir del amonio.

    Es inestable en presencia de O2 y en las aguas naturales por lo general no se le

    encuentra. (17)

    ¿Por qué es importante medir Nitritos en el agua? 

    Su presencia en el agua es algunas veces indicador de contaminación orgánica

    fecal.

     

    Metales Pesados. Las aguas procedentes de las industrias como la minera, la de

    recubrimientos metálicos, las fundidoras y otras más contaminan el agua con

    diversos metales. Por ejemplo, las sales de metales como el plomo, el zinc, el

    mercurio, la plata, el níquel, el cromo, el cadmio y el arsénico son muy tóxicas para

    la flora y la fauna terrestres y acuáticas.Las sales solubles en agua de los metales pesados como el plomo, cadmio y

    mercurio son muy tóxicos y acumulables por los organismos que los absorben, los

    cuales a su vez son fuente de contaminación de las cadenas alimenticias al ser

    ingeridos por alguno de sus eslabones. Al ser ingeridos por el hombre en el agua y

    alimentos contaminados por los compuestos de mercurio, plomo o cadmio le

    provocan ceguera, amnesia, raquitismo, miastenia o hasta la muerte.

  • 8/15/2019 PTAR-UNSCH

    13/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    11

    ¿Por  qué  es  importante medir  el  contenido  de metales  pesados  en  el 

    agua? 

     

    Debido a las propiedades tóxicas que muchos de estos elementos

    confieren a los organismos vivos, caso del plomo puede causar varios

    efectos no deseados, como son perturbación de la biosíntesis de lahemoglobina y anemia, daño a los riñones, distintos tipos de cáncer,

    entre otros.

     

    Muchos de ellos son acumulativos en el organismo.

     

    Afectan la calidad del agua de consumo humano por ejemplo el plomo

    puede entrar en el agua potable a través de la corrosión de tuberías,

    afectan los sistemas de tratamiento de aguas residuales y el sistema

    biológico de los cuerpos hídricos.

     

    Organismos patógenos. Los organismos patógenos que se pueden encontrar

    en el agua proceden de residuos humanos y pueden causar enfermedades

    gastrointestinales como fiebre tifoidea, cólera o disentería. Como la

    identificación de los organismos patógenos presentes en el agua es

    extremadamente difícil y lenta, se utiliza como indicador de su posible

    existencia la presencia de heces. Las heces humanas se caracterizan por

    contener una elevada cantidad de bacterias en forma de bastoncillo, llamadas

    “coliformes”, que son fáciles de determinar, por lo que se utilizan como

    indicadores de la contaminación fecal. Su presencia se interpreta como un

    indicador de heces y, por tanto, de que puede haber organismos patógenos

    presentes; su ausencia indica que el agua no contiene heces y, por tanto, se

    halla exenta de organismos productores de enfermedades.

    3.6  Normas de calidad del agua 

    Las Normas de Calidad de Agua en el país son fijados por el Ministerio del Ambiente

    MINAM teniendo en cuenta que los límites que se establecen en cada caso, sean factibles

    de ser alcanzados con los recursos locales disponibles para tal fin.

    3.6.1 

    Ley  de

     recursos

     hídricos

     Nº 

     29338 

     

    Promulgado el 30 de Marzo de 2009, en El Titulo III USO DE LOS RECURSOS HÍDRICOS, se

    tiene los siguientes artículos relacionados con el uso de agua:

     Artículo 35: Clases de usos de agua y orden de prioridad, reconoce las siguientes clases de

    uso de agua:

  • 8/15/2019 PTAR-UNSCH

    14/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    12

    1. 

    Uso primario

    2. 

    Uso poblacional

    3. 

    Uso productivo

     Artículo 36. Uso primario del agua. 

    Consiste en la utilización directa y efectiva de la misma, en las fuentes naturales y cauces

    públicos del agua, con el fin de satisfacer necesidades primarias humanas.

     Artículo 39. Uso poblacional del agua. 

    Consiste en la captación del agua de una fuente o red pública, debidamente tratada, con el

    fin de satisfacer las necesidades humanas básicas.

     Artículo 42. Uso productivo del agua. 

    Consiste en la utilización de la misma en procesos de producción o previos a los mismos.

    El Reglamento de la Ley Nº 29338, Ley de Recursos Hídricos (Decreto Supremo Nº 001‐

    2010‐AG) Aprobado el 24 de marzo 2010 en el artículo 106. 2. sobre la Clasificación de los

    Cuerpos de Aguas, señala que la Autoridad Nacional del Agua clasifica los cuerpos de agua,

    tomando como base la implementación progresiva de los Estándares Nacionales de

    Calidad Ambiental para el Agua (ECA‐ Agua), de acuerdo con los usos actuales y

    potenciales a que se destina el agua.

    3.6.2 Estándares nacionales de calidad  ambiental   para aguas 

    Según Decreto Supremo Nº 002‐2008 – MINAM (30 de julio del 2008), se aprobó los

    Estándares Nacionales de Calidad Ambiental para Agua, con el objetivo de establecer el

    nivel de concentración o el grado de elementos, sustancias o parámetros físicos, químicos

    y biológicos presentes en el agua, en su condición de cuerpo receptor y componente básico

    de los ecosistemas acuáticos, que no representa riesgo significativo para la salud de las

    personas ni para el ambiente.

    Según el ENCA – Agua la clasificación de los cuerpos de agua es el siguiente (3):

    Categoría 1: Poblacional y Recreacional

    Categoría 2: Actividades marino costeras

    Categoría 3: Riego de vegetales y bebida de animales

    Categoría 4: Conservación del ambiente acuático

  • 8/15/2019 PTAR-UNSCH

    15/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    13

    A continuación, se detalla los niveles de concentración o el grado de elementos, sustancias

    o parámetros físicos, químicos y biológicos presentes en el agua de categoría 3. (3)

    Tabla 2. Estándares nacionales de calidad ambiental del agua. 

    CATEGORÍA 3: RIEGO DE VEGETALES Y BEBIDA DE ANIMALES

  • 8/15/2019 PTAR-UNSCH

    16/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    14

    3.7  FISCALIZACIÓN  AMBIENTAL EN  AGUAS RESIDUALES 

    3.7.1  Entidad Prestadora de Servicios de Saneamiento (EPS Saneamiento) 

    Es aquella empresa o institución pública, municipal o mixta, constituida con el exclusivo

    propósito de brindar servicios de saneamiento en el ámbito urbano. Es quien produce,

    distribuye y comercializa el agua potable, y quien se encarga de la recolección, tratamiento

    y disposición final de las aguas servidas, la recolección de las aguas provenientes de las

    lluvias y la disposición sanitaria de excretas.

    3.7.2 

    Entidad de Fiscalización  Ambiental (EFA) Entidad pública de ámbito nacional, regional o local que tiene atribuida alguna o todas las

    acciones de fiscalización ambiental, en sentido amplio. Excepcionalmente, y por

    disposición legal, puede ser considerada EFA aquel órgano de línea de la entidad que se

    encuentre facultado para realizar funciones de fiscalización ambiental.

  • 8/15/2019 PTAR-UNSCH

    17/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    15

    3.7.3  Estándar de Calidad  Ambiental (ECA) 

    Es la medida que establece el nivel de concentración o del grado de elementos, sustancias

    o parámetros físicos, químicos y biológicos, presentes en el aire, agua o suelo, en su

    condición de cuerpo receptor, que no representa riesgo significativo para la salud de las

    personas ni para el ambiente.

    3.7.4  Fiscalización  Ambiental 

    Acción de control que realiza una entidad pública dirigida a verificar el cumplimiento de

    las obligaciones ambientales fiscalizables de un administrado, sea una persona natural o

    jurídica de derecho privado o público. Comprende las acciones de fiscalización ambiental

    que son ejercidas por el OEFA y las EFA de acuerdo a sus competencias, y puede ser

    entendida en sentido amplio y en sentido estricto.

    • Fiscalización ambiental en sentido amplio: Comprende las acciones de vigilancia, control,

    monitoreo, seguimiento, verificación u otras similares que se enmarcan dentro de las

    funciones de evaluación, supervisión, fiscalización y sanción con la finalidad de asegurar el

    cumplimiento de obligaciones ambientales fiscalizables.

    • Fiscalización ambiental en sentido estricto: Comprende la facultad de investigar la

    comisión de posibles infracciones administrativas y la de imponer sanciones y medidas

    correctivas.

    3.7.5  Sistema Nacional de Evaluación y Fiscalización  Ambiental (SINEFA) 

    Creado mediante Ley N° 29325, modificada por la Ley N° 30011, con la finalidad dearticular las funciones de fiscalización ambiental a nivel nacional, regional y local.

    3.8  Situación de las plantas de tratamiento de aguas residuales 

    en el Perú 

    El agua es esencial para toda forma de vida y aspectos de la misma, es un recurso escaso,

    vulnerable, estratégico e indivisible, sostiene el desarrollo y el ambiente.

    La mayoría de los desechos industriales producen descargas de desechos líquidos que

    tienen demanda bioquímica de oxígeno DBO muy altas, pero concentraciones de

    coliformes fecales (CF) menores que las aguas residuales domésticas, pudiéndose decir

    que los desechos industriales constituyen un gran problema ecológico y los desechos

    domésticos un gran problema de salud pública, aunque ambos contribuyan en el deterioro

    general de la calidad del agua.

  • 8/15/2019 PTAR-UNSCH

    18/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    16

    En el Perú, durante el año 2007, los sistemas de alcantarillado recolectaron

    aproximadamente 743,7 millones de metros cúbicos de aguas residuales, producto de las

    descargas de los usuarios conectados al servicio de alcantarillado. De ese volumen, sólo

    29,1 % ingresaron a un sistema de tratamiento de aguas residuales, muchos de los cuales

    con deficiencias operativas y de mantenimiento, y el resto se descargó directamente a un

    cuerpo de agua (mar, río o lagos), se infiltró en el suelo o se usó clandestinamente para

    fines agrícolas. (1)

    En el país, de un total de 143 plantas de tratamiento de aguas residuales (PTAR), pocos

    son los proyectos que puedan llamarse exitosos. Ello se debe, por un lado, a la visión

    sesgada de las Empresas Prestadoras de Saneamiento (EPS) que no llega a descubrir el

    potencial socio económico de las aguas residuales tratadas, lo cual se manifiesta al calificar

    como castigo para el trabajador la designación de efectuar actividades de operación y

    mantenimiento de las PTAR y, por otro lado, a la ausencia de una cultura de protección del

    ambiente como parte de la misión de las EPS. El resultado es la contaminación de los

    cuerpos de agua que reciben tanto los efluentes de insuficiente calidad de las PTAR como

    los vertimientos de aguas residuales crudas provenientes de los sistemas de alcantarillado.

    (1)

    Otro problema que afecta directamente la eficacia de las PTAR, lo constituye el ingreso de

    efluentes industriales a los sistemas de alcantarillado, cuya carga orgánica y otros

    elementos como metales pesados, ácidos y bases generan sobrecarga en las unidades de

    tratamiento y afectan negativamente los procesos biológicos de depuración.

    Estudios realizados por la SUNASS, (1) en Empresas Prestadoras de Saneamiento han

    identificado los principales problemas en la gestión de las aguas residuales que son: (a) El

    déficit de cobertura de tratamiento y (b) la ineficiencia operativa de las plantas de

    tratamiento de aguas residuales (PTAR). Así mismo este estudio menciona entre las causas

    directas e indirectas de este problema, así como las consecuencias que acarrea, lo

    siguiente:

    Principales causas: 

     

    Insuficiente investigación y desarrollo tecnológico en el Perú.

     

    Acción parcial y desarticulada de las organizaciones del sector.

     

    Insuficientes recursos destinados a la operación y mantenimiento de las PTAR.

     

    Déficit de financiamiento para el tratamiento de las aguas residuales.

  • 8/15/2019 PTAR-UNSCH

    19/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    17

    3.9  Planta  de  tratamiento de  aguas  residuales  “LA TOTORA”  – 

     Ayacucho 

    La Planta de tratamiento de aguas residuales (PTAR) “La Totora” se ubica en la ciudad de

    Ayacucho capital de la provincia de Huamanga, a 3,50 Km del óvalo de la Magdalena,

    carretera Ayacucho – Huanta.

    Las aguas servidas de la Ciudad de Ayacucho son conducidas mediante redes colectoras e

    ingresan por un emisor principal a la Planta de Tratamiento de Aguas Servidas de Totora

    por gravedad y en el sector de Santa Elena ingresa por bombeo.

    La Empresa Prestadora de Saneamiento de Ayacucho S.A. (EPSASA) está a cargo de la

    Planta de Tratamiento de Aguas Residuales PTAR “La Totora”.

    Imagen Satelital fuente Google Earth 

    3.10  Problemática  del  vertido  de  las  aguas  de  la  PTAR  “LA 

    TOTORA” 

    La Ciudad de Ayacucho, al igual que otras ciudades del Perú presenta un crecimiento

    demográfico alto, no existe una política de ordenamiento territorial, y es uno de los

    problemas ambientales principales. La capacidad de remoción de bacterias Coliformes

    fecales (BCF) y disminución de la demanda bioquímica de oxígeno (DBO5) por la PTAR “La

    Totora” se ve afectada por el crecimiento demográfico en la ciudad de Ayacucho haciendo

    que el volumen de agua a tratar sea cada vez mayor. Contribuye a este problema el mal uso

    del sistema de alcantarillado por los ciudadanos como botaderos de basura, ya sea en los

  • 8/15/2019 PTAR-UNSCH

    20/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    18

    domicilios o los buzones recolectores, esto debido a la falta de una educación ambiental y

    sobre todo la conservación del recurso agua.

    Esto trae como consecuencia que las aguas tratadas de la PTAR “La Totora” son vertidas a

    las aguas del río Alameda aún con carga contaminante, originando un riesgo de salud ya

    que estas aguas son utilizadas río abajo para riego de cultivos como legumbres, hortalizasy maíz entre otros y también para uso recreacional.

    Como se ha señalado en el ítem 1.1. los usos de los efluentes de las PTAR están destinados

    en gran porcentaje para el riego agrícola y para riego de áreas verdes recreativas por lo

    que se debe considerar el cumplimiento de ciertos parámetros de calidad de agua.

    Los Estándares de Calidad Ambiental (ECA) vigentes para los cuerpos de agua son los

    comprendidos en los Estándares Nacionales de Calidad Ambiental para el Agua, (3) según

    tipo de uso:

    Categoría 1: Poblacional y Recreacional.

    Categoría 2: Actividades Marino Costera.

    Categoría 3: Riego de Vegetales y Bebida de animales.

    Categoría 4: Conservación del Ambiente Acuático.

    A continuación, se muestran los límites máximos permisibles (LMP) de los principales

    parámetros sobre las cuales las plantas de tratamiento de aguas residuales municipales

    tienen influencia.

    Tabla 1. Límites máximos permisibles de coliformes fecales (CF) y demanda bioquímica de

    oxígeno (DBO5) en cuerpos de agua por tipo de uso

  • 8/15/2019 PTAR-UNSCH

    21/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    19

    Como se señaló anteriormente la capacidad de remoción de bacterias Coliformes fecales

    (BCF) y disminución de la demanda bioquímica de oxígeno (DBO5) por la PTAR “La

    Totora” se ve afectada por muchos factores, de tal manera que la concentración de DBO5

    para el efluente de la PTAR tuvo un valor promedio de 39,7 mg/L (2009) y de coliformes

    fecales un valor promedio de 2,90 x 105 NMP/100 mL (2009), siendo todavía deficientes

    para alcanzar los valores señalados para las aguas de la Categoría III.

    El riego con aguas residuales se viene incrementando notablemente en los últimos años,

    debido a que otorga a la agricultura las siguientes ventajas (4):

      Disponibilidad permanente de agua

      Aporte de gran cantidad de nutrientes

      Incremento del rendimiento de los cultivos

      Mejora de la calidad de los suelos (textura)

     

    Ampliación de la frontera agrícola

    Sin embargo, los riesgos potenciales que se deben tomar en cuenta para un tratamiento de

    aguas de manera sostenible son (4):

      La contaminación microbiológica de los productos

      La bioacumulación de elementos tóxicos

      La salinización e impermeabilización del suelo

      El desbalance de nutrientes en el suelo.

    En consecuencia, se deben dar diversas estrategias de manejo agrícola que pueden

    contribuir a reducir significativamente estos riesgos potenciales.

    El problema aumenta si se usan las aguas residuales con tratamiento inadecuado en la

    agricultura, ya que implica riesgo de salud para los trabajadores agrícolas y sus familiares,

    lo mismo que para la población en general que consume los productos así obtenidos.

    IV.   AFLUENTE Y  EFLUENTE DE LA PTAR‐TOTORA 

     Acometida del afluente hacia la PTAR. Se trata de una línea de Ø 24" de material

    Concreto Simple Normalizado, que tiene una longitud de 2,823 mts, que conduce

    los efluentes desde el Puente de Vía de Evitamiento hasta la PTAR Totora. La

    conducción en la actualidad del emisario es de 327 L/seg; sin embargo, la línea

    tiene una capacidad de 950 L/seg. El estado de conservación es ‘regular’, y tiene 13

    años de construido.

  • 8/15/2019 PTAR-UNSCH

    22/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    20

    Conducción  del  efluente  hacia  Río   Alameda.  Se trata de una canal de

    aproximadamente 70 m de longitud de mampostería, en cuyo inicio de ejecuta la

    desinfección, antes del vertimiento en el río Alameda.

    V.  REDES DE  ALCANTARILLADO 

    El sistema de redes de alcantarillado sanitario de la ciudad de Ayacucho está compuesto

    por redes secundarias, redes primarias, interceptor y emisor, de material CSN, PVC, FFD,

    que recolectan las aguas servidas provenientes de conexiones de uso doméstico, comercial

    e industrial, y luego transporta a través de redes indicadas hasta el afluente de la Planta de

    Tratamiento de Aguas Residuales Totora; el conjunto del sistema de alcantarillado

    sanitario consta de un total de 304,527 ml., de diferentes diámetros que van de 6”, 8”, 10”,

    12”, 14” entre colectores secundarios y primarios y de mayor diámetro corresponden al

    interceptor y emisor.

    VI.  ESTACIONES DE BOMBEO 

    El sistema de alcantarillado sanitario de la ciudad de Ayacucho cuenta con dos (2)

    estaciones de bombeo de aguas residuales:

    a) 

    Estación de Bombeo Santa Elena 

    Consta del siguiente:

    Número de equipos de bombeo, 2 bombas

    Tipo de bomba, sumergibleCapacidad de bomba, 20 lps

    Capacidad del motor, 20 HP

    Línea de impulsión, 160 mm. PVC

    Estado, operativo 

    b) 

    Estación de Bombeo Totora 

    Consta del siguiente:

    Número de equipos de bombeo, 2 bombas

    Tipo de bomba, sumergible

    Capacidad de bomba, 8 lps

    Capacidad del motor, 5 HP

    Línea de impulsión, 110 mm. PVC

    Estado, inoperativo 

  • 8/15/2019 PTAR-UNSCH

    23/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    21

    VII.  PLANTA DE TRATAMIENTO DE  AGUAS RESIDUALES 

    TOTORA 

    Según los estudios del proyecto de la PTAR Totora, el diseño fijó el horizonte final en el

    2020, distinguiendo 2 fases de implementación:

    La primera fase, con diseño final y construcción de obras que cubrirá los

    requerimientos a un horizonte fijado en el año 2010.

    La segunda fase, que cubrirá (con una ampliación de obras) los requerimientos de

    tratamiento hasta el año 2020.

    Los objetivos del diseño son:

    La planta reduce la carga de DBO5, en por lo menos el 90% en el promedio anual.

    El efluente de la PTAR llega a 30 mg DBO5 /l en el 80% de las muestras

    El diseño definitivo excluye el tratamiento de desechos líquidos industriales, así

    como los provenientes de mataderos/camales, estaciones de lubricación, etc.

    previéndose que la EPS debe controlar el cumplimiento de los VMA por parte de

    sus usuarios.

    7.1  UBICACIÓN 

    La Planta de Tratamiento de Aguas Residuales de la ciudad de Huamanga se llama PTAR

    Totora, y se ubica al norte de la ciudad de Ayacucho, a unos 3.50 km. del centro de la

    ciudad. Planimétricamente se encuentra ubicada en las siguientes coordenadas:

    NORTE:  585.654 E – 8 547.489 N

    SUR:  585.762 E – 8 546.611 N

    ESTE:  585.996 E – 8 547.037 N

    OESTE:  585.442 E – 8 547.220 N

    Topográficamente la PTAR Totora se ubica entre las cotas que van desde 2606 msnm a

    2617 msnm. Primigeniamente la PTAR Totora fue construida en el año 1974 para una

    población de 60,000 habitantes aproximadamente; pero la planta ha sido ampliada y

    mejorada, y desde diciembre del 2004 puesta en operación con una capacidad de

    tratamiento que va de 274 L/seg hasta los 435 L/seg.

    La PTAR Totora al ser mejorada en su capacidad y tratamiento de los desagües, tiene un

    efluente que cumple con la normatividad establecida primero en los Límites Máximos

    Permisibles (LMP) para plantas de tratamiento de aguas residuales domésticas, y a su vez

    cumple con los Estándares de Calidad de Agua, medidos en el cuerpo receptor, el río

    Alameda.

  • 8/15/2019 PTAR-UNSCH

    24/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    22

    Tabla 01 Características básicas de la PTAR Totora. 

    Caudal  UND. Caudales futuros 

    Fase 1; 2010 Fase 2; 2020

    Población Total Hab. 208.282 278.215

    Población servida Hab. 156.212 222.572

    Cobertura dealcantarillado estimada

    %  75 80

    Caudal medio diario (Q) L/seg 443 618

    Caudal medio horario (Qh) L/seg 538 697

    Caudal pico (Qp) L/seg 770 989

    Caudal mínimo (Qmin) L/seg 274 435

    BDO5  204 mg/l 208 mg/l

    Carga de DBO Kg de DBO/día 7.811 11.129

    Carga de DQO Kg de DQO/día 15.622 22.258

    Coliformes fecales, agua

    residual cruda

    NMP/100 ml 1 x 108  4 x 108 

    Fuente. Estudio Definitivo PTAR Totora. Informe Final. 

    Tabla 02 Características del agua residual cruda. 

    Fuente. Estudio Definitivo PTAR Totora. Informe Final. 

    7.2  TRATAMIENTOS EN LA PTAR‐TOTORA 

    La tecnología de tratamiento de la planta depuradora contempla las siguientes fases y

    correspondientes procesos unitarios:

    a)  Tratamiento mecánico (pre tratamiento): 

    Desbaste:  Rejillas de limpieza automática con tornillo transportador del

    material de desbaste

    Desarenación:  Desarenador de flujo horizontal Sedimentación primaria:

    Presedimentadores tipo Imhoff

    Parámetros  Und.  Horizonte2010  Horizonte2020 

    Temperatura media (oC) 15 15

    Condiciones Iniciales 

    Coliformes fecales (NMP/100 ml.) 1x108

      4x 108

     

    Demanda Bioquímica de Oxigeno DBO (mg/l) 204 208

    Demanda Q uímica de Oxigeno DQ O (mg/l) 408  417 

    Condiciones finales 

    Coliformes fecales (NMP/100 ml.) 1,1 x 106

      5,6 x 106

     

    Remoción de CF (%) 98,8  98,6 

    Demanda Bioquímica de Oxígeno DBO (mg/l) 18

    Remoción de DBO (%) 91

  • 8/15/2019 PTAR-UNSCH

    25/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    23

    b) 

    Tratamiento biológico: 

    Línea Principal:  Filtros percoladores con unidades respectivas de

    sedimentación secundaria.

    Línea Secundaria:  Lagunas facultativas.

    c) 

    Post  tratamiento: 

    Pulimento  del  efluente  y  reducción  bacteriana:  Lagunas de maduración y

    pulimento.

    d)  Tratamiento de lodos: 

    Lodos primarios:  Digestión en frío en tanques Imhoff y deshidratación

    en lechos de secado.

    Lodos secundarios:  Digestión en frío y deshidratación en sedimentadores

    lagunares.

    Figura 01:  Esquema geográfico de los procesos unitarios en la PTAR Totora

    Fuente: EPSASA 

  • 8/15/2019 PTAR-UNSCH

    26/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    24

    Figura 

    02: 

    Acceso de entrada a la PTAR Totora

    Figura 03:  Plano de Planta General

  • 8/15/2019 PTAR-UNSCH

    27/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    25

    Figura 04:  Esquema de Operación de la PTAR

    7.3  CARACTERÍSTICAS DE LOS PRINCIPALES COMPONENTES DE 

    LA PTAR 

    7.3.1 Obra de Ingreso  y  Cámara de Rejas 

    La obra de ingreso tiene una longitud de 5 m con dimensiones de 1.6 x 2.1 m. Se compone

    de 3 canaletas de aproximación hacia las rejillas.

    En lo referente a los equipos de rejillas se han instalado 2 unidades de rejillas escalonadas

    de limpieza automática (Fa. HUBER). El tornillo se encuentra encapsulado en toda su

    longitud de manera que su transporte es higiénico y la generación de malos olores mínima.

  • 8/15/2019 PTAR-UNSCH

    28/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    26

    El ciclo de trabajo se regula automáticamente según el nivel de agua frente a la rejilla. La

    cantidad de material de desbaste estimado en Estudio de Diseño Definitivo al alcanzarse el

    horizonte en el 2,010 es de 7.30 m³/d con un contenido de humedad menor al 92%

    requiriéndose 4 vagones o container de 2 m³ de volumen neto cada uno.

    Según el jefe de la planta de tratamiento, el volumen de residuos sólidos diarios que seextrae de estas rejas es de 2 m³ y se lleva al relleno sanitario.

    Figura 05:  Obra de Ingreso y Rejillas de la PTAR

  • 8/15/2019 PTAR-UNSCH

    29/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    27

    Figura 06:  Rejilla Gruesa de 60 mmm y Rejilla Automática HUBER de 6 mm

  • 8/15/2019 PTAR-UNSCH

    30/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    28

    7.3.2 Desarenador  

    Es de flujo horizontal, sin aeración, con 3 cámaras y con sistema de limpieza hidráulico.

    La tasa de aplicación Bo (caudal horario) del desarenador considerado en el Diseño

    Definitivo fue de 82 m³/m² h para un diámetro de grano de arena a sedimentarse mayor o

    igual a 0,2 m. La eficiencia de retención es de 95% para el caudal medio horario en cadauno de los dos horizontes del proyecto.

    La parte inferior del desarenador está prevista como depósito de las arenas sedimentadas.

    Tiene forma trapezoidal con una canaleta en el medio de 60 cm de ancho para permitir la

    posibilidad de estar parado un operador para mantenimiento.

    El volumen purgado es conducido a través de un conducto b/h: 500/400 mm hacia una

    tubería de PVC DN 400 mm y por medio de ésta hacia una cámara denominada de secado

    de arenas ubicada junto al actual tanque Imhoff de forma rectangular de 15 x 8,90

    m de dimensiones en planta y altura variable entre 80 cm a 1 m.

    Figura 07:  Desarenador

  • 8/15/2019 PTAR-UNSCH

    31/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    29

    Figura 08:  Medidor Kafaghi y Cámara de Distribución

    7.3.3 Tanques Imhoff  (Pre‐ sedimentación) 

    Se produce en esta unidad la sedimentación y una reducción de la carga orgánica. La zona

    de sedimentación se diseñó para una tasa de aplicación superficial de 1 m²/m/h. El

    período de retención nominal recomendado se encuentra en el rango de 1 a 2,5 h.

    Los presedimentadores están compuestos de 4 nuevos tanques con un área en planta de

    30,50 x 17,80 m de dimensiones internas a los que se adicionan el área de 30,10 x 12 m de

    dimensiones internas de los 2 tanques existentes. Los caudales de diseño para el 2010

    hacia cada una de las unidades son los siguientes:

    Caudal hacia un Imhoff existente: 66 L/seg

    Caudal hacia un nuevo Imhoff: 101 L/seg

    Área de sedimentación: 2 x 8 x 29,6 = 474 m² (2 Imhoff existentes)

    4 x 12 x 30,50´= 1.464 m² (4 Imhoff nuevos)

    Área total = 1.938 m²

  • 8/15/2019 PTAR-UNSCH

    32/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    30

    Volumen total disponible para acumulación de lodos:

    2 Imhoffs existentes = 1.574 m³

    4 Imhoffs nuevos = 6.192 m³

    Volumen total disponible = 7.766 m³

    Se ha estimado para el 2010 una producción de lodos de 122 m³/d con un contenido de

    sólidos de 4,5% teniendo para ello volumen total disponible para acumulación de lodos de

    7.766 m³ frente a un volumen requerido estimado en el Estudio Definitivo de 6.683 m³.

    El efluente de los Imhoffs existentes (1 y 2) y de los Imhoffs nuevos 3 a 5 es conducido

    conjuntamente hacia los filtros percoladores mientras que el efluente del Imhoff 6

    alimentará las lagunas facultativas 1 y 2.

    Para la remoción de los lodos digeridos se han previsto por cada tanque 2 tuberías depurga de PVC DN 250 que desembocan en cajas de revisión comunes a cada dos tanques. A

    partir de aquí y por operación de las compuertas planas deslizantes DN 250 (GEIGER)

    ubicadas en las cajas mencionadas se transportan los lodos a través de una tubería de PVC

    DN 300 hacia los lechos de secado nuevos.

    La disposición final de los lodos fue definida en el Diseño Final mencionándose la posible

    venta como fertilizante orgánico para terrenos agrícolas, su empleo en programas de

    reforestación y/o su disposición final en el relleno sanitario.

  • 8/15/2019 PTAR-UNSCH

    33/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    31

    Figura 09:  Tanques Imhoff

    7.3.4 Filtros  percoladores  y   Sedimentadores  secundarios 

    Se han construido 4 filtros percoladores (FP) diseñados para absorber las cargas y

    caudales correspondientes al año 2010, estando en plena capacidad de recibir el efluente

    total proveniente del tratamiento primario. La sedimentación secundaria ocurre en

    lagunas proyectadas para el efecto y que se las ha denominado lagunas de sedimentación

    integradas (AT).

    Un filtro percolador es un reactor con lecho de contacto fijo, en el cual en dependencia de

    substrato provisto se genera una biopelícula (biomasa) sobre la superficie del medio de

    contacto (material portante). A lo largo de la altura del filtro percolador se produce la

    degradación de la materia orgánica afluente, la misma que en dependencia de los

    diferentes organismos que habitan en las distintas zonas del filtro produce una pendiente

    de degradación. Como consecuencia de esto son diferentes las eficiencias de remoción a lo

    largo del filtro. En la zona superior se produce una rápida degradación de los enlaces de

    carbono, la misma que decrece a medida que avanza hacia el fondo del filtro.

    Los filtros percoladores construidos presentan las siguientes características y/o

    parámetros de diseño:

    Diámetro interno de un FP: 32,00 m

    Altura efectiva del material de relleno: 4,50 m

    Volumen disponible por FP: 3.585 m³

    Carga orgánica de diseño: 0,40 kg/m³/d

    Área de filtración disponible por FP: 798 m²

    Tasa hidráulica diseño: 0,61 m/h

    Número de brazos del rociador rotativo instalado: 4

  • 8/15/2019 PTAR-UNSCH

    34/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    32

    Revoluciones por hora recomendadas para 4 brazos (n): > 50

    Capacidad de arrastre de diseño: 3 mm

    El flujo de aire a través del cuerpo del filtro está garantizado a través de orificios de

    ventilación de 400/400 mm ubicados en la periferia de la pared confinante del filtro y

    orificios de 300/300 mm ubicados sobre la losa inferior de la caja central. En total en laperiferia se dispone de un área de ventilación de 10,20 m², que implicaría una superficie

    abierta de 1 m² por cada 78 m² de superficie del lecho. El afluente es transportado hacía

    los sedimentadores, cuyo propósito es separar la biomasa en exceso producida en el filtro

    del agua servida tratada.

    El proceso de sedimentación secundaria tiene lugar en 4 lagunas diseñadas como

    sedimentadores integrados, por estar físicamente adosados a las lagunas de

    maduración.

    Con estas consideraciones el volumen total disponible promedio asciende a 9.600 m³ de

    los cuales 3.980 m³ corresponden al volumen muerto.

    Área de agua disponible: 5.300 m²

    Tasa de aplicación mínima de diseño: 0,60 m³/m² h

    Tiempo de retención promedio: 2,30 h

    Longitud efectiva del vertedero de salida: 18 m

    Carga hidráulica sobre vertedero de salida: 34 m³/m h

    Contenido de sólidos: 4 %

    Volumen diario de lodos: 94,50 m³/d

  • 8/15/2019 PTAR-UNSCH

    35/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    33

    Figura 10: Filtros Percoladores

  • 8/15/2019 PTAR-UNSCH

    36/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    34

    Figura 11: Lagunas de Sedimentación Integrada (AT)

    7.3.5  Sistema de Lagunas 

    El sistema lagunar está compuesto por lagunas de tipo facultativo (existentes) y lagunas

    de maduración o pulimento. Las lagunas son en esencia estanques diseñados para el

    tratamiento de aguas servidas mediante procesos biológicos naturales de interacción

    de la biomasa y la materia orgánica contenida en las aguas servidas, tienen como

    objetivo acumular lodos biológicos y digerirlos anaeróbicamente en el fondo, así como de

    presentar las condiciones adecuadas para el mantenimiento del proceso de fotosíntesis

  • 8/15/2019 PTAR-UNSCH

    37/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    35

    con algas unicelulares por medio de un adecuado balance de oxígeno en los estratos

    superiores de la laguna.

    Las dimensiones del sistema de lagunar se indican a continuación

    LAGUNA 

    ESPEJO FONDO LONGITUD ANCHO VOL

    COTA AREA COTA AREA L W V

    men m² men m² m m m³

    LF 1 2.627,70 19.220 2.625,70 15.930 344 56 35.100

    LF 2 2.624,50 16.411 2.622,50 13.330 341 49 29.700

    Fuente. Registro de la Gerencia Operacional de EPSASA, al 31.dic.2013. 

    Las lagunas tienen en común un tirante de agua de 2 m de profundidad y 50 cm de borde

    libre, así como taludes 1:2 (V:H), a excepción del talud comprendido entre la laguna

    facultativa 2 y laguna de maduración 1 que por la diferencia de altura considerable entre

    estas dos lagunas se ha considerado un talud de 1:3 (V:H).

    Al tener las dos lagunas facultativas diferentes volúmenes de agua retenida, son entonces

    las eficiencias de remoción a esperarse también ligeramente diferentes. Acorde al diseño

    los principales parámetros son los siguientes:

    Caudal hacia las lagunas LF 1 y 2: 55,40 L/seg , 4.787 m³/d

    Carga superficial recomendada: = 250 x 1.05 (T‐20°) 196 kg/ha d

    Carga afluente hacia una laguna: 366 kg/d

    Carga existente en LF 1: 191 kg/ha dCarga existente en LF 2: 223 kg/ha d

    Tiempo de retención LF 1: 12,4 d

    Tiempo de retención LF 2: 14,6 d

  • 8/15/2019 PTAR-UNSCH

    38/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    36

    Figura 12:  Lagunas Facultativas

    7.3.6 Lagunas de Maduración (Post ‐ tratamiento) 

    El objetivo fundamental de las lagunas de maduración es mejorar la calidadbacteriológica de las aguas servidas previamente tratadas. Evidentemente, en este tipo de

    lagunas se conseguirá también una remoción de la carga orgánica.

    Según el Diseño Final se ha aplicado el modelo de flujo disperso para la

    determinación de remociones en términos de DBO y CF. Como constante de

    decaimiento bacteria se ha asumido 0,63 d‐1 y como tasa de decaimiento de la DBO 0,08 d‐

  • 8/15/2019 PTAR-UNSCH

    39/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    37

    1, valores usuales de la literatura técnica, corregidos por el efecto de la temperatura (15

    °C)

    Las dimensiones del sistema de lagunar se indican a continuación

    LAGUNA

    ESPEJO FONDO LONGITU ANCHO VOL

    COTA AREA COTA AREA L W V

    msnm  m²  msnm  m²  m  m  m³

    MAD 1 2.619,50 13.430 2.617,50 10.280 269 50 24.000

    MAD 2  2.618,00  17.150  2.616,00  14.583  262  66  32.000 

    MAD 3 2.616,50 17.510 2.614,50 15.081 253 70 32.600

    Fuente. Registro de la Gerencia Operacional de EPSASA, al 31.dic.2013. 

  • 8/15/2019 PTAR-UNSCH

    40/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    38

    Figura 13:  Lagunas de Maduración

    7.3.7  

    Tratamiento de

     lodos

     

    El tratamiento de lodos tiene lugar en los tanques Imhoff para el caso de los lodos

    primarios y en los sedimentadores integrados para los lodos secundarios,

    provenientes de los filtros percoladores. En ambos casos la digestión es anaeróbica

    abierta, es decir, sin recuperación de gas. Lechos techados (antiguos) y con cubierta

    (nuevos), estos últimos con mayores facilidades para el manipuleo de los lodos.

    Producción anual de lodos de 14.016 m³ que serán deshidratados en los lechos de secado

    hasta alcanzar un contenido de sólidos de aprox. 50% con lo que la cantidad de lodos a ser

    desalojados/dispuestos asciende a 2.250 m³/a.

    Se consideran 7 purgas anuales, entonces en un período de cada 1,5 a 2 meses se deberá

    desalojar un volumen de 320 m³. La producción de lodos en los sedimentadores

    integrados con el 30% de remoción y 10% de contenido de sólidos será de 27 m³/d.

    Asumiendo un porcentaje de deshidratación conservador del 40% la cantidad anual de

    lodos a transportarse desde los sedimentadores ascendería a 1.970 m³/a. La frecuencia de

    vaciado de las lagunas sedimentadores según el Diseño Final fue estimada entre 80 a 120

    días.

    El Diseño Final ha previsto adicionalmente 3 sitios de almacenamiento provisional de los

    lodos deshidratados. Uno, de 40 m² ubicado junto a los lechos actuales y los dos restantes,

    de 100 m², c/u en la plataforma ubicada entre los filtros percoladores y los

    sedimentadores integrados. Estas plataformas de almacenamiento se profundizarán en 40

    cm y estarán en capacidad de recibir la producción promedia mensual de lodos (2.010)

  • 8/15/2019 PTAR-UNSCH

    41/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    39

    con una carga comprendida entre 1,20 a 1,40 m, es decir, sobresaldrán entre 80 cm a 1,00

    m sobre sobre el nivel de terreno terminado. Estas plataformas de almacenamiento no

    serán techadas. En la época lluviosa serán cubiertas empleando para ello plástico y piedras

    para mantener el mismo en su lugar. Se da como posible la venta de los lodos como

    fertilizante orgánico para terrenos agrícolas, su empleo en programas de reforestación y/o

    su disposición final en el relleno sanitario.

    Lechos (30x10m) y un total de 2.400 m² de área. Laguna sedimentadora.

    Área de forestación de la planta  Área de forestación de la planta 

    Figura 14:  Tratamiento de Lodos 

    Fuente. Registro EPSASA 

    7.3.8  Equipo de laboratorio 

    Desinfección  con  cloro:  El objetivo de la desinfección es la eliminación de

    bacterias patógenas presentes en el agua residual tratada y que producen

    enfermedades al ser humano. Se usa gas cloro en solución

    Medición:  El caudal de ingreso a la PTAR es medido mediante un dispositivo

    ultrasónico Endress & Hauser compuesto de sensor ultrasónico PROSONIC FDU 80,

    Transmisor PROSONIC FMU 861 y registrador digital EcoGRAPH A RSG 22. El

    sensor cuenta con cobertura de protección y está sujetado mediante un soportecantiliver. El período de registro puede calibrarse a voluntad. El equipo instalado

    cuenta con el Software ReadWin que permite además graficar los hidrogramas y

    pasarlo a EXCEL. El dispositivo ultrasónico registra las variaciones de nivel

    provocadas por el venturi Khafagi construido nacionalmente en acero inoxidable

    con información de Endress & Hauser.

  • 8/15/2019 PTAR-UNSCH

    42/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    40

    Junto al medidor de caudales se ha instalado un tomamuestras automático para

    obtener muestras compuestas de 24 horas proporcionales al caudal. El equipo

    proviene también de la empresa Endress & Hauser y tiene la designación

    LIQUIPORT 2000.

    El siguiente equipo está disponible en el laboratorio, cuya operatividad (Julio 2004) no hapodido ser comprobada por no encontrarse el laboratorio habilitado 100% para su

    operación.

    Equipos de laboratorio 

     Análisis Físico‐Químicos  Cant    Análisis de microbiología  Cant  

    Estufa Marca Binder Capacidad 115 litros 1Baño Maria,  GFL,  Cap. 14

    1

    Mufla Marca Thermolyne  Capacidad 51

    Incubadora  Binder,  Cap.1

    Balanza 4/5 decimales Marca BOECO 1Autoclave Vertical Gemmy

    1

    Generador de agua Ultra Pura, Cap. 1151

    Microscopio Binocular1

    Incubadora Refrigerada DBO, VELP Cap.2

    Microscopio Estereoscopio,1

    Turbidímetro Portátil, Marca Hanna 1Centrifuga c/rotor  4x50ml,

    1

    Sistema Medidor de DBO para 102

    Material de vidrio yEq.

    Plancha Calentador (Hot Plate) Marca1 Material pre‐esterilizado Eq.

    Agitador magnético C/calentamiento, IKA 1 Reactivos Eq.Conductímetro, Marca Hach 1 Oximétro port átil,  compensación hasta

    1

    Potenciómetro y Iones Específicos Marca1

    Electrodos Ion (Amonio,  nitratos y1 

    Material de vidrio y polipropileno Eq.Reactivos Eq.

  • 8/15/2019 PTAR-UNSCH

    43/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    41

    VIII.  VOLÚMENES DE PRODUCCIÓN 

    La tabla siguiente se muestra los volúmenes producidos en el sistema de alcantarillado de

    la ciudad de Huamanga, y los correspondientes volúmenes tratados en la PTAR Totora; los

    cuales corresponden al 100% de lo producido en la ciudad de Huamanga.

    Tabla 03 Volúmenes de aguas residuales tratados del 2011 al 2013 

    Fuente. Registros de la Gerencia de Operaciones de EPSASA. 

    Figura 15:  Vista panorámica de la PTAR Totora 

    Fuente. Registros EPSASA. 

    IX.  CALIDAD DEL EFLUENTE DE LA PTAR TOTORA 

    La tabla siguiente muestra los resultados de los análisis físico, químico y bacteriológicos

    de rutina hechos a los afluentes a la PTAR Totora, sus efluentes, en el río Alameda y en elcuerpo receptor, lo cual demuestra que no sólo se cumple con los Límites Máximos

    Permisibles fijados para los efluentes de las PTAR domésticos establecidos en el D.S. 003‐

    2010‐MINAM, sino que se cumplen inclusive en varios de los parámetros controlados en el

    cuerpo receptor y que se fijan en los Estándares Nacionales de Calidad de Agua, aprobados

    mediante D.S. 002‐2008‐MINAM.

    VOLUMEN(m3) 2011  2012  2013 

    Volumen Afluente  Mensual 735,099  756,521. 802,978 Volumen Efluente Promedio Mensual 676,291  696,000. 738,739 Volumen Perdida Promedio Mensual 58,808  62,521.6  64,238 Volumen Afluente  Anual 8,821,62 9,078,26 9,635,730 Volumen Efluente  Anual 8,115,48 8,352,00 8,864,873 

  • 8/15/2019 PTAR-UNSCH

    44/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    42

    Tabla 04 Calidad del efluente PTAR Totora 

    Nota. ‐ VMA corresponden a los Valores Máximos Permitidos, según el D.S.

    003‐2010‐MINAM Fuente. Registros del Laboratorio de la PTAR, EPSASA.

    Figura 16: Evolución de la eficiencia operativa en la PTAR Totora Fuente. Registros del Laboratorio 

    de la PTAR, EPSASA. 

    DBO5  DQO Colif ormes

    Fecales Aceite ygrasas 

    pH Solidos

    Totales enSuspensión 

    Temp. 

    mg/L  mg/L  NMP/100ml   mg/L  mg/L  ºC  

    2011  36  73  1,13E+04  17  7,70  82  21 

    ENE‐12 61  122  1,0E+04  6,5 7,74  60,0  21,0 

    FEB‐12 41 82 1,0E+04 9.1 7,80 56,0 20,0

    MAR‐12 42 84 9,98E+03 15,0 8,01 60,0 20,0

    ABR‐12 40  80  9,26E+03  6,5 7,95  42,0  21,0 

    MAY‐12 40 80 5,64E+03 7,3 7,88 21,52 19,3

    JUN‐12 40 80 8,65E+03 6,6 7,83 8,9 18,9

    JUL‐12 41 82 1,0E+04 2,0 8,33 7,9 20,8

    AGO‐12 40 80 9,5E+03 8,3 7,25 8,3 19,9

    SET‐12  36  72  7,0E+03  ‐ 8,32  23  21,1 

    OCT‐12 34 68 4,1E+03 ‐ 8,20 51,4 19,8

    NOV‐12

    DIC‐12

    VMP  100  200  10,000  20  6.5 – 8.5  150  < 35 

  • 8/15/2019 PTAR-UNSCH

    45/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    43

    X.   ALTERNATIVAS DE MEJORAMIENTO DE LA PTAR TOTORA 

    Figura 17:  Alternativas de Mejoramiento de la PTAR Totora 

    Fuente: Conferencia de Helmut  Hampe 

  • 8/15/2019 PTAR-UNSCH

    46/57

  • 8/15/2019 PTAR-UNSCH

    47/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    45

  • 8/15/2019 PTAR-UNSCH

    48/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    46

    XII.  PROCESO CONSTRUCTIVO DE LA PTAR‐TOTORA 

     AYACUCHO 

  • 8/15/2019 PTAR-UNSCH

    49/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    47

  • 8/15/2019 PTAR-UNSCH

    50/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    48

  • 8/15/2019 PTAR-UNSCH

    51/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    49

  • 8/15/2019 PTAR-UNSCH

    52/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    50

    D

  • 8/15/2019 PTAR-UNSCH

    53/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    51

  • 8/15/2019 PTAR-UNSCH

    54/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    52

  • 8/15/2019 PTAR-UNSCH

    55/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    53

  • 8/15/2019 PTAR-UNSCH

    56/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    54

  • 8/15/2019 PTAR-UNSCH

    57/57

    INGENIERÍA DE RECURSOS HIDRAÚLICOS IC-545)

    XIII.  CONCLUSIONES: 

    Los objetivos fueron cumplidos y la visita exitosa, ya que esta inspección nos

    brindó grandes conocimientos sobre las aguas residuales y sus tratamientos, pues

    nos mostró los procedimientos de cada uno de los módulos que se encuentran en

    una PTAR, además nos explicaron el tratamiento que se les hacen a las aguasresiduales para su disipación final y de los materiales que fueron usados para la

    construcción de la misma.

    Gracias a la realización de este trabajo de investigación hemos afianzado nuestros

    conocimientos sobre el diseño de las estructuras hidráulicas en una Planta de

    Tratamiento, tales como: obras de ingreso, cámara de rejillas, desarenador,

    tanques Imhoff, filtros percoladores, sistema de lagunas.

    XIV.  RECOMENDACIONES: 

    Después de la visita los estudiantes deben investigar todo relacionado con la

    PTAR‐Totora como el funcionamiento y sus componentes para afianzar sus

    conocimientos.

    Los estudiantes deben consultar sus dudas en el momento de la visita.

    Se debería utilizar implementos de protección y seguridad en la visita.

    XV.  BIBLIOGRAFÍA: 

    Conferencia de la PTAR‐Totora en el Colegio de Ingenieros‐ HELMUT HAMPE

    Plan Maestro Optimizado 2015‐2044 ‐ EPSASA S.A AYACUCHO

    Diagnóstico de las plantas de tratamiento de aguas residuales en el ámbito de

    operación de las entidades prestadoras de servicios de saneamiento‐SUNASS

    Estudio tarifario‐SUNASSGuía Elaborada por el Organismo de Evaluación y Fiscalización Ambiental

    MINSA, Normas para el proyecto del agua potable y el alcantarillado