Principles of Lasers

724
ПРИНЦИПЫ ЛАЗЕРОВ О. Звелто ПРИНЦИПЫ ЛАЗЕРОВ

description

This book describes basics in operation of lasers and their types, providing information about different active media and geometry setups.

Transcript of Principles of Lasers

  • .

  • ORAZIO SVELTO

    PRINCIPLES of LASERS

    F o u R T h E d i i N

    TRANSIATJON FROM ENGHSIH b y D . N . K O S L O V , S . B . S O Z I N O V A N C I K . G . A D A M O V I C H ;

    EdiTEdbyT. A . S H M A O N O V

    SAINT-PETERSBURG M O S C O W KRASNODAR 2008

  • . . , . . . .

    . .

    , ,

    ,

    -

    -

    2008

  • 32.86-5 3 43

    .

    3 43 / . . . . . . 4-. .: , 2008. 720 : . ( . ). ISBN 978-5-8114-0844-3

    . . (4- ) .

    ,

    , .

    , ,

    ,

    ,

    , 50 . ,

    ,

    ,

    . ( 1 - 6 ) ,

    . 7-8 ,

    . 9-10 . 11-12

    .

    , ,

    .

    32.86-5

    06-02-30013

    . .

    .

    .

    .

    . . , . . , . . , . . ,

    , 2008 ,

    ,

    , 2008 Translation from the Engl ish language edition:

    Principles of Lasers, 4 t K e d . B y Orazio Svelto Copyright 1998 P lenum Publ ishing Corporation, being a part of Springer Science + Business Media

    A l l Rights Reserved

  • ( 1979, 1984 1990 . ) , ,

    1998 . . ,

    , - ,

    , -

    .

    ,

    .

    ,

    .

    .

    .

    1. ( 9), ,

    .

    2. ( 9),

    ,

    .

    , Yb(3+) :YAG.

    5

  • 3. - ( 9), ,

    , ( ).

    4. ,

    ( 12).

    ,

    (the carrier-envelope offset phase). 5. ,

    ,

    ( 12). ,

    ,

    , .

    , ,

    .

    ( 2, 9), ( 6, 12), ( 7, 12) ( 4, 9). ,

    .

    ,

    , ,

    ( , ) , .

    . ,

    -

    , , ,

    .

    ,

    , . . ,

    . , , ,

    ,

    . , ,

    ,

    .

    ,

    , .

    , , 2-6 .

    , ,

    7 8 , -

    6 . .

  • . (9 10)

    . , 11 12, ,

    , , .

    .

    ,

    .

    . , ,

    ,

    ( 2-8) , 11. , , ,

    ( 5-12).

    ,

    ,

    .

    ,

    ,

    , .

    ,

    ,

    , . .

    , , .

    , 2007.

    7

  • /

    ( ) . , ,

    ,

    , .

    ,

    ,

    ,

    ,

    ,

    .

    ,

    - X X ( ). ,

    ( , , ...). .

    .

    ( , ,

    ) . , ,

    , -

    . .

  • , , ,

    .

    . (, 1990 . ) ( 1988-1989 .) ,

    .

    .

    ,

    .

    . . .

    , .

    ( , ). .

    ( ) , ,

    . ( ) ( . .) . ,

    , ,

    , .

    .

    , - ,

    . ,

    .

    .

    , ,

    , , , . .

    . (. . . . : , 1979; . . . . : , 1984; . . . . : , 1990). ( 10 (!) ) - (!) . , -

    .

    30 .

    ,

    .

    , ( ), , , , , , . .

    9

  • , .

    , -, ,

    4- , .

    , .

    ()

    .

    , ,

    .

    ( 4- ). .

    (06-02-30013-), . . . .-.

    . . .

    . . (. 1-6), . . (. 7-12) . . (, , , ). .

    ,

    . ,

    ,

    , . .

    .

    ,

    . .

    ,

    .

    , 2008 . . .

    10 . .

  • 1

    ,

    .

    . ,

    ,

    , , ,

    .

    ,

    : ,

    . 2 3, ,

    , . .

    ( 2), , . . ( 3). 4, ,

    ,

    ,

    , ,

    -

    . 5 , 6 . , , 7 8,

    () . , . . .

    . ,

    1. 11

  • ,

    , 9 10 : 9 , ,

    ; 10 , .

    ,

    ,

    (, , , ), 11. 12 , ,

    , , :

    (1) , , ; (2) ; (3) -

    - ( , ); (4) , , .

    1.1.

    ,

    (. 1.1) , 1 2, ,

    2 ( < 2).

    , . , ,

    1 . , 2. 2> , 1. , (2 - ), . ,

    . v 0

    :

    0 = (2-)/9 (1.1.1) h . , hv0 = (2- ) 2 1 ( 1.1). ,

    .

    . (2 - ) , , (, -

    12 . .

  • \h\^E2~Ex . 1.1

    : ( ) , () , () .

    h\ hv * - *-

    ^

    ). , .

    , 2, v = v 0 ,

    , 2 - 1 (. 1.16). , , ,

    2 1. (2 - ) ,

    . ,

    .

    .

    , . ,

    .

    ,

    , , ,

    , .

    , 1 (. 1. 1). , , -

    . v = v 0 .

    ,

    2. (2-1), , ,

    . .

    , Nt ( ) , t I. Nt ( ) i.

    ,

    (dN2/dt)sp N2. , :

    (1.1.2)

    1. 13

  • , .

    , ,

    ( ), ( ). t8p = 1/ , -

    , .

    -

    , ,

    dN2\ N2

    -^irt-

    .

    , ( xsp) . ,

    , .

    , , ( ). :

    ^f-\t=-^N2, (1.1.4)

    (dN2/dt)st 2 - 1 , W21 , ( ). , (1.1.2), W21 () - 1 . , , W21 ,

    . , :

    W21 = G21F, (1.1.5) F , a G21 , ( , , , ,

    ) .

    (1.1.4) ,

    ( ) W 1 2 ,

    dt = - W l 2 # i , (1.1.6)

    (dN1/dt)a 1 2 , a Nt 1. W12 , (1.1.5):

    14 . .

  • WL2 = G12F, (1.1.7)

    a 1 2 ( ), .

    ,

    21 1 2 . X X ,

    W21 = W12 , , a 2 1 = a i 2 * 1 2 gx- 2- ,

    S 2 ^ 2 1 = l ^ l 2 > (1.1.8) ,

    ^ 2 1 = ^ 1 2 - (1.1.9) , ,

    (. . 1.1): () 2 1, ; ()

    2 -> 1, ; () , 1 - 2. , ,

    .

    1.2.

    1 2 Nx N2 . z F (. 1.2), dF dz ( . 1.2)

    , . S .

    ,

    , SdF.

    ,

    , SdF

    F

    F+dF

    w *

    dz

    . 1.2

    dF

    dz

    1. 15

  • ,

    . (1.1.4) (1.1.6), : SdF = (WJ1N2 -- Wi2Nx)(Sdz)9 Sdz . , -

    ,

    ,

    . ,

    ,

    .

    , ,

    ,

    (. . gx = g2). (1.1.5) (1.1.7)

    dF = oF[N2 - NJdz. (1.2.1) 21 = 12 = ,

    .

    (1.2.1) , N2 > Nt (. . dF/dz > 0) , N2

  • . 1.3

    ! 2

    v 0 .

    (, , . 1.3). ,

    ,

    .

    (, 2) , .

    , ,

    , ,

    . , ,

    (, ). (1.2.1) (. . ) exp{a|W 2 ~~ I . (. 1.3) R1 2 , Lt. F ,

    1 2, F\ 1 ,

    F' = Fexv{o(N2 - Nx)l) (1 - Lt)R2 exp{a(iV 2 - )/} (1 - ^. F = F' , , RtR2(l - 1^)2{2(2 - N^1} = 1. , , N = (N2 - Nx) , , ,

    ,

    Nc = - [ InR X R 2 + 21n(l - )]/2. (1.2.3) (1.2.3) ,

    = -In = -1(1 -

    ), (1.2.4) 2 = -1 2 = ( 1 - 2 ) , (1.2.46)

    Y - - l n ( l - L ; ) , (1.2.4) 12 ( ). (1.2.4) (1.2.3)

    Nc = y/al, (1.2.5)

    1. 17

  • Y = [2Y; + ( Y i + y 2 ) ] / 2 . .2.6)

    , yi9 (1.2.4), . , Lt 1, .

    , ( , ). N2 = Nl9 ,

    (1.2.1), . .

    , , 1 2, .

    1 ,

    1 .

    . . .

    18 . .

  • 2

    2 f

    1

    . 1.4 ( ) -(4)1

    . ,

    , -

    , (. 1.4). (. 1.4) , , 1 () 3. , , 3, 2 (, ), 2 1. (. 1.46) ( ) 3. 2 (, - ), 2 1. , 2 1. , 1 - 0 ( ).

    , ,

    .

    ,

    , -

    . , , ,

    ,

    . , ,

    , . 1.4, . (., , (1.2.2)) , (. . ) . Nt , 1. 1 3. 2, , 3 . , (1.2.1),

    1. 19

  • N2 = N1 = Nt/2. , ,

    . , 1 , , ,

    .

    , ,

    -, . ,

    - ( !), , .

    ,

    , ,

    ,

    kT. 2 3 , ,

    , . ,

    , .

    ,

    .

    , .

    , -

    . 1.46, , 1 , 0 . ,

    ,

    . , 1 (. 1.46) ckT. , (1.2.2), .

    ,

    .

    , 1 3 ( ), 0 3 ( ) 3 ( ), . ,

    ,

    .

    6. , 3 , , 2 , (dN2/dt)p, (dN2/dt)p = WpNg. Wp , , a.Ng - ,

    . , , , -

    .

    ( - ), -

    20 . .

  • . -

    .

    1 Ng = const

    (dN2/dt)p : (dN2/dt)p = Rp, (1.3.1)

    Rp ^ , , , .

    , ,

    , Rcr. Rcr 6 7.

    1.4.

    , , .

    ,

    ,

    . ,

    .

    .

    1.4.1.

    : (1) v, (1.1.1), ; (2) ,

    .

    ,

    ( 10 ), 2 1, .

    1.4.2.

    ,

    , :

    .

    ,

    2, , t = 0

    1 , ,

    , ,

    ,

    . , ,

    ,

    .

    1. 21

  • ,

    Ex(t) E2(t) . , t = - .

    t > , , .

    ,

    ,

    . ,

    2,

    Pl9

    .

    ,

    ,

    SC(P). ,

    t t + . t, .

    , ,

    .

    ,

    ( ) = J0sin ( + ), 0, . t

    t + , = [( + ) + - (cot + )] = , .

    ( ) , 0 < < 0, ,

    0.

    , () 0, . 1.5.

    0.

    < 0 , . . , t, , t t + . , > 0, t t + , , 0 2.

    , , . 1.5, . ,

    , , -

    . 1.5

    0

    22 . .

  • Av = 1 / 0 . , ,

    = 1/Av, , ,

    . 11 , .

    , ,

    (, , ^ -

    2

    2

    V -

    ), g ^ [

    Av

    1/Av. ,

    . ,

    ( ). , , , . 1.5, ( )

    2 -

    , ,

    ,

    . ,

    2 , , ,

    .

    , ,

    2> , . 1.5, .

    . 1.6, (0 2(0 . -

    ,

    1.6 , . ,

    ,

    .

    1

    . 1.6

    2()

    2 ,

    .

    1 , 0 . 1.6, ,

    , ,

    , .

    1. 23

  • ,

    .

    11.

    . ,

    .

    1.4.3.

    ,

    . , ,

    . 1.3, , , ( ), .

    (, , ) .

    .

    .

    . 1.7, , S D.

    (), . , - D .

    I I

    . 1.7 , - ,

    () S D, ( ) S D

    24 . .

  • 9 d , , . 1.76, , D ,

    . , .

    , ,

    ,

    , 9, = . k , X k = 2, / . , 9 , , ,

    , .

    ,

    , . .

    I = (D/2)sin9 = (D/2)9, , , Qd 9, kl = , Qd = X/D.

    9 d ,

    .

    6 d = P V A (1.4.1) (3 ,

    . , ,

    = 1. , , , = 1,22 , = 2/

    . ,

    (1.4.1), = 1, - .

    ,

    ,

    . , '

    (. 1.7) , Sc '. ,

    . (1.4.1)

    e = P V [ S J 1 / 2 , (1.4.2) , , ,

    ,

    9, Sc. , ,

    , , . . ,

    , ( )

    1. 25

  • . 1.8

    -

    Dc L

    , .

    , ,

    . 1.8, , ,

    Dc , . Dc = 100 X = 1 . (1.4.1) Qd = - 2 , , , L = 100 , , D = Dc + 2QdL = 2QdL = 2 . ,

    , D, , Dc.

    I(P)a[(E1(t) + E2(t)]2, Ex(t) ,

    . ,

    ,

    ) = C[1 0sin(co* + ) + 2 0sin(co* + 2 )] 2 , , 10 20

    ,

    = (0 2 = 2() (., , . 1.6). , , () ) , ) . ,

    < )> = [ 2 0 (sin 2 (* + )> + | 0 (sin 2 (* + 2 )> + +21020 (sin(co* + )sin(co* + 2))] = = [(?0 / 2 ) + ( | 0 / 2 ) + 1020((2 - ) ) ] .

    , , ^*) 2(*),

    (*) = \\fi(t) + kL1 2(*) = (0 + kL2, \ 2 , a L x L2 -

    26 . .

  • . , ,

    ,

    v|/ 1(f) \\f2(t) . , , (0 ~ 1(0> , , (cos (2 - )), , . :

    , .

    ,

    ,

    . ,

    , ,

    .

    , : D = 2QdL = 2fi(X/Dc)L. , 0 = D/2L = fi(X/Dc), . . (1.4.2), Dc Sc.

    ,

    , , -.

    ,

    . , dS (. 1,9). dP, dS dQ 00 ' ,

    6 ' . , cos0 - , ' dS , ', . . cos0

  • '. ,

    , 0 ' . ,

    ( ).

    D, (. 1.96). , (1.4.3), cos0 = 1. *S Q = P/SQ. 2) 2/4, , , 0 2, 0 (, ), (1.4.3) :

    , -, 0 = 0 d , (1.4.1) (1.4.4)

    .

    ,

    , .

    , ,

    - , ,

    (, ), :

    , ,

    , . ,

    , . 1.96, , 0, / . (. 1.10). ,

    0 . ,

    0', . 1.106.

    , 0' = /0'. ,

    . 1.10, 0, . 1.10 d = 2/0.

    . ,

    ( ) Ip = 4P/nd2 = / ( /0 ) 2 .

    = 4/(2)0) 2. (1.4.4)

    (1.4.5)

    28 - 0 -

  • . 1.10 ( )

    9. ()

    ,

    ( )

    (1.4.4), 1

    = (/4)(>//) 2 . , 1

    D. 1

    , D DL. :

    Ip = n(NA)2B, (1.4.6)

    NA = sin[tan~ 1()L/2/)] = (DL/2f) . (1.4.6) , .

    (, ) (., , 1.7). . (1.4.6) , ,

    ,

    , . ,

    , .

    1.4.5.

    , ,

    , ,

    ,

    2 1. , , , - 0 , 1 -1 . , , -

    1 . , 10 3 -10 5 , ; ( -10 ). .

    , ,

    , , ,

    ,

    . ,

    , , .

    1. 29

  • ,

    , ,

    ,

    .

    1.5.

    , ,

    .

    ,

    , ,

    . ,

    ,

    - ( ). , (), , ( ) . 1 (. . ) 1 (. . ). , , 10 6 (,

    400 700 ). .

    ,

    , ( 5 ) , (, ). ,

    , , 1000 (10 1 5 )! ,

    ,

    (. . ), 10 (1 = 10~15 ) , .

    .

    , , , ~1 , , , ,

    (, 6,5 , ).

    , . ,

    . ,

    .

    30 . .

  • 1.1.

    , , .

    : ), , , , ( ) , ( ) , . ,

    . ,

    .

    1.2. 1.1 , , .

    1.3. 1 2 . 1.1 (2 - ), .

    .

    1.4. = 300 N2/Nx 1/. v .

    ?

    1.5. ^ = ^ ^ 2 = 0,5, Lx = 1%. . I = 7,5 , = 2,8 10~1 9 2 , .

    1.6. (X = 694 ) 1 . , ,

    . ( 384 .)

    1.7. , -, ( Labs, 107/109, 100 ) (X = 546 ) 95 / 2 . 1 (X = 514,5 ), -.

    1. 31

  • 2

    2.1.

    ,

    , , ,

    , .

    3. ,

    , ,

    , ,

    .

    ,

    ,

    ,

    ,

    .

    .

    ( , ). , , ,

    , ,

    ,

    9 10, .

    2.2.

    ,

    . ,

    ,

    . .

  • , ,

    , -,

    . ,

    ,

    .

    , ,

    .

    ,

    . ,

    .

    , , ,

    [1] . , ,

    , .

    E(t) H(t) , :

    | 2 ^ | 2 } , (2.2.1)

    , ( ) .

    ,

    p v , v. p v : pvdv v v + dv. , p v :

    P = / M v - (2.2.2)

    Iv ,

    , . , Jv p v, :

    Iv = (c/4n)Pv, (2.2.3) , & . , Iv , p v, ,

    , , v

    . p v .

    , ,

    .

    , , ,

    2. 33

  • . , v

    ,

    . , ,

    ,

    . ,

    ,

    v. p v > ", , (2.2.3), II > / , . . 1 2. ,

    . ,

    p v = p v . p v(v, )

    .

    ,

    . ,

    . [1] ,

    . p v , ,

    ,

    .

    2.2.1.

    , . 2.1. pv , .

    , (9 , z, t) :

    V * E - i . 0 . O , (2.2.4)

    V 2 , .

    :

    = 0, (2.2.5)

    . 2.1

    ,

    . ,

    .

    34 . .

  • ,

    . , :

    = (9 , z)E(t) (2.2.6) (2.2.6) (2.2.4),

    V 2 u=J _ d?E

    u 2 ' dt2 '

    9 , z9 t,

    ,

    , -k2. (9 9 z) E(t):

    V 2 u = -fc2u, (2.2.7)

    ^ - = -(cnk)2E. (2.2.76) (2.2.76) :

    = 0cos (* + ), (2.2.8) 0

    co = cnk. (2.2.9) E(t) (2.2.8), (2.2.6) :

    (9 9 z91) = 0(9 9 )/(* + ). (2.2.9) , (9 9 z)

    (9 9 z)9 .

    .

    (2.2.7), , ,

    (2.2.5). , :

    = excoskxx suikyy sinkzz9 (2.2.10)

    = eysmkxx cos kyy sinkzz9 (2.2.106) u2 = ezsinkxx sinkyy coskzz (2.2. 10B)

    (2.2.7a) 9 9 29

    :

    k2+k2+k2=k2. (2.2.11) ,

    (2.2.5). ,

    2. 35

  • (2.2.10) , , = 0, = 0, z = 0. , , , z = 0, (2.2.5)

    =

    = 0, (2.2.10) (2.2.106) , , 2 = 0. (2.2.5) , :

    19 . , , , z = L, (2.2.5)

    =

    = 09 (2.2.10) (2.2.106) , , 2 = 1 (2.2.12). Z, , ,

    9 .

    , 19 . , kx9 ky kz (2.2.12), , (2.2.9) (2.2.11), :

    ,

    I, . , ,

    9 2 .

    ,

    , V = 0, , (2.2.10), exkx + eyky + e2k2 = 0. :

    = 0, (2.2.14) , 9 z

    9 2 kx9 ky kz . (2.2.14), ,

    9 2

    . , Z, ( ) , , (2.2.14), , .

    . , \|/ ,

    , , ,

    , . . = ^; +

    \|/. , Z, ,

    .

    iV(v), 0 v. , -

    kx = ln/2a9 ky = /29 k2 = nn/L9

    (2.2.12) (2.2.126) (2.2.12b)

    (2.2.13)

    36 . .

  • 2n/L_

    I > . . 1 . 1

    k k* 0 2nv/cn. (2.2.12) , kx9 ky kz ,

    ,

    . 2.2. kx9 ky kz ,

    ,

    . ,

    ,

    (/2, /2, /L). , k9 0 (2nv/cn)9 1/8 (2nv/cn)9 , (/2, /2, n/L). , , k , :

    14 ( 2 \ 8 83 [

    ) grcv3-

    . 2.2

    ,

    . 2 .1.

    .

    iV(v) = 2

    7 1

    2 2 L

    -V, (2.2.15)

    V .

    2.2.2. -

    p v, pv ( 9 , ). pv = dN(v)/Vdv, (2.2.15) :

    Pv 1 dN V dv

    8 2 (2.2.16)

    pv, p v

    (), , . .:

    Pv=pv{E). (2.2.17) () , . dp

    2. 37

  • , + dE, dp = C exp [-(E/kT)]dE, ,

    00 $Cexv[-(E/kT)]dE = l.

    , () :

    )Eexp[-(E/kT)]dE () = * = kT 4 1

    00 jexv[-(E/kT)]dE

    (2.2.16) (2.2.18) :

    (2.2.18)

    Pv = J

    . (2.2.19)

    -

    -.

    . , , (2.2.19) ,

    (. (2.2.2)). , , , (2.2.3), Iv v 2 ,

    , v > ( ). ,

    .

    ,

    X X . ,

    hv, v , a h , . ,

    , , .

    ,

    v 0 , (2.2.18), :

    = nhv, (2.2.20) . , ,

    ,

    nhvexp[-(nhv/kT)] ^ exp(hv/kT)-l' ^ exn(hv/kT\-l' (2.2.21)

    exp[-(rc/iv/A!T)] =0

    38 . .

  • [ 1 6 / 3 ]

    at

    . 2.3 p v (v , )

    v

    [ 1 0 1 4 ]

    (2.2.18). , hv < kT (2.2.21) (2.2.18). (2.2.16), (2.2.17) (2.2.21) :

    _ 8 2 hv p v

    3 e x p ( * v / * T ) - l ' (2.2.22)

    ,

    , h 6,62 10" 3 4 . . 2,3 p v v .

    ,

    = ^ 1 = * (2.2.23) w

    hv exp(hv/kT)-l () . v = 4 10 1 4 , , hv 1 . 300 kT = (1/40) , (2.2.23) , () = ( - 40). , ,

    .

    0,

    ( 10 1 0 , . 7.1 . 7).

    2.2.3.

    ,

    , (2.2.20), , , . -

    (2.2.18) (2.2.21), ,

    .

    (1904) , , ,

    2. 39

  • . ,

    (1927). , , [2] . ,

    .

    , ,

    , v

    . Ex(v, t) H^r, t) ,

    (2.2.1),

    V . , , ^ ( r , t) Hy(r, t) [2] . , Ex(r, t) y(r, t), , qx , , , .

    ,

    qx . , , ,

    qx9 . Ex(r, t) Hy(r9 i) ,

    ,

    (2.2.4).

    , ,

    .

    ,

    . ,

    , , ,

    , :

    k , am . . ,

    ,

    .

    - , , kpx/29 ,

    qx /2. , -

    (2.2.24)

    E = (kpl/2)Hql/2m), (2.2.25)

    , ,

    40 . .

  • ,

    \{\x{H2)/2)dV. , .

    , ,

    ,

    . ,

    :

    E = {l/2)hv + nh\, (2.2.26) .

    ,

    . ,

    , , (2.2.25),

    qx, , , . ,

    , , , (2.2.1),

    .

    . ,

    ,

    ( v) (2.2.26), (. (2.2.20)), , . ,

    . ,

    (. 2.2.1) ,

    . ,

    0 , . ,

    (2.2.26) - , ,

    , . 2.4. , , (2)9 (2) . .

    , (hv/2) . (2.2.24)

    E = (\pdv)-(hv/2)9 (2.2.27) , .

    , -

    (2)(2) , . ,

    .

    h\

    hv

    i hv/2 . 2.4

    2. 41

  • 2.3.

    ,

    (. . ), (. . ). , (. . ) . .

    ,

    , ,

    , ,

    . ,

    ( ) .

    2 3 1

    , ,

    2 2, , , 1

    (. . 1.1). , , :

    (, t) = ^ / (2.3.1)

    vi/ 2(r, t) = u2(r)exv[-j(E2/h)t], (2.3.16) u12(r) 1 2, - , ( ), h = h/2n. 2 - 1

    :

    = a^OVi + a2(t)^2, (2.3.2)

    2 , . ,

    \

    \2 |2|2 , t 1 2. , - , :

    k l 2 + k l 2 = i , ( 2 . . )

    \

    \2 |2|2. , ,

    JLI. :

    \x = -\e\y\2rdV, (2.3.4)

    42 . .

  • ; . (2.3.4) , , e|y| 2dV ,

    dV , d\x = -(e\\\f |2 dV)r. (2.3.2) (2.3.4), (2.3.1) :

    \ = [ |

    |2| |2 dV + [ \2\2\2 |2 dV +

    J

    (2.3.5) + \ ^^^ exp j((o0t) + a[a2u{u2 exp[- j((o0t)] jlV,

    * , 0 = (2 - Ex)/h. (2.3.5) , jli \iosc, 0, :

    Pose = [2

    ^21 (0*)], (2.3.6) Re . 21

    21 = \u2eruxdV. (2.3.7)

    21 - , .

    (2.3.6) , 2 1 08, 0,

    ^!, (2.3.7). , .

    ,

    .

    :

    *W = cos(co0* + ) = [ exp (yo 0 OL

    0 ,

    , Re , ' , \'0 = 0('). 1

    ,

    :

    fi= 3 , (2.3.8) 12rce0cd

    1 , , ,

    ,

    , .

    = [*] 1 / 2 , * , (. . *, * * , ).

    2. 43

  • =| |=| 0 | , ,

    . (2.3.8) , [i = 2\a1a2^i2i\y . . 2a1a2\i2i. , , :

    =;\1\2\2\2, (2.3.9)

    / ,

    1 6 3 2 (2.3.10)

    ~ 03 '

    |jn| = |21| j i 2 1 . , ,

    , ,

    , ,

    :

    Tjf = (2.3.11)

    = \1\21 + \2\22. (2.3.12) (2.3.3), (2.3.12) :

    =

    + hv0\a2\2, (2.3.13) v 0 = (2 - Ex)/h .

    (2.3.9), (2.3.10) (2.3.13) (2.3.11) :

    d\a2 \ I % 121 "2 \2=~(1-1 2 \2) | 2 | 2 , (2.3.14)

    xsp = hv0 / ' ,

    3 / i sqC 3 (2.3.15) s p 16* 3v 3rc|uf '

    ( ) 2 ,

    .

    1 (2.3.15) :

    1 - tanh

    (2.3.16)

    t0 , | 2 (0) | 2 . , (2.3.16)

    1

    . . .

    44 . .

  • | 2 (0) | ; 1-tanh 2 (2.3.17) sp J _

    | 2(0)| 2 ( , 1) t0. . 2.5 | 2()| 2 | 2 (0) | 2 = 0,96. , | 2 (0) | 2 t0 (2.3.16), . . . , , | 2 (0) | 2 = 0,8, | 2()| 2 -

    . 2.5

    | 2 () | 2

    = xspPr/hv0.

    ;

    -

    . 2.5 , t = 0 0,8. | 2()| 2 (2.3.16). | 2()| 2, , (2.3.11) (2.3.13),

    Pr = - hv0d\a2\2/dt. , = TspPr/hv0, . 2.5. , | 2()| 2 :

    \a2(t)\2 = |a 2 (0) | 2 exp[-(f/x s ; , )] (2.3.18) |a 2 (0) | 2

  • ,

    ( ) = 1 / :

    1 6 3 ^ | 1 2 (2.39) 3he0c3

    , Nt , ,

    : N2(t) = Nt\a2(t)\2 N2(0) = AT f|a2(0)|2. (2.3.18) Nt9 : N2(t) = 2(0) (-t/i8p) (1.1.2), , .

    2.3.2. -

    -

    ,

    , ,

    .

    , , |a 2 (0) | 2 = 1. (2.3.17) , t0 = . ,

    . , |a 2 (0) | 2 = 1, | (0)| 2 = 0, (2.3.14) , d\a2\2/dt = 0. -, ,

    (0) = 0 \xosc9 (2.3.6), . ,

    , , .

    . , ,

    , \2\ 1 t = 0. ,

    , |

    |2, 1. (2.3.6) , , 0. (. . ) , 1. , \2\2 , .

    , .

    ,

    , :

    1. \2\2 (2.3.16) , (. . \2\2 < 1) (. (2.3.18)).

    2. (. . |a 2 (0) | 2 = 1), (), .

    46 . .

  • ,

    [5, 6]: 1. ,

    \2\2 ( --) . , (2.3.18) | 2 (0) | 2 .

    2. 8 (2.3.15).

    3.

    =

    - hv0d\a2\2/dt, 8.

    , , --

    -

    (. . 2.5). 1 ,

    .

    ,

    -

    .

    .

    (2.3.2), , .

    ,

    . , ,

    , ,

    - , . ,

    ,

    , .

    , ,

    . ,

    . , ,

    , .

    = . , ,

    ,

    - . , ,

    1

    , .

    v 0 , .

    ,

    , ( ) .

    2. 47

  • 2.2.3, (2) (2) ^ nj/ = ( ). ,

    , , , -

    . , ,

    .

    2.3.3.

    (2.3.19) , , 0, , |] 0. , , ,

    . ,

    || = 0, = 0, . , -

    ,

    ( ). .

    , . . || = 0. |uj = |21|, (2.3.7) , , 2

    , (. . ). 1 , (2.3.7) - , 2()() u2(-r)(-eY)ui(-r)dV. , ((-) = = ()) ((-) = -()), .

    - , (2.3.7) , = 0. , (

    , , 2 ), (2.3.7) - . , , || 0, .

    , , -

    ,

    ( ) , ( , ). 2

    1 , /() ( ), /(-) = ),

    ( ), /(-) = -/(). 2 ,

    (. . , ) . , , , , .

    48 . .

  • 2.1.

    .

    ,

    , (2.3.19) X = c/v = 500 = , ( = 0,1 ). , = 108 "1 (. . xsp = 10 ). 105 , xsp = 1 . , (2.3.19) ,

    .

    ,

    ,

    .

    , (, X ^ 5 ), ^ (10-100 ),

    .

    2.4.

    , , ,

    . ,

    W12 W21 (. (1.1.4) (1.1.6)). , , , ,

    . ,

    , ,

    , -

    .

    ,

    ,

    .

    ,

    , .

    2.4.1.

    , t ^ 0 ,

    (2.3.2) \

    (0)\2=1\2(0)\2 = 0.

    2. 49

  • / '.

    '

    E(t, t) ( ), - ( ) . ^

    :

    (0, t) = E 0 s in (G )0 , (2.4.1) . ,

    ,

    .

    (2.4.1) ( ). ,

    0.

    , = -,

    . ',

    , :

    ' = = - E0sin cot. (2.4.2)

    H'(t), . s 0,

    . , t > 0 |aj(^)| 2 la^O)! 2 = 1, | 2(0| 2 . a2(t), , ,

    ,

    ,

    t = 0.

    | 2(0| 2> ^ , : \a2(t)\2 = ^ \ ^ 2 1 1 2 E2d(v-v0)t, (2.4.3)

    v = /2, v 0 = 0/2, 5 - , 0 0 , |21| 21, (2.3.7). (2.4.3) , t > 0 |a 2 ( t) | 2 . ,

    ,

    ( ) W$ Wtf =d\a2\2 /dt, (2.4.4)

    50 . .

  • (2.4.3):

    H ? 2 a = ^ b 2 i l 2 - E o 2 8 ( v - v 0 ) . (2.4.5)

    , , (2.4.4), ,

    ; sa ( . single atom ), W12.

    , , t > 0 (2.3.2). , t > 0 08, (2.3.6). , ax(t) a2(t) , \08 . , , . .

    (0) = 1 2(0) = 0, ,

    . , ,

    [3] . (2.4.5)

    .

    = 20*/2, (2.4.6)

    , 0

    ,

    w s = | 2 p 8 ( v-

    V o )-

    ( 2-

    4-

    7 )

    , W(2a - . , W = v v 0 W12 = v = v 0 , . . .

    ,

    . ,

    , v

    ( ) , v 0 , , . . ,

    , v = v 0 .

    ( ), , ,

    . ,

    , ,

    : (2.4.7) , 5-

    2. 51

  • , v = v 0 # , . . , /

    J8(v-v 0 )dv = l, g(y - v 0 ) , v v 0 , , . . ,

    ] * ( v - v 0 ) d v = l, :

    _ 2 1 7iAv0 l + [ 2 ( v - v 0 ) / A v 0 ] 2 ' ( 2 ' 8 )

    Av 0 - . , Wf2a :

    Wsa - - 12 ~ 2

    2

    1^21 I 2 P g ( v - V o ) . (2.4.9) 3n 2s 0ft 2 [g(v - v 0 ) A v 0 ]

    (v - v 0 ) / ( A v 0 / 2 ) . 2.6. (2.4.8) , , (FWHM . Full Width at Half Maximum ), Av 0 . g(v - v 0 ) v = v 0 ,

    g(0) = 2/rcAv0 = 0,637/Av 0. (2.4.96) , (2.4.8), . . ,

    (2.4.8) [3] .

    W*g / .

    / = /, (2.4.10) A t e ( v - v 0 ) A v 0 ]

    , (2.4.9) ,

    H 2 i l 2 - t e ( v - v 0 ) . (2.4.11)

    . 2.6

    _ _ 2 2 _ _ 1 2 3ne0ch2

    .

    ,

    ( (2.3.2) (2.3.1)) ' ( (2.4.2)) .

    ,

    | 2()| 2

    52 . .

  • |a i()l 2 (. ) . ,

    | 2 (0)| 2 = 1 , , | 1 (0) | 2 = 0. ,

    1 2. , ,

    ( ) Wfg (2.4.5) . (2.3.7) , | 1 2 = 2 1 |12| = |2|. ,

    W^=W2f, (2.4.12) ,

    (. (1.1.8)). , (2.4.9)

    (2.4.11), :1

    Wsa = - ^ \ ^ \ 2 p * ( v - v 0 ) , (2.4.13)

    W" = - ^

    2 ^ ( v - v 0 ) , (2.4.136)

    = |12| = | | i 2 i l (2.4.12), W s a = W s a =W.

    2.4.2.

    (2.4.13) (2.3.19) , Wsa ||2. , , . ,

    ( )

    2,

    1 : 3 ( 2 . 4 . 3 ) , ( 2 . 4 . 5 ) , ( 2 . 4 . 7 ) , ( 2 . 4 . 9 ) ,

    (2 .4 .11) , (2 .4 .13) (2 .4 .136) , ( ) . :

    W(\. -So I2) =1 M I2 Eg

  • .

    . , , W8a = 0, .

    , , 1 2 .

    , ,

    .

    ,

    ,

    , (2.4.11). ,

    (- - ) . , ,

    ,

    , .

    We Wm. , :

    ,

    . ,

    .

    , (2.4.5), We (^ 0) 2 (0)2, 0 ,

    \ie .

    , Wm ( jn m B 0 ) 2 ( 0 ) 2 , 0 , \

    (3 ((3 == 9,27 10" 2 4 2 ) . , :

    (We/Wm) = (0/$0)2 = (/$)2 = 10 5. (2.4.14) (2.4.14) , 0/0 = ( ), , = 0,05 . ,

    .

    2.4.3.

    2.4.1

    ,

    . Nt ,

    .

    54 . .

  • , v 0 ,

    ( ). Wh , :

    Wh(v - v 0 ) = W*4v - v 0 ) . (2.4.15) , ,

    , dN2/dt, :

    (dN2/dt) = WhNt. (2.4.16) Wh , . . F = I/hv, oh:

    Wh/F. (2.4.17) (2.4.13) (2.4.17) , ah

    22 H 2 v ( v - v 0 ) .

    (2.4.19)

    3ne0ch^] ' * v ' * ' - (2.4.18) , ,

    . 1.2, (2.4.16) (2.4.17), , 2 , (. ( 1

    '2 ) )

    ' dF = -ahNtFdz. (2.4.19)

    . , ,

    , ,

    (. 2.7). S ,

    dz (. . 1.2) NtSdz, , aaNtSdz. (dF/F) dz , ,

    . 2.7

    S

    (dF/F) = -(oaNtSdz/S). (2.4.20) (2.4.20) (2.4.19) ,

    =

    ,

    ,

    ,

    .

    ,

    Vo v 0 ( ).

    2. 55

  • g*(v'0 - v 0 ) , , dNt = Ntg*(v'0 - v0)dv'0 , VQ H V O +dvo. (2.4.16) d(dN2/dt)9 dNt9

    d(dN2 /dt) = WhdNt = Wh (v - )Ntg * (v'0 - v 0 Wo> Wh(v-v'0) V Q .

    (dN2/dt) = Nt \wh(v - )g *(v[> - v 0 Wo . (2.4.21) (2.4.21) (2.4.16) , Win9

    = lwh(v-v'0)g*(vo-v0Wo. (2.4.22) (2.4.17) GIN GIN = Win/F. (2.4.22) F (2.4.17), :

  • (2.4.18) (2.4.23) :

    2 2

    2 v f t ( v - v o ) . 3ns0ch)r~> o t v w / ' (2.4.25)

    (2.4.25) gt(v - v 0 ) ,

    gt= lg*(x)g[(v-v0)-x]dx, (2.4.26)

    ^ = ( V Q - V 0 ) . 2 l n 2 (2.4.27)

    A [ * ( v - v 0 ) A v * ]

    [ ^ * ( v ~ v o ) ^ v o ] ( V - V 0 ) / ( A V Q / 2 ) . 2.8. , FWHM, (2.4.27) A V Q , v = v 0

    ,

    (2.4.27), .

    ,

    = GIN.

    22 Sne0ch

    || 2 V ^ ( V - V Q ) . (2.4.29)

    [^/2~

    . 2.8

    2. 57

  • W = GF :

    W = 3 ^ ^ | 2 p ^ ( V - V o ) ' (2-4.30)

    = (nil) = (nFhv/c) .

    . (2.4.12) ,

    (2.4.29) (2.4.30).

    , (2.4.29) (||2, gt v 0 ) v . , (v - v 0 ) ,

    .

    . , ,

    Nx iV 2, (2.4.19) :

    dF = -G(N1 - N2)Fdz. (2.4.31) 1 (1.2.1), gi = g2. () .

    ,

    OL = G(N1-N2). (2.4.32) Nx > iV 2 , , . (2.4.29), :

    2 a =

    3 ^ h ( N l - N M 2 v g ' ( v - V o ) - (2.4.33)

    , ,

    , , , .

    ,

    . , (2.4.31) (2.4.32) :

    dF = -aFdz. (2.4.34) , ,

    I, [F(l)/F(0)] = exp(-aZ). , -

    58 . .

  • .

    , Nx N2, (2.4.32). , Nx N2 (1.2.2), NT = NX + N2H .

    . , ,

    1 . , , , 1 , , kT.

    , N2> Nl9 , (2.4.32), , , ,

    , .

    gy :

    ; .

    ( ), [9] . , ,

    ,

    .

    .

    , ,

    .

    , , p v

    (2.2.22). , , , .

    ,

    1 2 2 1.

    21 12 ( ) , N{ N2 1 2. , :

    g = a(N2-N1), (2.4.35)

    2.4.4.

    W21=B21p, .2 =

    (2.4.36) (2.4.37)

    AN* +B2lPvo = ^^ N{. (2.4.38)

    2. 59

  • :

    / = exp(-/*v 0/kT). (2.4.39) (2.4.38) (2.4.39) ,

    =

    P v o Bi2exp(hv0/kT)-B21 * (2.4.40)

    (2.4.40) (2.2.22), v = v 0 , :

    1 2 = 2 1 = , (2.4.41) A Snhvln3 (2 4 42) B e 3 '

    (2.4.41) , .

    , (2.4.41) (2.4.12), . ,

    (2.4.42) , .

    (2.4.30), , .

    pv

  • 2.5.

    , ,

    .

    . ,

    , , -

    .

    . ,

    ,

    .

    (. . ) , .

    , ,

    gt(v - v 0 ) : 1. ,

    .

    v, .

    (2.4.33) , vgt(v - v 0 ) . gt(v - v 0 ) , v 0 , , v0gt(v - v 0 ) . , gt(v - v 0 ) v .

    2. ,

    gt(v - v 0 ) , . , ,

    - , .

    ,

    , .

    2.5.1.

    .

    , ,

    . ., .

    .

    \\fx \|/2 (. (2.3.1)) . ,

    \iosc (. (2.3.6)) . ,

    2. 61

  • . 2.9

    E(t), ,

    .

    (

    10 7 . )

    .

    , ,

    ,

    , \08. ,

    , ,

    . 2.9, . ,

    . ,

    v' v' 4- dV dp = pvdV, , , . . (2.4.7), :

    92

    d W l 2 = S n 2 o h 2 1^21 Pv 'S(v ' -V 0 )dv ' . (2.5.1)

    (2.5.1) , :

    Wl2=sXlh2^2112 j p v ' 8 ( v , - v o ) r f v ' . (2.5.2) pv :

    p v >=ptf(v ' -v) f (2.5.3) (. (2.4.6)), g(v' - v) pv. , , = jp v dv' , (2.5.3) , g(V - v)

    + 0 0

    f t f ( v ' - v ) d v ' = l . J (2.5.4)

    -00 (2.5.3) (2.5.2) 8-, :

    62 . .

  • 2.4.1, , W12 5(v - v 0 ) (2.4.7) g(v - v 0 ) . , (2.5.4)

    +00

    J t f ( v - v o ) d V = l . (2.5.6) -00

    g(v' - v ) .

    (. 2 . 9 ) , , , . ,

    = [(-/

    ) ] /

    . (2.5.7) pxdx , + dx. ,

    (2.5.7) , (). , ,

    = o f c * = V (2.5.8)

    , ,

    .

    , . 2 .9 ,

    />

    , (2 .5 .7) . , , ,

    .

    ^ ' - ) = 2 [ 1 + 4 1 ( , _ ) 2 ] . ( 2 . 5 . 9 )

    (2.5.5) (2.5.9) v' v 0 . :

    g ( v - v 0 ) = 2 T c 1 , (2.5.10)

    . ,

    (. . 2 . 6 ) , (2.4.8) , 2

    ,

    Av 0 ,

    0 = 1 / . (2.5.11)

    2. 63

  • 2.2. He-Ne .

    .

    = l/uth, I , vth , uth = (SkT/M)1/2, , / ,

    , . Ne = 0,5 ( He-Ne ), (2.5.12), ^ 0,1

    = 0,5, (2.5.11), Av 0 = 0,64 . , , , , Av 0 . ,

    , (Av0/p) 1 / , Ne. , ,

    , = V T c . , , v = 5 10 1 4 , 5 108. , . 2.9 ,

    , .

    2.3. Nd:YAG.

    .

    .

    ,

    ,

    . . 2.10 Nd.YAG, . ( - 1 ) , ,

    .

    1 , 300

    Av 0 = 4 1 = 120 Nd.YAG Av 0 = 11 1 = 330 .

    .

    1 v (. . - 1 )

    w v/, ( / ) . , v v = cw.

    ( ) . = c/v = 1/w, ( 1 ) .

    , :

    (2.5.12)

    64 . .

  • ,

    , .

    . , , 2.3.2, , . .

    , . ,

    -

    - .

    , ,

    . --

    [10] , g(v - v 0 ) , (2.5.10)

    2xsp, xsp . ,

    ,

    (FWHM) Av0=l/2nxsp. (2.5.13)

    , ,

    , ,

    exp(-t/xsp), ,

    E(t) = exp(-t/2xsp) cos co0t. ( {E2(t)))9 (-/ 8 ),

    .

    ,

    E(t), , ,

    (2.5.13).

    2.4. .

    Avnat . |] = , = 0,1 , X = 500 ( ), 2.1 , xsp = 10 . (2.5.13) Avnat = 16 . , Avnat, = 1/89 , vfj. ( - ).

    2. 65

    0 100 200 300

    [ ]

    . 2.10

    ,

    ,

    N d : Y A G

  • 2.5.2.

    ,

    ( ).

    .

    ,

    . - ,

    , .

    , ,

    , , . ( .) ,

    g*(v'0 - v 0 ) , . . (2.4.27). A V Q (FWHM) ,

    , .

    2.5. . N d 3 + . -

    X = 1,05 AvJ = 5,4 , . . 40 Nd.YAG (. 2.3). , .

    ,

    ,

    . , v

    2 , 2 . -

    , ,

    , v' = v [ l - (u 2 /c ) ] , . , ,

    2 > 0, v' < v, . , , v'

    v 0 , . . v [ l - ( 2 / ) ] = v 0 . :

    v = v 0 / [ l - ( u 2 / c ) ] , (2.5.14) : ,

    , V Q ,

    V o = v 0 / [ l - ( u 2 / c ) ] , (2.5.15)

    66 . .

  • v 0 . ,

    , ,

    v V Q , . . v = V Q , (2.5.14) (2.5.15) , ,

    , 2.5.

    *(vo ~ v 0 ) , , pvdvz ,

    2 2 + duz, :

    1 / 2

    *=[) (2.5.16)

    |2|

  • 2.1

    1 - 1 0

    5+10 / - 3 0 0 - 1

    - 1 0 - 1

    50 - 1

    - 5 0 0 - 1 1-500 - 1

    ,

    Avj Av 2 , Av = Av x + Av 2 . Av x Av 2 , Av = (Av 2 + Av | ) 1 / 2 . ,

    .

    , , , [11], -. , (, Ne), . .

    . 2.1 .

    ,

    xsp = 10 , , Avnat = 10 . , ,

    isp = 1 , , Avnat = 1 , ,

    .

    , (

    = 0,1 ) , , A v c = 1/ = 100 " 1. ,

    ; AvJ, , .

    300 - 1 0,5 - 1 , , , Nd: Y A G .

    2.6.

    ,

    ,

    .

    ,

    68 . .

  • .

    , ,

    , , :

    1. . , ,

    / . ,

    ,

    .

    2. - .

    , - , ,

    , ,

    , .

    2.6.1.

    [12], *

    , :

    *+-++ + , (2.6.1) *.

    ,

    ,

    . (2.6.1) NB* ( ) :

    dN -jf- = -kB*ANB*NA, ( 2.6.2)

    NA , kB*A , .

    , . . kB*A , , (, 0 2 ),

    .

    ,

    (, 238- He-Ne ). (2.6.2) :

    Wnr=kB.ANA. (2.6.3) (2.6.2) (2.6.3) :

    (dN2 ) = N2 (2.6.4) I dt J

    '

    2. 69

  • , , N2 ( ) *, - ,

    , -

    ,

    = (1/Wnr). , (2.6.2) , ,

    (2.6.1), : + - * + - , (2.6.5)

    ( , ). , (2.6.2) :

    (dNB. /dt) = -kB.ANB.NA + kBANBNA, (2.6.6) kBA , .

    kBA kB*A, .

    :

    .

    1 , (2.6.6)

    :

    kB.ANB.NA=kBANBNA. (2.6.7) :

    NB* = NB (-2/kT), , . (2.6.7) :

    * 2 =KBA exp(AE/kT), (2.6.8) , k (2.6.1) , (2.6.5). ,

    kT. , (2.6.8), kB*A ^>kBA. , (2.6.8) , , ,

    ,

    , -

    , ,

    , -

    1 , 2.4.4 ,

    ,

    .

    70 . .

  • * * * *

    . 2.11 ()

    , ()

    . ,

    k ,

    .

    , ,

    , . .

    NB* NB, ^*^* ^ ^BANE, (2.6.6) (2.6.2). ,

    (2.6.4) , > ,

    .

    (, (010) 0 2 ) , .

    *

    , (

    1) : * + -> + * + , (2.6.9)

    =

    -

    (. . 2.11). ,

    [13]. ,

    , (2.6.9) , , kT. .

    1

    ( . ( 2 . 6 . 5 ) ) . ,

    , ( . ( 2 . 6 . 1 ) ) , , ( . ( 2 . 6 . 9 ) ) . , , , -

    .

    2. 71

  • (, Ne He-Ne N 2 0 2 0 2 ). .

    ,

    ( , . 2.116): + *-> * +-. (2.6.10)

    , , , ,

    , , (. . = 0) , kB*A=kBA., ^ . ^ , (2.6.9) (2.6.10). , .

    ,

    ,

    .

    (NA* /NA) + ; ^ ) , (2.6.12) 1

    vt ,

    , ,

    . , WNR

    ^IBL^-W N (2.6.13)

    1 , , ,

    , .

    , , .

    72 . .

  • , , -

    ,

    . ,

    v, Wnr Wnr= (-DAE/hv), ! ) , , , * .

    ,

    = AE/hv , . . - .

    , ,

    ,

    .

    WNROT . , ,

    .

    ,

    , ,

    ,

    , (2.6.4),

    . ,

    , ,

    9 2.5.1, . ,

    ,

    . ,

    , , ,

    . , , ,

    , ,

    , ,

    .

    2 6 2

    -

    ,

    , -

    , D, , , , .

    .

    [14] [15]. , ,

    .

    , ,

    R .

    2. 73

  • \xD, . [16] , , R, ( ), ED(t), , liD/4ns0R3.

    ED(t, R), , |

    .

    :

    Hcc\ED-a\k\iid-iia\/RZ. (2.6.14) ,

    , \iD . ,

    ( ) .

    ,

    , R, [14]:

    (2.6.14)

    8 ,

    , gD ,

    . , , , WDA W D A \\2, (2.6.14) W D A l u x ^ l u j 2 / ^ 6 * WDA (2.6.14) R~6, (1/

    ) (, 1/8 l u ^ l 2 , . (2.3.15)),

    (,

    |.

    |2, . (2.4.29)). , (2.6.14) :

    DA R (2.6.146)

    R0

    4

    -|1/6

    64 5

    (2.6.146) R0 , -

    . , (2.6.146) , , WDA = (1/8) R = R0, WDA = 1 0 - 6 ( 1 / T s / ) ) R = 10R0. R0 .

    74 . .

  • . 2.12

    - :

    () , () -, () -.

    , , -

    - . ,

    ( D) , ,

    (. 2.12). , ,

    D. , -

    D, -, , ,

    . ,

    i, . 2.126 (-). , . . AE2i = . , ,

    , ,

    (. 2.12). , - (. cooperative up-conversion), , . . 2 = A # 2 i -

    - ,

    , ND NA . (2.6.146) WDA R . , ,

    , ,

    R . ,

    ,

    ,

    , ( ). , ,

    2. 75

  • ,

    :

    N2(t) = 2 (0)-[(* ) + C * 1 / 2 L (2.6.15)

    ,

    . ,

    .

    2.7. Yb^-.Er3^'. [17]. Yb 3 +:Er 3 +: (. 9) - Y b 3 + ,

    2 F 5 / 2 , 3 + ,

    4 1 1 1 / 2 (. 2.13). , ,

    Y b 3 + ,

    3 +. , Y b 3 +

    Y b 3 + , Yb 3 + -Er 3 + .

    _

    4

    III.

    N ; N ; :

    . 2.13 - :

    ( ) Y b 3 + 3 + Yb:Er , () Nd:YAG -, () -

    3 + .

    2.8.

    4F3/2 Nd:YAG.

    4 F 3 / 2 Nd: YAG -. i . 2.126

    4 I i 5 / 2 Nd 3 + (. 2.136). ,

    4 1 9 / 2 ,

    4 1 1 3 / 2 41 / 2 ( . 2.13, . . 2.15). (,

    4 1 1 3 / 2 - 4 1 1 1 / 2 ) 2000 "1 (, ,

    ), . . 4 , YAG (~450 - 1 ) . Nd 3 + YAG 1 % .

    76 . .

  • 2.9. - 3+ [17]. , ,

    3 + (. 2.13), -

    .

    3 +,

    4 I i 3 / 2 ,

    41 1 5 / 2,

    4 1 9 / 2 .

    41 1 3 / 2. -- ,

    3 +,

    4 I i 3 / 2 , , . . 50% .

    2.6.3.

    ,

    (2.6.4). ,

    , N2 :

    dN2_ (N2 N2) ~~{1 ^ 7 / (2.6.16)

    (2.6.16) : dN2/dt = -(N2/x), (2.6.17)

    1 1 ^ 1 - = - + (2.6.18)

    N2(t) t , (2.6.17).

    iV 2 (0 = ^ 2 ( 0 ) e x p - ( f A ) , (2.6.19) N2(0) t = 0. , , (2.6.16) N2/xr , . , ,

    1 v 0 , t :

    P(t) = N2(t)hv0V/Tn (2.6.20)

    2. 77

  • V . (2.6.19) (2.6.20) : P(t) = [N2(0)hv0V/xr]exp-(t/T). (2.6.21)

    ,

    ,

    , , ,

    .

    ,

    t = 0 N2(0), , (2.6.21), .

    ,

    .

    ,

    2. (2.6.21), :

    N2(0)V / ,

    , ,

    ,

    , .

    , ,

    ,

    . ,

    (2.6.18),

    .

    2.7.

    , 1 2 . ,

    .

    . 2.14, , 1 2 g- 2 ~ > ( . . ), , . Nx N2 1 2, a Nu N2j - .

    E2,g2,N2

    2.14 ,

    ,

    ,

    78 . . !

  • 2.7.1.

    .

    , ,

    ;

    } = N1 [ - ( 2 - ) / ] . (2.7.1) , , 1 , ;

    =/8. (2.7.2) ,

    }=/2. (2.7.26) (2.7.1) (2.7.2) :

    =NZ(g2/g1)exp[-(E2-E1)/kT]. (2.7.3) ,

    ,

    . ,

    Nx N2; N2 i. ,

    (2.7.4)

    Wji , Wtj , (1 / )

    . , Wjt Wtj (2.4.30), ||2 /, |p i ;| 2 | n y J 2 . , , (2.3.7). , \\itj\ (2.3.7),

    ut, /- , 2 - .

    ,

    Wy = WV}. (2.7.5) , ,

    ,

    , , .

    ,

    N2j = N2/g2y (2.7.6) # 1 * = # 1 / - (2.7.66)

    2. 79

  • (2.7.6) (2.7.4), dN9 dt g2 gi J x

    , (2.7.5),

    1 =

    . ^ . ^ ] . ^ (2.7.7)

    8\ 82 8l g2

    1 1 1 1

    8l 82

    1 _ 1 1 (2.7.9) #2

    (2.7.7) , WN2/g2

    WNi/gx

    .

    dF dz (. . 1.2)

    dF = W -^]dz. (2.7.10) 82 Si)

    2 1

    1 2

    2i = W/(g2F), (2.7.11) ci2 = W/(glF), (2.7.116)

    , , ,

    ft (N1/g1), (2.7.10), (2.7.11), : dF = gFdz, g

    g = a2l(N2-N1&j. (2.7.14) , a 2i 1 2 (2.7.11) (2.7.116). Nx ^> N2 ( ), (2.7.13) a = a 1 2 iVi. , N2 Nt ( ), (2.7.14) g = a 2 1 N 2 .

    80 . . 0

  • 2.7.2.

    , 2 1 g2 gx , , -

    , ,

    ( ). , , , .

    , ,

    . (2.7.6) :

    X2j = f2jN2, (2.7.15) Nu = fiiNl9 (2.7.156)

    f2j (fu) 2 ( 1), j (0 . , , :

    _ g2jexp-(E2j/kT)

    tmg2mexI>-(E2m/kT) (2.7.16) 1

    = guexp-(Eu/kT)

    U 4 (2.7.166)

    1 2

    , a g2m gu . ,

    (, I) 1 (, ) 2. (2.7.4)

    J 1 1

    (2.7.17) (2.7.15), (2.7.17)

    (dN2/dt) = -W^N2 +W^Nt -(N2/x), (2.7.18) Wl9 W z ^, (1/)

    W^ = f2mWml, (2.7.19) Wga=fiiWlm, (2.7.196)

    (1/) = | \ | \ ( / 2 / / , ) . (2.7.19) 1 1

    (2.7.18), dF dz

    2. 81

  • dF^WZM-W&NJdz. (2.7.20)

    Geml ofm

    (2.7.19 ) Glm = Wlm/F oml = Wml/F I . , 1 ( ), Glm = Gml. , , (2.7.20) (2.7.21), :

    : ( N2 > Nx) ,

    . ,

    N2 = 0 Nx = Nt, Nt , (2.7.22) :

    alm=afmNt. (2.7.23) , Gfm , .

    2.10. = 1,064 Nd:YAG. , Nd: YAG, . 2.15. 4 F 3 / 2 > 4 1 1 1 / 2 ( = = 1,064 ), , 4

    / 2 4 I I 3 / 2 (X = 1,32 ) 4 F 3 / 2 - 4 1 9 / 2 (X = 0,94 ). X = = 1,064 , = 2, 4 F 3 / 2 , I = 3, 41/2 ( R2 -> Y3). / 2 2 = N22/N2 = N22/(N2l + iV 2 2 ) , N22 N21 4 F 3 / 2 , N2 . , (2.7.3) N22 = N21exp -- (AE/kT)> . f22 f22 = 1/[1 + exp(AE/kT)]. = 84 1 kT = 208 "1 ( = 300 ) / 2 2 = 0,4. R2 > Y 3 2 3

    =

    6,5 10~19 2 [21]. 2 3 R2 ^ 3 (2.7.21), |3 = /2223 = 2,8 - 1 9 2.

    oe

    ml=W^l/F = f2maml, tn=Wl'k/F = fu

  • 2.11. - .

    2.16.

    4 2 ;

    42 ( = 730 * 800 ).

    4 2

    2, f2T ,

    4 2 , f2T = N2T/(N2E + N2T), N2E N2T

    .

    N2T = N2Eexp -(AE/kT), . f2T = exp-(AE/kT)/[l + exp-(AE/kT)]. = 800 "1, = 208 ' 1 ( = 300 ) GTA = 4 10~19 2 X = 704 [22], , f2T = 2,1 10~2 = 0,8 ~ 2 0 2. f2T, .. ,

    . ,

    , f2T . ,

    , 42 ->

    4 2

    (1/ = 1,5 105 - 1 (

    = 6,6 ), 2 - 4 2 (1/) = 666,6 1 (

    = 1,5 ). (2.7.19B) (1/) = (f2E/xE) + (f2T/xT), f2E = N2E/(N2E + N2T) = l-f2r ,

    2.

    (1/), , = 200 = 300 . ,

    ( 6,6 200 )

    2,

    , . , ,

    , .

    1,32

    1,06 | 4 -

    1 1 / 2 0,94

    \ 9/2

    1,064

    = 84

    J ^ 2 2 TTN* 21

    0,946

    . 2.15 ,

    X = 1,064 N d : Y A G

    = 800

    .= 730-800

    . 2.16 ,

    2. 83

  • 2.8.

    ( v 0 ) I v = v 0 . , .

    , / , Nx N2 . N1 > N2 ( , Nx > N2), , WNl9 , WN2, . . 1 -> 2 , 2 -> 1. , / . .

    2.8.1. :

    (iV\ > N2) , .

    N2 ,

    (. 2.17) d^

    = _ W ( N 2 _ N i ) _ ^

    at (2.8.1)

    N9

    /\\

    -^ WN, WN2 N2/x

    . 2.17

    /^ 1. :

    Nx + N2 = Nt, (2.8.2) Nt . (2.8.1) ,

    AN = Nt-N2. (2.8.3) (2.8.2) (2.8.3) Nt N2 AN Nt9 (2.8.1) :

    dAN dt -AN( + 2w) + Nt.

    , . . (dAN/dt) = 0, :

    AN = l + 2Wx'

    (2.8.4)

    (2.8.5)

    84 . .

  • AN ,

    (dP/dV), = (hvWAN = m ^ r x , ( 2 . 8 . 6 )

    , . . Wx > 1,

    (dP/dV)s = (hv)Nt/2x. (2.8.7) (2.8.7) , (dP/dV)s, ,

    , , ,

    (Nt/2) .

    (2.8.5) (2.8.6) . , (2.4.17) W

    W = oI/hv, (2.8.8) .

    (2.8.5) (2.8.6), (2.8.8), :

    AN 1 (2.8.9)

    I/Is

    dP/dV (dP/dV)s~l + (I/Isy

    Is = hv/2ax

    (2.8.10)

    (2.8.11) ,

    .

    (2.8.9). , I = Is , AN = Nt/2. v = v 0 , 18 . .

    ,

    J .

    , . 2.18,

    v', / ' ,

    .

    ,

    [/(v)]

    W W

    . 2.18

    v'

    I'(v')

    I v (/(v) I'(v'))

    2. 85

  • .

    (2.4.33) gt(v - v 0 ) g(v' - v 0 ) , v v'. - N1 - N2 = AN (2.8.9), :

    =

    0

    0 = -

    2 2 | u f i V , v ' ( v ' - v 0 )

    (2.8.12)

    (2.8.13) 3ne0ch v

    ( ). (2.8.12) (2.8.13) , I , .

    ,

    g(V - v 0 ) . . 2.19 v' I/Is.

    ,

    / = I(t), .

    , ,

    .

    ,

    AN , (2.8.4) \dAN/dt\

  • (2.8.14) () = Nt :

    AN(t) = Nt exp (2.8.15) l-(2o/hv)jI(t)dt

    (2.8.15) , t ():

    t

    r

  • t I I WN, WN2 N2/x

    I

    3 , iV 3

    2,N2

    . 2.20

    ,

    . , 3 -> 2 1 -> g , NS = NX = 0.

    N2 2:

    (dN2/dt) = Rp- WN2 - ( 2 / ) , (2.8.21) Rp = WpNg , 3iNg . (. . dN2/dt = 0) Ng = Nt (2.8.21) :

    1 + W V

    (2.8.8), (2.8.22) : ^ 2 0 No

    i + ( / / i s ) '

    (2.8.22)

    (2.8.23)

    iV 2 0 = = RpT 2 (. . / = 0),

    Is = hv/ax. (2.8.24) (2.8.24) (2.8.11) , Is , ,

    . 2.17. - ,

    . , AN .

    , ,

    . 2.18, v' , . (2.4.35)

    = 0, (2.8.23), g :

    g = (2.8.25)

    g0 =

  • (2.8.25) (2.8.26) , , ,

    g J, .

    ,

    I(t). ,

    (2.8.21) N2 . (2.8.23) 2 (2.8.25) , / . ,

    ,

    2 Rp N2/x WN2. , :

    (dN2/dt) = -(Gl/hv)N29 (2.8.27) (2.8.8). (2.8.27) :

    N2(t) = JV20exp {- [(*) / J} , (2.8.28) N20 = Rp/ 2 , T(t) t (. (2.8.16)),

    Ts = hv/a (2.8.29) .

    (2.8.29) (2.8.17) , 8 ,

    .

    : g = g0exp { - [ ( 0 / . ] } , (2.8.30)

    g0 = GN20 , (2.8.26). , ,

    .

    2.8.3.

    ,

    ,

    (. 2.16 2.17 2, ). ,

    , ,

    (2.4.26). ,

    2. 89

  • v'

    . 2.21 ,

    ,

    .

    ~

    v o ) g ( v - V o )

    . 2.22

    v', ,

    J(v') (

    )

    gt(v - v 0 ) g(v - V Q ) . ,

    , . 2.21. , . 2.18, / ( v ) , V Q v. , I(v) .

    , . 2.22 I(v). I(v) v. ,

    , . 2.21, . . . ,

    , , .

    , . ,

    ,

    .

    2.3 .

    , ,

    .

    ,

    , .

    .

    2.9.

    90 . .

  • 2.9.1.

    , ,

    , ,

    , , .

    , ,

    ,

    . ,

    ( . [18]). , ,

    , ,

    .

    -,

    ( (2.4.29), |p|2v - v ||2 ). .

    2.9.2.

    , ,

    , ,

    (, . amplified spontaneous emission ASE).

    Q , ,

    , (. 2.23). G = exp[a(iV2 - iVx)Z] , , ,

    , Q ( 10 4 ). ,

    ,

    (. 2.23),

    Q, , , .

    (R = 1) (. 2.236), .

    .

    ,

    D

    1.

    R=l

    . 2.23

    :

    ( ) , () .

    2. 91

  • :

    ; , ; ; , , .

    ,

    .

    . 2.23. D

  • 1,0

    0,8

    < 0,6

    0,4

    0,2

    - 2 - 1 0 1 2 ( v - v 0 ) / A v 0

    . 2.24

    4 = 10' 10"; 10

    I I M I L L

    1 2 5 20 50 100 / s l 4 ^ " ) [ G l n G l i / 2 (2.9.3)

    3/2 (2.9.36)

    c^GlnG] 1 ' 2

    .

    , a Is = hv0/

  • , / Is. , , . 2.23, 4, . 1 = 18 G > 1 (2.9.3) (2.936) , :

    G = 4 ^ . [ l n G ] i / 2 (2.9.4) 2

    = | ^ 1 / 2 (2.9.46) . ,

    (. 2.236), (2.9.4), G , G 2 , Q Q'. :

    G 2 = i ^ [ l n G 2 - | i / 2 (2.9.5) 2

    .

    G 2 = 4ii G 2 ] 1 / 2 (2.9.56) 2

    2.13, . ,

    , Nd: YAG, D = 6 I = 10 , = 1,82, , . 2.23. (2.9.1) (0/4) = 2,25 10"4 . Nd: YAG , = 1, (2.9.4) , 4 T O G = 2,5 104, . . OpNthl = InG = 10,12. Nd:YAG 2,8- 10~19 2 (. 2.10), , Nth = 3,6 10 1 8 3. , . 2.236, (2.9.2) (0'/4) = 5,62 10~5 , (2.9.5) , G = 6,4 102, . . .

    Nth = In G/apl = 2,3 10 1 8 3. ,

    2 , Q

    Q', . , , Q = 21 = 9,36 10"3 Q; =2

    = 2,33 10 3 .

    94 . .

  • . 2.26,

    . 2.23 GpN2l, (Q/4n) = 10"4 , -

    = 1. (2.9.3),

    / > Is- ,

    , / < ,

    ,

    . 2.23, . . (I/Is) = GpN2l/2.

    ,

    , . .

    [23].

    ,

    . 2.236,

    , -

    , (. 10). ,

    ,

    . ,

    ,

    ,

    , ,

    11, . . ,

    ,

    1

    . -

    , -

    /^J/' , , 3 + Y , Erbium-Doped Fiber Amplifier).

    ^

    -

    1550 .

    100

    . 2.26

    J, / 8 ,

    GpN2l

    Q = 4 10~4

    1 2- 95

  • 2.10.

    , . ,

    ,

    , = a(v - v 0 ) .

    (Av 0 ) . ,

    , . ,

    ,

    , 2.7. 2.2

    , Av 0 ( AVQ )

    .

    6G , . ,

    ( 10" 1 3 2 ) A V Q ( ) ( ). ,

    . ,

    , Nd:YAG - , GP (10~ 2 0 ^ 10~ 1 9 2 ) , ( ), - . ,

    ( ), - 2.2

    ,

    . [] [ ]

    []

    H e - N e X = 0,6328 3 . 10 1 3 150 10~3 1,7

    + X = 0,5145 2,5 10- 1 3 6- 10- 3 1,7

    N d 3 + : Y A G X = 1,064 2,8 - 1 9 230 120

    N d 3 + : X = 1,054 4 10 2 0 300 5,4

    6G

    = 0,570 3,2 10- 1 6 5,5 10- 3 46

    3 + : 1 2 0 4

    = 0,704 0,8 l ( h 2 0 300 60 = 300

    T i 3 + : A 1 2 0 3

    = 0,790 4 . 10- 1 9 3,9 100 | | C r 3 + : L i S A F

    = 0,845 5 10 2 0 67 84 | |

    96 . .

  • . ,

    , 6G, ,

    10~1 6 2 ) , ,

    .

    , . 2.2, , ( 3 + :1 2 0 4 ) , (Ti 3 +:A1 2 0 3 ) CnLISAF (Cr 3 + :L iSrAlF 6 ) ,

    . ,

    ( ), , Nd: Y A G , .

    2.1. V = 1 3 , = 10 X = 600 .

    2.2. p v ^, , pxdX X X + dX. ^ p v.

    2.3.

    X. ,

    ,

    ,

    = hc/ky ( ), 5[1 - ( -* / ) ] = . .

    2.4.

    > . 2.3,

    = 2,9 10"3 ( ).

    = 6000 . ?

    2.5. Rx (FWHM), 330 (. . 2.10). = 2,5 10~20 2 . ( = 1,76). , 3 ?

    2.6. Nd: Y A G , Y 3 A 1 5 0 1 2 (- , Y A G ) , Y 3 + N d 3 + . N d 3 + 1%, . . 1% Y 3 + N d 3 + . Y A G 4,56 / 3 .

    2. 97

  • N d 3 + , 412. ( ) , 134, 197, 311 848 - 1 . N d 3 + , 4 1 9 / 2 .

    2.7. = 1,15

    Av*0 = 9 108 . - 7 .

    ,

    .

    2.8. Sx -> S0 (. 9) 6G 0,87, 5 . Slt

    2.9. X = 0,633 , , Avnat 20 , a Av c = 0,64 . ?

    2.10. I .

    2.11. Nd.YAG 6,3 7,5 .

    1,06 = 2,8 10~19 2 , 1,82.

    () (, , . . ). , ,

    ,

    .

    2.12. (. 8) ( 1,--4,4'-) .

    (X = 0,6943 ) 8,1 10" 1 6 2. 22 . .

    2.13. ( (2.6.9) (2.6.10)), , ( = 0) kB.A = hBA*, kB*A kBA. .

    98 . .

  • 2.14. , . 2.18, , J(v) 7(v). ,

    :

    a / v ( (0) . V o )

    l + [ 2 ( v - v 0 ) / A v o ] 2 + ( / / / s o ) ' 0 (0) (J

  • 1. R. Reif f, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965), Chap. 9.

    2. W . Heitler, The Quantum Theory of Radiation, 3rd ed. (Oxford University Press, London, 1953), Sec. II. 9. . . M., 1956. . . 9.

    3. . A. Lorentz, The Theory of Electrons, 2nd ed. (Dover, New York, 1952), Chap. III. . . . M.: .-. ., 1956. . .

    4. J. A. Stratton, Electromagnetic Theory, 1st ed. (McGraw-Hill, New York, 1941), pp.431-438. .. . .-.: , 1948.

    5. R. . PantellandH. . Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1964), Chap. 6. P., . . .: , 1972. . 6.

    6. W . Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill, New York, 1964), Chap. 6.

    7. R. H. PantellandH. E. Puthoff, Fundamentals ofQuantum Electronics (Wiley, New York, 1964), pp. 40-41, 60, 62, and Appendix 4. P., . . .: , 1972. . 2 4.

    8. R. . PantellandH. . Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1964), Appendix 5. P., . . .: , 1972. 5.

    9. A. Einstein, On the Quantum Theory of Radiation, Z. Phys. 18, 121 (1917). 10. W . Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill, New York,

    1964), Chap. 5. . . .: , 1972. . 5.

    11. . G. Kuhn, Atomic Spectra, 2nd ed. (Longmans, Green, London, 1969), Chap. VII. 12. Radiationless Transitions, ed. by F. J. Fong (Springer-Verlag, Berlin, 1976), Chap. 4. 13. . K. Rhodes and A. Szoke, Gaseous Lasers: Atomic, Molecular, Ionic in Laser Hand

    book ed. by F. T. Arecchi and E. O. Schultz-DuBois (North Holland, Amsterdam, 1972), Vol. 1 pp. 265-324.

    14. J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, New York, 1970), Sec. 11.9.

    15. D. L. Dexter, J. Chem. Phys. 21, 836 (1953). 16. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Sec. 9.2.

    .. . .: , 1965. . 9.2. 17. W . J. Miniscalco, Optical and Electronic Properties of Rare Earth Ions in Glasses, in

    Rare Earth Doped Fiber Lasers and Amplifiers, ed.by M. J .F. Digonnet (Marcel Dekker, New York, 1993), Chap. 2.

    18. T. Holstein, Imprisonment of Resonant Radiation in Gases, Phys. Rev. 72, 1212 (1947).

    19. R. Arrathoon, Helium-Neon Lasers and the Positive Column in Lasers ed. by A. K. Le-vine and A. J. DeMaria (Marcel Dekker, New York, 1976), Tab. 2.

    20. M. H. Dunn and J. N. Ross, The Argon Laser in Progress in Quantum Electronics, Vol. 4 ed. by J. H. Sanders and S. Stenholm (Pergamon Press, Oxford, 1977), Tab. 2.

    21. W . F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, Spectroscopic, Optical and Thermomechanical Properties of Neodymium- and Chromium-Doped Gadolinium Scandium Gallium Garnet, J. Opt. Soc.Am. 3, 102 (1986).

    22. J. C. Walling, O. G. Peterson, J. P. Jennsen, R. C. Morris and E. W . O'Dell, Tunable Alexandrite Lasers, IEEE J. Quant. Electr. QE-16, 1302 (1980).

    23. L. W . Casperson, Threshold Characteristics of Mirrorless Lasers, J.Appl. Phys. 48, 256(1977).

    24. O. Svelto, S. Taccheo and C. Svelto, Analysis of Amplified Spontaneous Emission: Some Corrections to the Lyndford Formula. Optic. Comm. 149, 227-282 (1998).

    100 . .

  • 3

    ,

    3 , ,

    .

    ,

    , ,

    .

    3.1.

    , -

    ,

    ,

    ,

    .

    [1] .

    3.1.1.

    : (1)

    ; (2) Ev, ; (3)

    , (4) . ,

    . ^/ , ,

    3. , 101

  • ,

    (

    ), (AEV) () .

    ft2

    * (3.1.1)

    h = //2, , .

    ,

    ,

    ; ,

    , / , ,

    2/2. ,

    2

    Up R R0 Up = k0(R - R0)2/2 (. . 3.1). AEV :

    , R

    . 3.1

    AEV = hv0 = h V 1/2

    (3.1.2)

    = 12/(1 + 2 ) . , ,

    -11/2

    (3.1.3) = 2ko

    ,

    ,

    .

    AEe = k0a2/2. (3.1.4)

    2 k0 (3.1.1), (3.1.3) (3.1.4),

    AEV = 2(//2. (3.1.5)

    Er = h2J(J + 1) / 2 , J -

    102 . .

  • .

    , J = 0 J = 1,

    = 22/2 =2(/)

    ,

    ( 3 . 1 . 1 ) . ( 3 . 1 . 5 ) AEr = (m/M)1/2AEv. ( 3 . 1 . 6 )

    / = 10~ 4 , ,

    . ,

    ,

    .

    , (AEe/h), (AEv/h) (AEr/h) , , ( 2 5 - 5 0 ) 1 0 3 - 1 , 5 0 0 -3 0 0 0 - 1 1 - 2 0 - 1 .

    , . ,

    , ,

    , --

    ,

    R . ,

    R. ( ), , JR , . 3 . 1 , 1 2 . (R > ) , , . R , .

    ,

    , ,

    R. , 1 . 3 .1 0 , .

    R ,

    ,

    . ,

    (, R0). , , ,

    . ,

    R , , -

    , .

    ,

    R. , , , 1, ,

    3. , 103

  • 2 1

    i/' = 0

    3 R, R0. -

    2 I^IIIZIZZZZZZZZI ^ -

    ,= 0 i? 0,

    -

    - -

    .

    3ZZZZZ R0 1 . -

    . .2 -

    , , . .

    .

    f_ . -

    . -

    ,

    " = 0 v" = 1 hv0, (3.1.2),

    k0 . , ,

    3.1 0, 1, 2, 3 . . , v = 0 , , ,

    (hv0/2) . 1 2 , , . 3.1 , . 3.2, . 3.1 . , ,

    v" = 3 1. . 3.1 , R , ' .

    ,

    .

    R0

    . ,

    , ,

    .

    .

    , . 3.1, R ,

    . , , SF 6 , (. 3.3), , . ,

    . 3.3 ( ^ ) , R - . ,

    3.3, SF 6 , -

    104 . .

  • . 3.3 (, S F 6 ) . ,

    ( , [ 2 ] )

    -f v' = l

    . 3.4

    ,

    .

    ,

    -

    -

    ,

    U

    .

    ,

    . 3.1 ,

    .

    ,

    .

    ,

    ; (. . )

    Er = BJ{J+l) (3.1.7) , h2/2I, / ,

    . ,

    3- , 105

  • , .

    ,

    v" = 0 v' = 1 , . 3.4. , ,

    ; , J, . . [Er(J) - Er(J - 1)] = 2BJ.

    3.1.2.

    N(Ee, Ev, ) - , ,

    N(Ee, EV9 ) gegvgrex? {-( + Ev + Er)/kT}9 (3.1.8) Ee, EvnEr , , a ge9 gvngr (. (2.7.3)). , 3.1.1, Ev/hc 1000 - 1 ,

    EJhc .

    kT/hc = 209 " 1 ( = 300 ) ,

    9 Ev , kT. ,

    , ,

    .

    1

    , (3.1.7) (3.1.8),

    40 J . 3.5

    p(J)oc(2J+ l ) e x p [ - J ( J + l)/kT]. (3.1.9) (2J + 1) , J (2J + 1)- . , , = 0,5 " 1 kT/hc = 209 - 1 ( ), . 3.5 -

    1 , , ,

    . (, S F 6 )

    1000 - 1 ( 100 - 1 ) ;

    .

    106 . .

  • (, ). , (3.1.9) (2J 4- 1) ( J = 0) , , J

    (2J + 1)

    = (2kT/B)i/2. (3.1.10) ,

    .

    3.1.3.

    ,

    :

    -

    , ( ); - ;

    -

    (- ); - ;

    , v" = 0, ( ); -- .

    -

    ,

    . ,

    -, ,

    (, ). ( . ) .

    ,

    .

    , ,

    -,

    . ,

    " = 0 , 1 , . 3.6, 1 ,

    . ,

    v" > 0, .

    3. , 107

  • 2

    1

    uv(R) uv(R)

    . ,

    , - -

    -'. -

    ,

    "

    v'

    * \uv,uv,dR\2, (3.1.11)

    , R

    . 3.6

    . v" = ,

    , , ,

    (3.1.11), , uv> uv. . 3.6 v' = 2. , , ,

    ,

    , .

    , , ( , . . ,

    ). , v' = 2.

    R, ,

    ' = 2. , -

    (- ) , . , -.

    1 -

    1 -

    (, 2 ) . - ,

    .

    2

    uv* uv-dR ; -.

    108 . .

  • = 1 , .

    v" = 0 v" = 1 (. . 3.2). , , v" = 1, v" = 2 (), v" = 0 (). ,

    ,

    -. ,

    = 1 . . 3.6 , , -

    , Av = 2, 3 . ., , ( ).

    , -

    ,

    ,

    (3.1.9) (. . 3.5). , ,

    .

    AJ = 1 ( A J = J" - J\ J " H J' ). -

    (, v" = 0 -> v" = 1 . 3.2), v 0 ,

    (. 3.7). , , - A J = + 1 . - , v 0 ,

    , (. . 3.4). , , -

    A J = - 1 . (3.1.7), , 2B/h. 3.7 ,

    . 3.7

    .

    ,

    v 0 .

    : , -

    AJ = + 1 , , -

    J = - 1

    - -

    3. , 109

  • (. . 3.5). , -

    (, ). AJ = 0;

    v 0 (Q-). , (, , v' = 1 v" = 0 . 3.4) , , . 3.7, , .

    3.1. 02 = 10,6 . 0001 -> 1000 (. , 0 2 10), v 0 , , v 0 = 960,8 "1 [20]. 0 2 = = 0,387 "1 [20], , (0001) (1000) . , -

    E = hv0 + BJ'(Jf + 1) - BJ"(J" + 1) = hv0 - 2BJ", (3.1.12) , , J" . j ' m

    (3.1.10). , 02 , .. = 450, J M A X = 19,6. 0 2 , J' J". , ,

    , J' = 19 J' = 21. J' = 21, - J" = 22 ((22)-). (3.1.12) v = v 0 - (2BJ"/h) = 943,8 "1, X = (1/943,8) = 10,6 . , , v 0 , X = 1 / v 0 = 10,4 .

    (3.1.12) , - Av = 2BAJ" = 4 = 1,55 1 .

    3.2. 02 . 0 2 , ( (22)) X = 10,6 , , = 450 (. 3.1). 0 2 (2.5.28), = 5 0 . : , (2.5.18), A V Q ~ v 0 , 0 2 , He-Ne (. 2.7), , v 0 17 . , ,

    , 0 2 , , He-Ne .

    110 . .

  • 3.3. 02 . 0 2 , , N 2 0 2 . ,

    Av = 77,58(\|/02 + 0,73 - 4v|/N2 + 0,6) ^(/) 1/ 2 (. (2.5.12) (2.5.11)), , ,

    ( . .). , , ( = 15 . . C0 2:N 2:He 1:1:8) = 450 , Av = 40 . 3.2 , 0 2 . 0 2 ,

    (. 10), .

    ,

    . ,

    .

    A J = 1. , J J - 1.

    , ,

    - . -

    AJ = 1 ,

    . ,

    v"

    , ,

    -. - -

    , , A D = 1 A J = 1 .

    A J = 1.

    3.1.4.

    , ,

    (. . 3.6). , v' = 0 -

    3. , 111

  • (, ). 1 ,

    . v' = 0 - -

    (, . . 3.6). ,

    -. ,

    ,

    CD . 3.6. (, ) v" = 0 (, , ). . 3.6 , .

    .

    -

    . -

    Av = 1 / = 1. ,

    (. 3.1.1), : AJ = 1. , - , ,

    ,

    (, xsp 1/vjj). ,

    -

    .

    ,

    .

    , 2.6.1, .

    (. collisional deactivation) ( (2.6.1)) . ,

    (, ) (, (0,1,0) 0 2 ; . 10). ,

    .

    1 , ,

    , , .

    (3 .1 .8 ) . .

    112 . .

  • . 3.8

    -

    (. near-resonant energy transfer) (. (2.6.9) . 2 . ) ,

    kT.

    0 2 ,

    (0,2,0) (0,1,0) (. 10). (. in

    ternal conversion) -

    (. . 3.8) . (. unimolecular decay), .

    ,

    - ,

    . , ,

    . ,

    . 3.6, , ( v' = 0 . 3.6), ( ).

    , ,

    .

    ,

    v' = 0, , ,

    .

    3.2.

    (. bulk semiconductors), . . ,

    , . -

    - (. quantum-confined semiconductors) , , , , ,

    ,

    .

    3. , 113

  • .

    .

    [3].

    3.2.1.

    -

    ,

    [4] : }/() =

    ( ) [ ; ()] , (3.2.1) uk(r) , . (3.2.1) ,

    .

    , ( v . valence band), , , ( . conduction band). k, , . ,

    . 3.9 k :

    .

    )

    , ; ) * * - ^

    ^ ,

    B f t J I

    .

    114 . ,

  • . 3.9.

    ,

    , (. . 3.9), : h2h2

    = ~ , (3.2.2) 2

    = h2/[d2Ec/dk2]k=0 . Ev , , (. . 3.9), :

    h2k2 E v =

    fr^' (3.2.26) mv = h2/(d2Ev/dk2)k=0 . ,

    ,

    ,

    (. 3.96). ' ,

    , , :

    E^=Eg+Ec, (3.2.3) El=-Ev, (3.2.36)

    Eg , . .

    kx, ky kz , , , . ., , ,

    , z, (3.2.2) (3.2.3), k2 = k2 +k2 +k2.

    ,

    .

    ,

    Lx, Ly Lx, , ,

    2. :

    kt = (2nl/Lt), (3.2.4) i = , , z, / . , . 3.9

    , .

    ,

    . , ,

    , 11 .

    . .

    2

    , \\fx 2 . ,

    3. , 115

  • d

    > x E.

    '2

    X

    > . 3.10 . 3.11

    () ()

    V i a V i b , d

    -

    N d

    d . d ,

    ,

    . -, , ,

    ,

    , ,

    - 19

    .

    vi/^ , 180 (. 3.10). ,

    . ,

    , d , ,

    .

    N , , , iV-

    N . ,

    ,

    2 , ,

    (. 3.11). , N , N . N ,

    .

    , , (3.2.2) (3.2.3), (3.2.4), -

    116 . .

  • . ,

    = hk (, =

    2/2), ,

    Eg mv. , ,

    k- , :

    p = ftk. (3.2.5) , (3.2.2) (3.2.3)

    , ,

    k. , Si Ge, , .

    IIIV, GaAs, InGaAs, AlGaAs InGaAsP. , GaAs

    = 0,067 0 , 0 . , IIIV , ( hh . heavy holes) (mhh = 0,46m0 GaAs), ( lh . light holes) (mlh = 0,08m 0 GaAs) -- (. 3.12). , , , ,

    ,

    .

    ,

    ,

    , s- .

    ,

    ( 1 1

    . 3.11), ,

    -,

    ,

    2 --

    ,

    , .

    ,

    ,

    - V , , k = .

    -

    . 3.12 : ,

    -

    I I I - V

    3. , 117

  • -

    - . (, GaAs = 0,34 ) kT (~ 0,028 ), - ,

    . ,

    3.2.2, . , ,

    I I I - V .

    3.2.2.

    ,

    2.2.1, p(k), & &. . 2.2 , ,

    kt, p(k) , . . 4nks/S9 , , (2n)3/LxLyL29 2, , . ,

    p(k) = (ksV/Sn2), (3.2.6) V = LxLyL2 . , p(k), . . , k k k + dk, , (3.2.6),

    , (3.2.7) , , , ,

    , .

    () . pcv(E)dE = pcv(k)dk, (3.2.2) :

    1 2

    in2 { h2

    1 (2mv

    3/2

    () = ^ ^ ]'\ (3.2.8)

    ^ > = ^ ^ ) 3 / V - ( 3 - 2 - 8 )

    ,

    Ev (. 3.9). , I I I - V mc

  • : -

    3.2 3.

    , .

    ,

    . , . .

    ,

    -, .

    E'(k)> ( , , ), :

    E'F , . , . 3.96, . (3.2.9), E' = E'F. , f(E'F) = l/2. ErF (3.2.9), -> 0. , f(E') = 1 'E'F. , = 0 , .

    , EF . , > 0

    3.2.3.1.

    f(E') = l + exp[(E'-EF)/kT]9 (3.2.9)

    . 3.13 ) ' k. ) f(E')

    f 3. , 119

  • f(E') ' , . 3.136. , , Eg kT, , . .

    .

    , . 3.9 . 3.13 ,

    . ,

    ,

    .

    . , - E'F ,

    .

    - E'F . ,

    (~10 1 8 " 3) , .

    ,

    .

    3.2.3.2.

    , () -

    . ( , ~1 ) , ( ~ 1 , - ). , ,

    ,

    .

    fv fc . , fc fv (3.2.9). , , . 3.9, :

    ) = (3.2.10) , )

    l + exp[(EC-EFc)/kT]

    1 l + e x p [ ( F u - E v ) / k T ] 9 (3.2.106)

    EFC EFV .

    , EFC vlEFV fC(EC) fV(EV) , 3.146. ,

    , , , -

    UEV) =

    120 . .

  • = . , . 3.14 = , ( ) , ( ). , ,

    .

    (3.2.10) , . 3.96. (3.2.3) (3.2.36), :

    1

    l + exv[(E'c-E'Fc)/kT] 1

    (3.2.11)

    A + exvKK-EkVW (3.2.116) , ,

    ,

    . , EFc nEFv (3.2.11) , .

    , ,

    , Ne:

    Ne= \Pc(Ec)fc(Ec)dEc. (3.2.12)

    Nh , fv(Ev) = l-fv(Ev) ,

    3- , 121

  • , , ! . (3.2.106) :

    ^{ E v } =

    1 + [(- EFv )/kT]' (3.2.13) (3.2.13) , ,

    . 3.14, , ,

    (. (3.2.13) (3.2.10)).

    . ,

    Nh : 00

    Nh = jpv(Ev)fv(Ev)dEv. (3.2.14)

    , ,

    - ,

    , N. , , N, , ,

    , (3.2.12) (3.2.14), Ne = Nh = N. , (3.2.12) (3.2.8) (3.2.10) :

    00

    Nc = 2(2nmckT/h2)3/2, = Ec/kT, a zF = EFc /kT. , (3.2.14) (3.2.86)

    . 3.15 ) , I kT

    N/Nc. , )

    EF/kT iV G a A s

    122 . .

  • (3.2.13) , (3.2.15). (3.2.15) , EFc /kT N/Nc, . 3.15. , .

    3.4. GaAs.

    = 0,0670 mv = mhh = 0,46m0 = 300 . Nc = = 4,12 10 1 7 - 3 ^ = (mv/mc)V2Nc = 7,41 10 1 8 "3, , (3.2.15), &NV .

    N N/Nc , . 3.15, EFc /kT. .

    EFJkT N GaAs, , GaAs, . 3.156.

    3.2.4. :

    v . ,

    , , ,

    1 (. (2.4.2)):

    ' = -, (3.2.16) = E(r, t) t. :

    = 0 , - *), (3.2.17) kopt , = 2nv. v ^ Eg/h,

    . 2{ , W, (.23) , :

    W = g - | H S P 8 ( v - v 0 ) , < 3 - 2 8 > v 0 =

    \ \=\jwl(-er'E0eik^-r)^vdv\2. (3.2.19) , \\fv (3.2.19) 1 2, (3.2.1).

    1 , 2,

    ,

    ,

    . ,

    .

    3. , 123

  • (3.2.18) (3.2.19) . 5- (3.2.18), , v = v 0 . ,

    (Ei-E[) = hv, (3.2.20) .

    , \\tv exp (jkv ) \|/ exp (ikc ), (3.2.19) ,