Pphap Hop Ly Cuc Dai Btoan Uoc Luog Khoang

download Pphap Hop Ly Cuc Dai Btoan Uoc Luog Khoang

If you can't read please download the document

Transcript of Pphap Hop Ly Cuc Dai Btoan Uoc Luog Khoang

  • Phng php hp l cc i - Bi ton

    c lng khong

    1. Phng php hp l cc i

    nh ngha 1.1. Gi s (X1, X2,, Xn) l mu ngu nhin c lp t phn phi f(x,

    ), U. Hm L(X/ ) = f(X1, )f(X2, ) f(Xn, ) c gi l hm hp l.

    nh ngha 1.2. Thng k c gi l c lng hp l cc i ca

    nu

    L(X/ (X) L(X/ ) vi mi .

    *(X) = c gi l c lng hp l cc i ca hm tham s t( ).

    Trng hp mt tham s.

    tm c lng hp l cc i, ta c th s dng phng php tm cc i hm

    L(X/ ) m chng ta tng quen bit. Ta bit rng cho hm L(X/ ) c cc tr

    a phng ti = iu kin cn l . Gii phng trnh ny, tm

    cc nghim ca n sau ta xt du ca o hm hng nht hay hng hai tm

    cc i hm L(X/ ).

  • V d 1.3. Gi s (X1, X2,, Xn) l mu ngu nhin c lp t phn phi Poisson

    vi tham s > 0. Tm c lng hp l cc i ca .

    Gii. Phn phi ca Xi l

    P[Xi = xi] = ; xi = 0, 1, 2,

    Hm hp l

    => lnL(X, ) = (ln ) - n - ln =>

    Vy nu =>

    Ta li c

    " .

    Vy ti th tc l hm L(X, ) t cc i. T suy

    ra l c lng hp l cc i ca .

  • Trng hp tham s l mt vect = ( 1,, r)

    Lm tng t nh trng hp 1 tham s. Ta gii h phng trnh

    (*)

    Gii h ny ta tm c

    t . Nu ma trn

    l xc nh khng m th ti = 0 hm hp l L(X, ) t cc i.

    V d 1.4. Gi s (X1, X2,, Xn) l mu ngu nhin t phn phi chun N(a; 2).

    Tm c lng hp l cc i ca (a; 2).

    Gii. Ta c

    => Lnf(Xi, a, 2) =

  • => v

    Thay vo h (*) ta c

    => l c lng hp l cc i ca (a; 2).

    2. c lng khong

    nh ngha 2.1. Khong ( 1(X), 2(X)) c gi l khong c lng ca tham

    s vi tin cy 1 - nu

    P[ 1(X) < < 2(X)] = 1- .

    Khong ( 1(X), 2(X)) c gi l khong tin cy. Gi tr 1- gi l tin cy.

    Hiu 1- 2 gi l chnh xc ca c lng.

    Ch : Thng thng ngi ta chn ( 1, 2) sao cho l nh nht.

  • a. Khong c lng ca xc sut p trong phn phi nh thc

    Gi s k l s ln xut hin bin c A trong dy n php th Bernoulli. Gi thit

    xc sut bin c A xut hin trong mi php th l p. Xt xc sut;

    .

    vi 1 - l tin cy cho trc. Bin i v tri ca ng thc trn ta c

    t x = v thay biu thc di cn bc hai p bng th

    (1)

    Mt khc, theo nh l Laplace ta c

    Trong

    Suy ra

  • T ta c .

    Vy nu cho ta tnh c v tra bng phn phi chun N(0;1) ta tm c

    x .

    T (1) ta c . Bin i suy ra khong c lng cho p l

    V d 2.2. Trong t vn ng bu c, phng vn 1600 c tri c bit 960 ngi

    trong s s b phiu cho ng c vin A. Vi tin cy 95% , ti thiu ng c

    vin A s chim c bao nhiu phn trm phiu.

    Gii. Ta c = v x =1,96. Thay vo cng thc trn ta c