Porous Coordination Polymers (PCPs)

25
1 Three-Dimensional Porous Coordination Poly mer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption a nd Catalysis Shinpei Hasegawa, Satoshi Horike, Ryotaro M atsuda, Shuhei Furukawa, Katsunori Mochizuk i, Yoshinori Kinoshita, and Susumu Kitagawa * J. Am. Chem. Soc. 2007, 129, 2607-2614 演演演 演演演

description

Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. Shinpei Hasegawa, Satoshi Horike, Ryotaro Matsuda, Shuhei Furukawa, Katsunori Mochizuki, Yoshinori Kinoshita, and Susumu Kitagawa* - PowerPoint PPT Presentation

Transcript of Porous Coordination Polymers (PCPs)

Page 1: Porous Coordination Polymers (PCPs)

1

Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: S

elective Sorption and Catalysis

Shinpei Hasegawa, Satoshi Horike, Ryotaro Matsuda, Shuhei Furukawa, Katsunori Mochizuki, Yoshinori Kinoshita, and Susumu

Kitagawa*

J. Am. Chem. Soc. 2007, 129, 2607-2614

演講者:江柏誼

Page 2: Porous Coordination Polymers (PCPs)

2

Porous Coordination Polymers (PCPs)

porous coordination polymer Susumu Kitagawa. Natue. 2006, 441, 584-585

[{RhII2(bza)4(2-mpyz)}n]

O

-O

benzoate(bza)

N

N

2-methylpyrazine(2-mpyz)

Page 3: Porous Coordination Polymers (PCPs)

3

PCPs have Characteristics

(1) well-ordered porous structures

(2) flexible and dynamic behaviors in response to guest molecules

(3) designable channel surface functionalities

Page 4: Porous Coordination Polymers (PCPs)

4

Strategies to Functionalize Channel Surfaces

I 、 immobilization of coordinatively unsaturated| (Open) Metal Sites (OMS)

Noro, S.; Kitagawa, S.; Yamashita, M.; Wada, T. Chem. Commun. 2002, 222-223.

{[ZnCu(2,4-pydca)2(H2O)3

(DMF)]·DMF}n

N

O

O-

O

-O

pyridine-2,4-dicarboxylate(2,4-pydca)

Page 5: Porous Coordination Polymers (PCPs)

5

Strategies to Functionalize Channel Surfaces (continued)

II 、 introduction of organic groups to provide guest-accessible Functional Organic Sites (FOS)

Kitaura, R.; Fujimoto, K.; Noro, S.; Kondo, M.; Kitagawa, S.; Angew. Chem. Int. Ed. 2002, 41, 133-135.

[{[Cu2(pzdc)2(dpyg)] ‧8H2O}n]1,2-dipyridylglycol (dpyg)

coordination site

guest interaction site

N

NO

-O

OO-

pyrazine-2,3-dicarboxylate(pzdc)

Page 6: Porous Coordination Polymers (PCPs)

6

FOS have Advantages

• Base-type catalyst is easy to create 。

• There are a variety of organic functional groups that can serve as active base sites 。

• A new types of catalysts constructed from metal-organic frameworks 。

Page 7: Porous Coordination Polymers (PCPs)

7

4-Btapa

1,3,5-Benzene Tricarboxylic AcidTris[N-(4-pyridyl)amide]

(4-btapa)

-NH electron acceptor

-C=O electron donor

Page 8: Porous Coordination Polymers (PCPs)

8

Synthesis of 4-Btapa

NH2N

4-aminopyridine

1.triethylamine, THF

2.dropwise addation

1,3,5-benzene tricarboxytrichloride

, THF, 0oC3.triethylamine, THF, stir 7 hour

O O

NH

O NH

NH

NN

N

4-btapa4.filtration and washed with THF

N

triethylamine

(1,3,5-benzene tricarboxytrichloride)

O

O

O

ClCl

ClTrimesoyl Chloride

(81%)

yellowish whitepowder

Page 9: Porous Coordination Polymers (PCPs)

9

Cd(NO3)2¡E4H2O

1. DMF2. 4-btapa/DMF

3. stir 3.5 hour4. filtration,washed with DMF

{[Cd(4-btapa)2(NO3)2]¡E6H2O¡E2DMF}n

1aunder vacuum for 7.5 hour at 140oC

{[Cd(4-btapa)2]¡E2NO3}n

1bon the methanol vapor for 30 hour

{[Cd(4-btapa)2(NO3)2]¡E6MeOH¡EyH2O}n

Synthesis of 1a, 1b, and 1c

yellowish whitepowder

(1a)

(1b)

(1c)colorless

(93%)

Page 10: Porous Coordination Polymers (PCPs)

10

ORTEP Drawing of 1a

Solid-state 113Cd CPMAS NMR spectrum of 1a

Page 11: Porous Coordination Polymers (PCPs)

11

Table 1. Selected Bond Distances (Å) and Angles (deg)

for {[Cd(4-btapa)2(NO3)2]·6H2O·2DMF}n (1a) Cd (1)-N1 2.372 (7) Cd1-N11 2.372 (8)

Cd1-N12 2.372 (8) Cd1-N13 2.372 (8)

Cd1-N14 2.372 (8) Cd1-N15 2.372 (7)

N11-Cd1-N1 90.8 (3) N12-Cd1-N1 90.8 (3)

N13-Cd1-N1   N14-Cd1-N1 89.2 (3)

N15-Cd1-N1   N12-Cd1-N11 90.8 (3)

N13-Cd1-N11 89.2 (3) N44-Cd1-N41 89.2 (3)

N15-Cd1-N11 180.0 (4) N13-Cd1-N12 89.2 (3)

N14-Cd1-N12 180.0 (4) N15-Cd1-N12 89.2 (3)

N14-Cd1-N13 90.8 (3) N15-Cd1-N13 90.8 (3)

N15-Cd1-N14 90.8 (3)

Page 12: Porous Coordination Polymers (PCPs)

12

Crystal Structure of 1a

Page 13: Porous Coordination Polymers (PCPs)

13

Two-Fold Interpenetrating 3-D Crystal Structure of 1a to Form Three-Dimension

4.7 X 7.3 Å2

Page 14: Porous Coordination Polymers (PCPs)

14

Crystal Structure of 1a to Form Another Type of Zigzag Channels

3.3 X 3.6 Å2

Page 15: Porous Coordination Polymers (PCPs)

15

The Amide Groups on the Channel Surface of 1a

Cd

O

N

Page 16: Porous Coordination Polymers (PCPs)

16

Thermogravimetric Analyses of 1a and 1c

at a heating rate of 10 °C min-1 under N2

Amount of guests in figures is based on one 4-btapa ligand of each compound.

{[Cd(4-btapa)2(NO3)2] ‧6H2

O‧2DMF}n

{[Cd(4-btapa)2(NO3)2] ‧6MeOH‧yH2O}n

Page 17: Porous Coordination Polymers (PCPs)

17

XRPD Patterns of 1a and 1b

1a simulation based on the single-crystal structure

the as-synthesized 1a

the desolvated compound 1b

compound 1c obtained by exposing 1b to methanol vapor for 30 h.

Page 18: Porous Coordination Polymers (PCPs)

18

XRPD Patterns for Desolvated Compound 1b Immersed in Slovent

Page 19: Porous Coordination Polymers (PCPs)

19

The Adsorption and Desorption Isotherms of 1b for Methanol

adsorption

desorption

P0 is the saturated vapor pressure, 102.3 kPa, of N2 (77 K), and16.94 kPa, of methanol (298 K).

hysteresis loop

Page 20: Porous Coordination Polymers (PCPs)

20

1H NMR (DMSO-d6) Spectra of 1a that Adsorbed Each Guest Molecule

malononitrile

ethyl cyanoacetate

cyanoacetic acid tert-butyl ester

2.9

0.7

0.6

Page 21: Porous Coordination Polymers (PCPs)

21

IR Spectra in the Region of C≡N Stretching Vibration Bands

υsCN―υas

CN at 2180 and 2200 cm-1

malononitrile

1a containing malononitrile

1a containing ethyl cyanoacetate

1a containing cyano-acetic acid tert-butyl ester

Page 22: Porous Coordination Polymers (PCPs)

22

Table 2. Knoevenagel Condensation Reaction of Benzla

ldehyde with Substrates, Catalyzed by 1a

Page 23: Porous Coordination Polymers (PCPs)

23

Conversion (%) vs Time (h) for Knoevenagel Condensation Reactions

Page 24: Porous Coordination Polymers (PCPs)

24

Conclusion

• This work describes the construction of a 3D PCP containing guest-accessible amide groups and characterizes the selective inclusion of guest molecules with the structural transformation of the host 。

• We observed selective guest inclusion via the hydrogen bond, which is based on not only the size and shape of the incoming guest but also its affinity for the amide group.

Page 25: Porous Coordination Polymers (PCPs)

25

• As a result, the Knoevenagel condensation reaction, which is a well-known base-catalyzed model reaction, was selectively promoted in good yield 。

• This research is particularly relevant in the context of porous solid-state chemistry in the generation of new materials with FOS 。