전자현미경의 회절원리와 나노구조분석 응용 Polymer Science and Technology Vol. 17,...

18
고분자과학과 기술 17 4 20068493 1. 서론 회절을 이용하여 재료의 결정구조를 분석할 있기까지 많은 리학자들의 이론이 필요하였다 . 1895 년에 Wilhelm Conrad Röntgen cathode ray generator 실험 도중 발생한 X-ray 인해 우연히 자기 부인의 손을 촬영하게 되면서 투과와 회절의 역사가 시작되었 다고 있다 . 여기서 Xunknown의미였다 . 이후에 1912 Max von Laue X-ray 결정을 지나칠 일정한 패턴을 성하는 것을 발견하게 되었는데 이것이 오늘날 Laue pattern 었다. 동일한 해에 명의 Bragg( 아버지: William Henry Bragg 아들 : Sir William Wawrence Bragg) 부자는 Laue 실험이 완벽 하지 않음을 증명하는 유명한 Bragg식을 제안하였다. 이때 아들 Bragg나이는 15 살이었다 . 그림 1 수식은 Britannica 사전에 등록된 것으로 Bragg자신의 수식을 입증하는데 사용하였던 이다 . 이후 1927년에 Davisson Germer 빛이나 X-ray 외에 전자 (electron) 회절을 일으킨다는 사실을 발표하였다 . 또한 수식을 전개해왔던 물리학자들에 대해서는 1923 년에 Louis de Broglie 아래의 식을 통해 전자기파의 파장을 구하는 식을 시하였다 . 따라서 X-ray 전자의 파장을 정확하게 구하는 것이 능해졌다. ) C m Ee Ee( m h Ee m h mv h λ 0 2 0 0 2 1 2 2 + = = = Hendrik Antoon Lorentz 1900년에 Theory of the Elec- tron관한 이론에서 전자기장에 놓인 전자는 Lorentz force 만큼의 ( B v q E q F r r r r × + = )받는다는 것을 제안하였다. 이상의 수식을 응용하여 1932년에 Ernst Ruska Max Knoll 투과전자현미경을 만드는데 성공하였고 1935년에 M. Knoll 전자에 가해지는 Lorentz force 회로를 통해 정밀하게 제어할 있다면 다른 전자현미경을 만들 있다고 제안하였다. 이것이 주사전자현미경에 대한 이론의 시작이었다. 이후 1938년에 von Ardenne의해서 최초의 주사전자현미경이 만들어졌다 . 또한 해에 Ruska von Borries Siemens에서 최초의 상업용 자현미경을 제조하는데 성공하였다. 1-3 국내 첨단 소재기술의 개발을 가속화하고 산업화를 촉진하기 해서는 첨단소재 개발의 근간이 되는 분석평가 기술이 절실히 요구 되고 있다 . 재료 연구와 구조에 대한 새로운 디자인 개발은 다층소 재와 경계에서의 화학적 , 전기적 , 물리적 정보에 대한 지식에 크게 의존하게 된다. 그러므로 나노미터 이하의 구조들에 대한 결정구조 성분 분석의 필요성이 급격히 높아지고 있다. 이러한 분석기술 투과전자현미경(transmission electron micro- scope) 전자빔을 시료에 조사하여 투과된 전자빔으로 영상을 회절된 전자빔을 이용하여 회절 도형을 얻음으로써 재료의 결정 고분자 특성분석 지상강좌 전자현미경의 회절원리와 나노구조분석 응용 안재평박종구 Electron Diffraction and Nanostructural Analysis in Electron Microscope 한국과학기술연구원 특성분석센터(Jae-Pyoung Ahn, Advanced Analysis Center, KIST, 39-1 Hawolgok-dong, Seong- buk-gu, Seoul 136-791, Korea) e-mail: [email protected] 한국과학기술연구원 나노재료연구센터(Jong-Ku Park, Nano-Materials Research Center, KIST, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Korea) 안재평 1988 1992 1996 2000 2000현재 고려대 금속공학과(학사) 고려대 금속공학과(석사) 고려대 금속공학과(박사) Berkeley National Lab. & UC Berkeley (박사후연수) KIST 나노재료연구센터 특성분석센터 선임연구원 , 전자현미경실 책임자 박종구 1982 1984 1990 1990현재 경북대학교 금속공학과(학사) 한국과학기술원 재료공학과(석사) 한국과학기술원 재료공학과(박사) KIST 재료연구부 나노재료연구센터 책임연구원, 센터장

Transcript of 전자현미경의 회절원리와 나노구조분석 응용 Polymer Science and Technology Vol. 17,...

  • 17 4 2006 8 493

    1.

    . 1895 Wilhelm Conrad Rntgen cathode ray generator X-ray

    . X unknown . 1912

    Max von Laue X-ray

    Laue pattern

    . Bragg(: William Henry Bragg

    : Sir William Wawrence Bragg) Laue

    Bragg .

    Bragg 15. 1 Britannica Bragg

    . 1927 Davisson Germer X-ray

    (electron) .

    1923 Louis

    de Broglie

    . X-ray

    .

    )Cm

    EeEe(m

    hEem

    hmvh

    0 20

    0

    212

    2+

    ===

    Hendrik Antoon Lorentz 1900 Theory of the Elec-

    tron Lorentz force

    ( BvqEqFrrrr

    += ) .

    1932 Ernst Ruska Max Knoll

    1935 M. Knoll

    Lorentz force

    .

    . 1938 von

    Ardenne .

    Ruska von Borries Siemens

    .1-3

    .

    , ,

    .

    .

    (transmission electron micro-

    scope)

    Electron Diffraction and Nanostructural Analysis in Electron Microscope (Jae-Pyoung Ahn, Advanced Analysis Center, KIST, 39-1 Hawolgok-dong, Seong-buk-gu, Seoul 136-791, Korea) e-mail: [email protected] (Jong-Ku Park, Nano-Materials Research Center, KIST, 39-1 Hawolgok-dong,Seongbuk-gu, Seoul 136-791, Korea)

    1988 1992 1996 2000 2000

    () () () Berkeley National Lab. & UC Berkeley () KIST ,

    1982 1984 1990 1990

    () () () KIST ,

  • 494 Polymer Science and Technology Vol. 17, No. 4, August 2006

    (crystal structure) . EELS

    (electron energy loss spectrometer) TEM

    . EELS

    HRTEM .

    , .

    . KIST

    .

    .

    2. TEM

    TEM 1932 1990 60

    , , EDS

    . TEM 2 3 . ,

    (crystal orientation),

    (contrast)

    .

    (electron)

    .

    .

    .

    .

    TEM EDS(energy dispersive spec-

    trometer) EELS(electron energy loss spectrometer)

    2 . EDS

    X-ray . EELS 2000

    .

    TEM

    .

    3 1990 TEM 2000 TEM .

    3 STEM , (electromagnetic field or property)

    Lorentz TEM,

    3 tomograph, Cryo

    TEM, energy filtering

    .

    3. -

    3.1

    . 18

    1. Drawing and equation of Braggs law.

    2. Three important factors forming the image contrast in TEM.

    3. Applications of conventional and advanced TEM.

  • 17 4 2006 8 495

    .

    4 1 .

    (crystal system)7

    bravais lattice14

    point group32

    space group230

    (unit cell)

    . 32 (point

    group) . 32 7 ,

    7 (seven crystal systems) .

    (lattice point)

    . (crystal system) 2 3

    . 7

    ( 1). 1850 Bravais(, 1863-1863) 7 14 4 14

    Bravais lattice .

    Primitive 8,

    (equivalent) . lattice

    () , 7

    . 8 lattice equivalent

    lattice . ,

    . Bravais 7 14

    Bravais lattice .

    (SAD, CBED, Kikuchi )

    14 .

    point group

    2 noncentrosymetry 21, centro-symetry 11 32 point group .

    point group

    .

    point group .

    point group

    . Point

    group

    . (point)

    , , 3 symmetry operation

    . 3 (2) .

    1. 7 Crystal Systems

    Lattice Point Group System

    Schoenflies International Lattice Symmetry Bravais Lattice

    Triclinic E or i P 1 abc ,

    Monoclinic C2 or P,C 2/m abc,

    ==90(1st setting) ==90(2nd setting)

    Orthorhombic Two C2 or P,C,I,F mmm abc, ===90 Tetragonal C4 or S4 P,I 4/mmm a=bc, ===90

    Cubic Four 3-fold Axes(P,I,F) m3m a=b=c, ===90 Hexagonal C6 or S3 P 6/mmm a=bc, ==90 ; =120

    Trigonal(rhomboheral) C3 or S6 R 3m Same as hexagonal

    (a=b=c ; ==

  • 496 Polymer Science and Technology Vol. 17, No. 4, August 2006

    point , ,

    .

    14 Bravais lattice point group symmetry op-

    eration(glide screw)

    230 . (, group)

    (, space group)

    . In-

    ternational Tables for Crystallography A

    .

    230

    . space group ,

    230 space group .

    14 Bravais

    . Point group Bravais lattice

    lattice point lattice

    .

    .

    (glide)

    (screw) . Screw

    glide rotation

    .

    International Tables for Crystallography 4 230 space group 1 230

    operation

    2005 5 . space group

    2 . space

    group Strukturbericht, Sc-

    hoenflies, Unit Cell, Pearson symbol, Hermann-Mauguin

    . Hermann-Mauguin international

    symbol space group

    .

    3.2 - (X-ray )

    ? ,

    , 3 . 5 2 (secondary electron),

    (back scattered electron), Auger , X-ray,

    .

    .

    ( ) .5

    column obj, inter-

    mediate, projection ray diagram

    .

    2 ( ) .

    .

    X-ray sinusoidal

    . X-ray

    .

    .

    X-ray , X-ray

    .

    . X-ray

    Thomson equation coherent scattering

    . co-

    herent scattering .

    . Thomson equation( ))2

    2cos1 2

    2

    (

    k

    II op+

    = coherent

    scattering intensity

    scattering .

    3

    . ,

    ,

    .

    . wave ,

    ,

    (

    ) . .

    i) (hkl) (F)

    amplitude , 0 (hkl)

    .

    ii) wave ()

    ( )

    .

    4.

    TEM (Scat-

    5. Scattering between electron beam and atoms in specimen.

  • 17 4 2006 8 497

    tering) .

    . 6 ( )

    ray diagram .

    (objective lens)

    3 . , , ,

    . 6 .

    back focal plane plane

    . back focal plane

    6 .

    (spot) , .

    (objective lens)

    .

    (

    ) .

    .

    2

    .6,7

    SAD(selected area

    diffraction) , ring , nano micro SAD

    .

    CBED

    (convergent beam electron diffraction) .

    Kikuchi spot

    . Kikuchi

    .

    .

    4.1 TEM XRD TEM .

    X-ray(CuK, 1.54 ) TEM(200 keV, 0.025 )

    .

    3 . -Al2O3 X-ray TEM

    .

    , (d-spacing), X-ray , TEM

    ,

    . TEM X-ray

    . TEM

    . TEM

    .

    . 15 mm(600

    mm0.025 ), TEM SAD

    1.32 mm 3 R . R spot ring

    . 4 XRD TEM . TEM XRD

    .

    4.2 SAD TEM

    SAD . SAD TEM

    TEM

    .

    low index (ZA, zone axis)

    SAD . SAD ZA

    Kikuchi line .

    ZA

    ZA ( 7). 2 . TEM

    ,

    ZA .

    .

    6. Ray diagram of specimen, objective lens, back-focal plane,

    and image-forming plane in TEM column.

    3. An Example Showing the Difference of X-ray and Electron

    Diffraction from -Al2O3 powder

    plane d-spacing XRD(2theta) TEM(2theta) R(mm,600) 101 7.59 11.64 0.19 1.32 102 6.39 13.84 0.22 1.57 103 5.52 16.03 0.26 1.82 112 5.09 17.39 0.28 1.97 113 4.56 19.42 0.31 2.20 114 4.07 21.84 0.35 2.47 115 3.61 24.66 0.40 2.78 213 3.23 27.62 0.45 3.11 214 3.05 29.28 0.47 3.29 117 2.88 31.04 0.50 3.49 222 2.72 32.83 0.53 3.68 118 2.60 34.48 0.55 3.86 312 2.46 36.53 0.58 4.08

  • 498 Polymer Science and Technology Vol. 17, No. 4, August 2006

    TEM

    . .

    3 1o .

    .

    (optic axis) (),

    2 (). Brag

    .

    4. Comparison of XRD and TEM

    7. Relationship of ZA and crystal planes. Several crystal planes

    can have a ZA. 8. Geometric drawing on the diffraction of electron and crystal

    plane in TEM. The center spot is the transmitted electron beam and

    the off-axis spot the diffractted electron beam.

  • 17 4 2006 8 499

    Bragg 2dsin Tayler sin tan . Bragg 2d . , tan22Rhkl /L . 2 , TEM LRhkld . L , TEM (200 keV 0.02508

    ), L TEM SAD

    ( 200, 300, 600 mm .

    ), Rhkl ( CCD

    ) (

    10 mm ), d

    d-spacing(Al(111) d 2.338 ).

    200 keV 15 mm

    Al(111)

    R(111)6.436 mm.

    . ZA Indexing

    , Indexing

    .

    .

    .

    indexing

    .

    JCPDS

    , indexing

    .

    .

    .

    .

    .

    ZA .

    SAD

    .

    4.2 Ring ring SAD

    . SAD

    .

    SAD

    .

    11

    ? 9 . 11 ZA

    . 11 ZA

    . 11

    . 11 ZA

    . 8 1 SAD 2, 3, ....11

    . 11 SAD

    Ring . SAD

    Ring

    .

    Ring . Ring

    .

    Ring SAD

    . TEM

    (1 m ) Ring , (1 m ) SAD . Ring SAD

    .

    4.3 Kikuchi TEM

    .

    Kikuchi Kikuchi

    . Kikuchi

    SAD .

    4.3.1 TEM spot (SADP

    ring ) .

    spot Kikuchi

    Kikuchi .

    9. The formation process of ring pattern when the diffraction

    occurs from a grain(particle) to twelve grains(particles).

  • 500 Polymer Science and Technology Vol. 17, No. 4, August 2006

    .

    4.3.2

    (scattering) .

    .

    . SAD

    Kikuchi

    . ,

    Kikuchi . Kikuchi

    .

    .

    4.4 CBED CBED

    . CBED SAD

    Kikuchi CBED

    .

    CBED SAD

    . SAD

    , CBED

    . 10 (a)

    back focal plane

    SAD . (b) C2 ()

    back focal plane .

    nm

    .

    CBED

    back

    focal plane

    . CBED .

    CBED SAD

    cell volume , ,

    (large angle CBED), , space group ,

    .

    CBED cell voume

    .

    Ewald

    10 . (reciprocal lattice) (real lattice) 3

    . TEM

    .

    , unit cell .

    11(a) ZOLZ, FOLZ, SOLZ . 10(b) ring . 10(a) ring ZOLZ, ring FOLZ, ring

    SOLZ .

    12 Ewald sphere . Ewald

    Ewald .

    FOLZ SOLZ

    . CBED SAD

    (a) (b)

    10. SAD and CBED patterns.

    11. Laue zone in CBED pattern.

  • 17 4 2006 8 501

    FOLZ ring .

    ZOLZ

    FOLZ ring CBED .

    5. CBED

    CBED

    13 14 . CBED ZOLZ (SAD ), Kikuchi , HOLZ ring, HOLZ

    4 .

    1) ZOLZ ZOLZ SAD

    . SAD CBED

    spot . SAD

    CBED ZOLZ .

    .

    2) Kikuchi Kikuchi SAD

    ZA

    ZA

    .

    3) HOLZ ring Ewald

    . ZOLZ FOLZ

    Ewald HOLZ ring . HOLZ ring

    unit cell ,

    . HOLZ ring unit cell

    ( 15).

    K2 =(K-H)2+Rad2

    2 KHH2+Rad2 Rad2

    HRad2/2 (measured H) HP/[a(u2+v2+w2)1/2](theoretical H)

    4) HOLZ Kikuchi

    . Kikuchi ZOLZ

    HOLZ .

    . two

    beam

    .

    5) CBED

    unit cell volume

    / .

    ZA SAD unit cell

    . , unit cell

    . 16 2)1(21

    RRRR =rr

    12. The variation of Ewald sphere by parallel and convergent

    beams.

    13. A typical CBED pattern.

    14. ZOLZ disc, distance and angle between spots(discs) in

    CBED pattern.

  • 502 Polymer Science and Technology Vol. 17, No. 4, August 2006

    . CBED unit cell (

    , H) unit cell

    . unit cell

    .

    )](tan cos-[1)sin(VolumeCellUnit

    1-21

    32

    RAD/LANGRRL

    =

    TEM

    .

    CBED unit cell

    .

    , nm

    CBED unit cell

    .

    6. HRTEM

    .

    X-ray . X-ray

    ( )

    . TEM probe

    .

    .

    HRTEM

    . HRTEM

    (under focus beam)

    (dose)

    .

    6.1 HRTEM 8,9 HRTEM

    .

    .

    17 obj () obj back focal plane .

    .

    back focus plane

    back focal plane .

    plane .

    plane intermediate projection

    screen HRTEM

    (lattice) 300,000

    17. The formation process of HRTEM image in the ray diagram

    of TEM.

    15. TEM geometry for the calculation of unit cell from CBED

    pattern.

    16. Geometry of CBED whole pattern for the calculation of unit

    cell from CBED pattern.

  • 17 4 2006 8 503

    . HRTEM

    HRTEM

    . (cou-

    lomb potential difference) .

    17 HRTEM plane, ray diagram, amplitude, function, display

    . Plane ray diagram

    amplitude, wave function, display

    . real space

    reciprocal space .

    3

    . amplitude phase

    . amplitude ,

    HRTEM phase difference .

    HRTEM

    phase .

    (real space): real space

    (transmission function)

    . (structure factor)

    (electron wave)

    .

    (objective transmission function)

    .

    zyx,i-expy)q(x, = )(

    )z(ify)i(x,-1 tphaseobjec weak==

    back focal plane(reciprocal space):

    objective

    (wave) (trans-

    fer function, T(u,v)).

    amplitudendiffractio= v) T(u,y)Fq(x,v) q(u,

    nctiontransferfu= v)](u,exp[iv) T(u,

    (real space):

    plane, (image amplitude)

    convolution .

    v) FT(u,*y)q(x,v)FQ(u,y)(x, ==

    .

    .

    y)(x,v)] F[Q(u,v) Q(u,y)]F[q(x,y)q(x, ==

    F Fourier . , Fourier

    . (

    ) Fourier back focal plane

    .

    potential

    .

    .

    ( ) defocussing ( ).

    HRTEM (point resolution)

    TEM .

    (spherical aberration, Cs) HRTEM

    (Cs) defocussing(f ). phase shift

    .

    defocussing phase shift()

    ufd

    2=

    phase shift(obj )

    uC ss 2

    4=

    phase shift

    . phase shift .

    )C (u,f) (u,(u) s +=

    uC

    uf s

    2

    42 +

    =

    HRTEM CL1, CL2

    underfocus

    .

    (brightness)

    (constrast) .

    HRTEM obj

    .

    6.2 HRTEM HRTEM 3

    .

    HRTEM (d-spacing)

    18 ZnO cross section HRTEM . lattice

    d-spacing

    . HRTEM A, B d-spacing

    . A B (A d-spacing)=2.60 ,

    (B d-spacing)=2.81 . ZnO

    (002) (100).

    .

  • 504 Polymer Science and Technology Vol. 17, No. 4, August 2006

    HRTEM FFT indexing

    HRTEM FFT

    indexing . DM

    (Digital Micrograph, Gatan) HRTEM

    FFT HRTEM

    . forbidden

    HRTEM lattice

    . ZnO .

    3.54 1/nm 1.92 1/nm .

    d- spacing 0.28 nm,

    0.55208 nm. ZnO (100) (001)

    . (001) forbidden

    . FFT 1.92 2

    (spot) (002) . FFT

    SAD (indexing)

    . FFT

    indexing ZA [010]

    19 . HRTEM

    20 In2O3(ZnO)5 TEM .

    . HRTEM

    FFT inde-

    xing

    .

    20 In2O3(ZnO)5 HRTEM 21 . 6

    (superlattice structure) . 22

    1.3 nm/50.26 nm. ZnO

    (002) . ,

    0.1648 nm

    . ZnO

    , In2O3

    . In

    .

    ZnO

    .

    ZnO ZA=[110] defocussing

    23 HRTEM map . map

    ( )

    18. HRTEM micrograph of ZnO nanowire.

    2 nm

    A direction

    B direction

    20. TEM image with low magnification of In2O3(ZnO)5 nanowire.

    19. FFT(Fast Fourier Transformation) and its indexing result of

    ZnO HRTEM image at Figure 17.

    1.92(1/nm)

    3.54(1/nm)

    (002) (001)

    (100)

    (000)

    (-100)

    (00-1)

    (00-2)

    ZA=[0-10]

  • 17 4 2006 8 505

    . In2O3 ZA= [-1-12]

    defocussing

    24 HRTEM map . HRTEM map (

    ) .

    25 Zn, In, O

    .

    HRTEM EELS

    elemental mapping (

    26). (a) HRTEM (b) EELS elemental mapping (Zn) . Zn

    .

    7. KIST

    7.1 TEM , ,

    Schottkey , ( 40)

    S-TWIN

    .

    0.24 nm (

    27). CompuStage PC

    . EDX EELS

    . EL

    28 29 . EDS EELS

    line profile . EL

    HAADF EDS EELS

    21. HRTEM image of In2O3(ZnO)5 nanowire( 20).

    22. Line profile for the lattice plane of In2O3(ZnO)5 with super-

    lattice structure.

    23. HRTEM simulation of ZnO.

    24. HRTEM simulation of In2O3.

    25. Final structural analysis of In2O3(ZnO)5.

    26. TEM image and EELS elemental mapping(Zn) of In2O3(ZnO)5.

    In2O3

    [-1,1,0]

    [ZA=[-1,-1,2] [1,1,1]

  • 506 Polymer Science and Technology Vol. 17, No. 4, August 2006

    . 28 SEM TEM FIB

    .

    TEM Lorentz holo-

    graphy Bipolar

    . 30 31 (magnetic domain) TEM .

    Lorentz force .

    TEM ,

    , .

    32 single CNT TEM . TEM EELS

    energy filtering .

    contrast

    . EELS

    energy-filtered TEM(EFTEM)

    . 32 .

    , , .

    29. Elemental mapping using STEM function from OLED cross

    section sample. In the OLED sample, it is difficult to analyze nanos-

    tructures by other methods because it consists of organic compounds.

    28. TEM micrograph of multilayer thin film and line profiles using

    EDS(energy dispersive spectrometer) and EELS(electron energy loss

    spectroscopy) detectors from the red line(marker) on the TEM image.

    27. High Resolution TEM images and SAD(selected area dif-

    fraction) pattern of carbon nanotube. The (001) planes of graph-

    ite(d(001)=3.4 ) are clearly shown in the HRTEM.

    30. Holography images visualizing magnetic field. From this

    images, we can calculate the relative or absolute strength of mag-

    netic field.

    31. Fresnel image of 200 nm wide domain walls in NdFeB. On

    the a domain strip, we can see the set of white and black lines. It

    gives a useful information, which we can define the spin direction in

    domain.

    32. General TEM and EFTEM images of polymer-coated CNT

    single nanotube.

  • 17 4 2006 8 507

    TEM

    .

    .

    7.2 , (SEM)

    . Environ-

    mental scanning electron microscopy( ESEM)

    3 . ESEM

    PLA(pressure limited aperture)

    20 torr

    . GSED(gaseous secondary elec-

    tron detector) SE

    , (1500 )

    . 33 heating stage WC-Co granule ESEM

    SEM

    . wet, dirty, oil, out-gassing

    ,

    . ESEM

    .

    ESEM

    . ESEM SEM BSE

    , SE

    .

    34 GaN SEM CL . SEM

    morphology . GaN

    .

    CL

    34 .

    35 () (orientation)

    .

    (grain)

    . 35 5 5

    . SEM EBSD

    .

    .

    7.3 NanoSEM ,

    . (20

    33. Observation of WC-Co granules during in-situ heating.

    34. SE and cathode luminescence(CL) images of GaN/Al2O3.

    From CL image, point defects and voids are observed.

    35. (Upper left) the geometry of electron, sample and diffrac-

    tion in SEM chamber, (Upper right) electron back-scattered dif-

    fraction (EBSD) patterns from the electropolished Al metal surface,

    and (lower left and right) SEM image and the analysis of grain ori-

    entations EBSD patterns, respectively.

  • 508 Polymer Science and Technology Vol. 17, No. 4, August 2006

    nm) .

    .

    .

    ( 36). NanoSEM 0.20.5 kV

    ( 3 nm) .

    (STEM :

    scanning transmission electron microscopy)

    . /

    . ET

    (GSED : gaseous secondary electron de-

    tector) (TLD : through the lens detector)

    . TLD

    .

    .

    .

    7.4 Focused Ion Beam(FIB) (focused ion beam, FIB)

    (SEM) . FIB

    ( ) , 10 nm

    . SEM

    . SE

    . ,

    ,

    , (TEM) ,

    .

    37 FIB nm .

    38 manipu-

    lator 2

    .

    39 SEM . ()

    SEM FIB

    .

    .

    36. SEM images of catalyst observed as a function of operating

    acceleration voltage. The catalyst particles are not separated at the

    operating condition of 1.0 kV but are clearly distinguishable at the

    operating condition of 0.5 kV.

    37. First of all, the sample is polished before mounted in FIB

    chamber or some interesting regions have to be exposed on the top

    surface of sample. The polished sample goes to the FIB chamber

    38. The very small piece with 10 m lifted-out from Fig. 10moves and welded to the edge of TEM Cu crown grid. The TEM

    sample attached at Cu grid is ion-milled at the low voltage of 2 kV for

    reducing the surface damage by Ga ion.

    39. It is common to see the pretty pictures of pollen on

    NnaoSEM operating low voltage. We can acquire more scientific

    image by using FIB milling method. The pollen cross-sectioned by

    FIB reveals the internal structure.

  • 17 4 2006 8 509

    2006 8 CryoTEM(FEI Inc. Tecnai

    F20) . Cryo

    TEM

    .

    .

    8.

    , , ,

    , ,

    .

    .

    .

    1. J.-P. Ahn, Diffraction principle and Structural Analysis of TEM, KIST, Seoul (2006)

    2. D. W. Kum, K. H. Kim, and W. J. Lee, TEM Analysis, Chungmungak, Seoul (1996)

    3. D. B. Williams and C. B. Carter, Transmission electron microscopy: A textbook for materials science, Plenum Press, New York (1996).

    4. B. Shmueli, International Tables for Crystallography, Springer, Berlin (2001).

    5. B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison Wesley, Nortre Dame (2001).

    6. D. Shindo and T. Oikawa, Analytical electron microscopy for materials science, Springer, Berlin (2002).

    7. B. Fultz and J. Howe, Transmission Electron Microscopy and Diffractometry of Materials, Springer, Berlin (2001).

    8. P. Buseck, J. Cowley, and L. Eyring, High resolution electron microscopy and related techniques, Oxford Univ Press, Oxford (1989)

    9. S. Horiuchi, Fundamentals of HREM, North Holland, Amsterdam (1994).

    .

    1.

    Organic thin films, polymers, and small molecules(Structure

    analysis)

    D. L. Dorset: [email protected] or [email protected]

    I. G. Voigt-Martin: [email protected]

    C. Gilmore: http://www.chem.gla.ac.uk/staff/chris/index.htm

    U. Kolb: http://www.uni-mainz.de/~kolb/

    J. R. Fryer: http://www.chem.gla.ac.uk/~bob/fryer.html

    J. Spence group. http://www.public.asu.edu/~jspence/

    M. R. Libera, Stevens group: http://www.mat.stevens-tech.

    edu/faculty/l ibera.html

    2.

    Inorganic Materials, Non metals(structure analysis, CMR, High

    Tc, ceramics etc.)

    O. Terasaki, Framework structures. [email protected]

    Lawrence Berkeley Laboratory National Center for Electron

    Microscopy http://ncem.lbl.gov/frames/center.htm

    S. Hovmller: Electron crystallography: development of methods and software, quasicrystals and approximants. http://www.

    fos.su.se/~svenh/index.html

    L. D. Marks: Surfaces, etc. http://www.numis.nwu.edu/internet/

    Staff/faculty.html

    K. H. Kuo: Structures of quasicrystals and their crystalline

    approximants: http://www.blem.ac.cn/english/introdution/in-

    trodution.htm

    Shindo group. Magnetic materials, phase transformation, en-

    ergy-filteredED, holography http://www.iamp.tohoku.ac.jp/

    ~asma

    W. Sinkler: http://www.numis.nwu.edu/internet/Staff/wharton/

    X.D. Zou: [email protected]

    T.E. Weirich: [email protected]

    A. Avilov; electron diffraction analysis, electrostatic potentials.

    [email protected]

    3. , Alloy Phases

    J. Gjonnes: [email protected]

    Jing Zhu: [email protected]

    De Hosson' group: http://rugth30.phys.rug.nl/msc_matscen/

    4. , Biology. Cryomicroscopy.

    Glaeser group. Cell membrane proteins, automation of sin-

    gle-particle EM http://mcb.berkeley.edu/, http://www.lbl.gov/

    lifesciences/main/index.html, http://www.lbl.gov/LBL-Pro-

    grams/pbd/

    R. Henderson: http://www2.mrc-lmb.cam.ac.uk/research/SS/

    Henderson_R/Henderson_R.html

    B. K. Jap: [email protected]

    K. H. Downing: [email protected]

    W. Chiu: http://scbmb.bcm.tmc.edu/people/gcc_faculty_77

    W. Baumeister:http://www.biochem.mpg.de/baumeister/perso

    nal/baumeister.html

    T. S. Baker: http://www.bio.purdue.edu/Bioweb/People/Fac

    ulty/baker.html

    Z. H. Zhou: http://hub.med.uth.tmc.edu/~hong/

    N. Unwin: http://www2.mrc-lmb.cam.ac.uk/groups/nu/index.

    html

    Y. Fujiyoshi: [email protected]

    5. , STEM

  • 510 Polymer Science and Technology Vol. 17, No. 4, August 2006

    Prof J. Silcox [email protected]

    Dr. S. J. Pennycook:http://www.ornl.gov/bes/BES/amis/staff/

    pennycook.htm

    Dr. P. Batson [email protected]

    Prof. N. Browning. [email protected]

    Prof. Peter J Goodhew Freng: SuperSTEM(aberration cor-

    rected STEM project): www.superstem.dl.ac.uk and http://dbweb.

    liv.ac.uk/engdept/content/centres/microscopy/index.html. 6. , HRTEM

    EMAT-group Antwerp: interface structure, phase transitions,

    nanostructures, http://www.ruca.ua.ac.be/emat

    Cockayne Group: amorphous materials; nanostructures; aber-

    ration corrected EM; crystalline defects; HREM http://www-em.

    materials.ox.ac.uk/people/cockayne/index.html

    Z. Zhang : http://www.blem.ac.cn/english/introdution/introdu

    tion.htm

    D. Smith. ASU. Lawrence Berkeley Laboratory National Center

    for Electron Microscopy http://ncem.lbl.gov/frames/center.htm

    H. Takahashi: http://www.caret.hokudai.ac.jp/UFML/UFMLindex.

    html

    K. Urban Group: http://iffwww.iff.kfa-juelich.de/jcem/

    M. Ruhle Group:

    Howe Group(UVA): Interfaces, phase transformations, nano-

    particles, in-situ studies: http://faculty.virginia.edu/teamhowe/

    teamhowe.html

    Chris Boothroyd: http://www-hrem.msm.cam.ac.uk/~cbb/ http://

    www.imre.a-star.edu.sg/personal/getListing_action.asp?strID

    =chris-b

    K. Takayanagi, Tokyo Inst. Tech., [email protected]

    N. Yamamoto, Tokyo Inst. Tech., [email protected]

    Y. Tanishiro, Tokyo Inst. Tech., [email protected] H.

    Minoda, Tokyo Inst. Tech., [email protected] Y.

    Oshima, Tokyo Inst. Tech., [email protected]

    How to do HREM, and theory

    R. F. Egerton, Electron energy loss spectroscopy in the electron microscope, Plenum, New York, 2nd edition 1996.

    M. Tanaka, M. Terauchi, K. Tsuda, K. Saitoh, Convergent beam electron diffraction IV, JEOL Ltd., Tokyo. and earlier volumes. Superb collection of CBED patterns.

    J. Spence and J. M. Zuo, Electron microdiffraction, Plenum, New York, 1992.

    How to do quantitative CBED, Worked example of finding space- group from CBED patterns.

    Electron Diffraction Techniques, J. Cowley, editor, Vols 1 and 2, Oxford/IUCr Press, 1993.

    D. Shindo, K. Hiraga, High resolution electron microscopy for materials science, Springer, 1998. 7. , Books, special issues of journals, tables. More details, including ISBN numbers and out-of-print books

    can be found on at specialist booksellers on the web.

    , TEM , , 2006

    , , , , 1996

    P. E. Champness, Bios 2001 (Royal Micros Soc), Oxford, UK. D. Shindo and T. Oikawa, Analytical electron microscopy for materials

    science, Springer, 2002. Excellent, up to date, practical, (ELS, EDX, CBED, Alchemi, Sample prep, holography etc).

    High resolution electron microscopy and related techniques, P. Buseck, J. Cowley, and L. Eyring, Editors, Oxford Univ Press, 1989.

    Electron Backscattering Diffraction in Materials Science, A. J. Schwartz, M. Kumar, and B. L. Adams, Editors, Plenum, New York, 2000. D. J. Dingley, K. Z. Baba-Kishi, and V. Randle, Atlas of Backscat-

    tering Kikuchi Diffraction Patterns, IOP, Bristol, 1995. V. Randle and O. Engler, Introduction to Texture Analysis, Gordon and

    Breach, Amsterdam, 2000.

    U. F. Kocks, C. N. Tom and H.-R. Wenk, Texture and Anisotropy Cambridge, Cambridge, 1998.

    Z. L. Wang, Elastic and Inelastic Scattering in Electron Diffraction and Imaging, Plenum, New York, 1995. Introduction to Analytical Electron Microscopy, J. J. Hren, J. I. Goldstein

    and D. C. Joy, Editors, Plenum, New York, 1979.

    Principles of Analytical Electron Microscopy, D. C. Joy, A. D. Romig, and J. I. Goldstein, Editors, Pleum, New York, 1986.

    Convergent Beam Electron Diffraction of Alloy Phases, J. Mansfield, Edi-tors, Adam Hilger, Bristol, 1984.

    J. P. Morniroli, Large-angle convergent beam electron diffraction, Soci-ety of French Microscopists, Paris, 2002.

    J. M. Cowley, Diffraction Physics, 3rd Edition, North-Holland, 1990.

    E. J. Kirkland, Advanced computing in electron microscopy, Plenum. New York, 1998.

    B. Fultz and J. Howe, Transmission Electron Microscopy and Diffracto-metry of Materials, Springer, 2001. 8. Excellent coverage of theory and worked examples.

    S. Horiuchi, Fundamentals of HREM, North Holland, 1994. D. L. Dorset, Structural Electron Crystallography, Plenum Kluwer,

    Mainly organics, 1997.

    D. B. Williams and C. B. Carter, Transmission electron microscopy: A textbook for materials science, Plenum Press, Pedagogically sound introductory text, Indispensible, 1996.

    See http://www1.cems.umn.edu/research/carter/book.html

    J. C. H. Spence, High Resolution Electron Microscopy, 3rd Edition, Oxford Univ Press, 2003.