Ozadje in cilji projekta Project...

5
INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJ INNOVATIVE TECHNOLOGY FOR CYANOBACTERIAL BLOOM CONTROL LIFE 12 ENV/SI/000783 LIFE Stop CyanoBloom Kontakt / Contact: Arhel d.o.o. Pustovrhova 15 1210 Ljubljana - Šentvid, Slovenia EU E-mail: [email protected] www.arhel.si www.lifestopcyanobloom.arhel.si Projektni partnerji / Project partners Ozadje in cilji projekta Cianobakterije lahko izločajo nevarne cianotoksine in so vzrok neprijetnega vonja in okusa vode Cianobakterije so prisotne v skoraj vseh kopenskih in vodnih habitatih. V vodnem okolju so znane predvsem zaradi masovnega in dobro vidnega pojavljanja, ki ga imenujemo cianobakterijsko cvetenje. Vzrok za nastop cvetenja je največkrat evtrofnost voda, oziroma njihova preobremenjenost z organskimi snovmi in rastlinskimi hranili. Mnoge cianobakterije izločajo cianotoksine, ki so nevarni za ljudi in živali. Pojavljanje cianotoksinov lahko vodi v zaprtje voda za rekreacijske namene, težave pri zagotavljanju neoporečne pitne in namakalne vode, povzroča gospodarsko škodo v ribogojnicah, itd. Potrebujemo učinkovite preventivne in kurativne ukrepe zaščite vodnih teles za preprečevanje cvetenja cianobakterij Za zmanjšanje tovrstnih nevarnosti je v prvi vrsti nujno zagotoviti ukrepe za preprečevanje obremenjevanja voda. Ker preventivni ukrepi mnogokrat ne zadostujejo, so nujno potrebne rešitve za zgodnje odkrivanje pojavljanja nevarnosti in preprečevanje cvetenja ne glede na stanje vodnega telesa. Robotsko plovilo za zgodnje odkrivanje in preprečevanje razrasti cianobakterij S tem ciljem je bil podprt projekt LIFE Stop CyanoBloom, v okviru katerega je potekala prvič v Sloveniji demonstracija delovanja dveh robotskih plovil. Tehnološka inovacija združuje robotsko plovilo z merilno opremo za izvajanje on-line meritev različnih parametrov vode s poudarkom na zaznavanju in razločevanju alg in cianobakterij ter izviren koncept točkovnega nadzora cianobakterij z uporabo elektrolitske celice s solarnim napajanjem. S tem je zagotovljen sistem zgodnjega opozarjanja na možnost pojava škodljivega cvetenja cianobakterij s hkratnim preprečevanjem razrasti cianobakterij, pri čemer v vodno telo ne vnašamo nikakršnih kemikalij, ki bi dodatno prispevale k tvorbi jezerskega sedimenta. Project objectives Cyanobacteria can produce hazardous cyanotoxins and cause unpleasant odour and taste of water Cyanobacteria are present in almost all terrestrial and aquatic habitats. In the aquatic environment, they are known mainly due to the massive and clearly visible occurrence, called cyanobacterial blooms. The reason for the onset of blooms is usually eutrophication of water or its overload with organic matter and plant nutrients. Many cyanobacteria produce cyanotoxins that are dangerous for humans and animals. The occurrence of cyanotoxins may lead to the closure of recreational waters, cause problems with the provision of safe drinking and irrigation water, result in economic damage in aquaculture, etc. We need effective preventive and curative measures for protection of water bodies to prevent cyanobacterial blooms Prevention of the water pollution is the first preventive step in the protection against hazardous cyanobacterial blooms. As preventive measures are often not sufficient, the solutions for the early detection of the occurrence of hazards and prevention of blooms are necessary, regardless of the status of water bodies. Robotic vessel for the early detection and prevention of the growth of cyanobacteria With this objective, the project LIFE Stop CyanoBloom has been supported in which a demonstration of the operation of two robotic vessels has taken place for the first time in Slovenia. The technological innovation combines a robotic vessel with a measuring equipment for the implementation of online measurements of various water parameters with the emphasis on detection and differentiation of algae and cyanobacteria and an original concept of localised control of cyanobacteria using a solar powered electrolytic cell. These solutions provide an early warning system for the possibility of an outbreak of harmful cyanobacterial bloom with a simultaneous inhibition of their growth, in which no chemicals are added to the water, which might contribute to the formation of the lake sediment.

Transcript of Ozadje in cilji projekta Project...

Page 1: Ozadje in cilji projekta Project objectiveslifestopcyanobloom.arhel.si/wp-content/uploads/Stop-CyanoBloom-R… · INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJ INNOVATIVE

INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJINNOVATIVE TECHNOLOGY FOR CYANOBACTERIAL BLOOM CONTROL

LIFE 12 ENV/SI/000783 LIFE Stop CyanoBloom

Kontakt / Contact:Arhel d.o.o. Pustovrhova 15

1210 Ljubljana - Šentvid, Slovenia EUE-mail: [email protected]

www.arhel.siwww.lifestopcyanobloom.arhel.si

Projektni partnerji / Project partners

Ozadje in cilji projekta

Cianobakterije lahko izločajo nevarnecianotoksine in so vzrok neprijetnegavonja in okusa vodeCianobakterije so prisotne v skoraj vseh kopenskih in vodnihhabitatih. V vodnem okolju so znane predvsem zaradi masovnegain dobro vidnega pojavljanja, ki ga imenujemo cianobakterijskocvetenje. Vzrok za nastop cvetenja je največkrat evtrofnost voda,oziroma njihova preobremenjenost z organskimi snovmi inrastlinskimi hranili. Mnoge cianobakterije izločajo cianotoksine, kiso nevarni za ljudi in živali. Pojavljanje cianotoksinov lahko vodi vzaprtje voda za rekreacijske namene, težave pri zagotavljanjuneoporečne pitne in namakalne vode, povzroča gospodarskoškodo v ribogojnicah, itd.

Potrebujemo učinkovite preventivne inkurativne ukrepe zaščite vodnih teles zapreprečevanje cvetenja cianobakterijZa zmanjšanje tovrstnih nevarnosti je v prvi vrsti nujno zagotovitiukrepe za preprečevanje obremenjevanja voda. Ker preventivniukrepi mnogokrat ne zadostujejo, so nujno potrebne rešitve zazgodnje odkrivanje pojavljanja nevarnosti in preprečevanjecvetenja ne glede na stanje vodnega telesa.

Robotsko plovilo za zgodnje odkrivanjein preprečevanje razrasti cianobakterijS tem ciljem je bil podprt projekt LIFE Stop CyanoBloom, v okvirukaterega je potekala prvič v Sloveniji demonstracija delovanjadveh robotskih plovil. Tehnološka inovacija združuje robotskoplovilo z merilno opremo za izvajanje on-line meritev različnihparametrov vode s poudarkom na zaznavanju in razločevanju algin cianobakterij ter izviren koncept točkovnega nadzoracianobakterij z uporabo elektrolitske celice s solarnimnapajanjem. S tem je zagotovljen sistem zgodnjega opozarjanja namožnost pojava škodljivega cvetenja cianobakterij s hkratnimpreprečevanjem razrasti cianobakterij, pri čemer v vodno telo nevnašamo nikakršnih kemikalij, ki bi dodatno prispevale k tvorbijezerskega sedimenta.

Project objectives

Cyanobacteria can produce hazardouscyanotoxins and cause unpleasant odourand taste of waterCyanobacteria are present in almost all terrestrial and aquatichabitats. In the aquatic environment, they are known mainly dueto the massive and clearly visible occurrence, calledcyanobacterial blooms. The reason for the onset of blooms isusually eutrophication of water or its overload with organicmatter and plant nutrients. Many cyanobacteria producecyanotoxins that are dangerous for humans and animals. Theoccurrence of cyanotoxins may lead to the closure of recreationalwaters, cause problems with the provision of safe drinking andirrigation water, result in economic damage in aquaculture, etc.

We need effective preventive andcurative measures for protection ofwater bodies to prevent cyanobacterialbloomsPrevention of the water pollution is the first preventive step in theprotection against hazardous cyanobacterial blooms. Aspreventive measures are often not sufficient, the solutions for theearly detection of the occurrence of hazards and prevention ofblooms are necessary, regardless of the status of water bodies.

Robotic vessel for the early detectionand prevention of the growth ofcyanobacteriaWith this objective, the project LIFE Stop CyanoBloom has beensupported in which a demonstration of the operation of tworobotic vessels has taken place for the first time in Slovenia. Thetechnological innovation combines a robotic vessel with ameasuring equipment for the implementation of onlinemeasurements of various water parameters with the emphasis ondetection and differentiation of algae and cyanobacteria and anoriginal concept of localised control of cyanobacteria using a solarpowered electrolytic cell. These solutions provide an earlywarning system for the possibility of an outbreak of harmfulcyanobacterial bloom with a simultaneous inhibition of theirgrowth, in which no chemicals are added to the water, whichmight contribute to the formation of the lake sediment.

Page 2: Ozadje in cilji projekta Project objectiveslifestopcyanobloom.arhel.si/wp-content/uploads/Stop-CyanoBloom-R… · INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJ INNOVATIVE

INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJINNOVATIVE TECHNOLOGY FOR CYANOBACTERIAL BLOOM CONTROL

LIFE 12 ENV/SI/000783 LIFE Stop CyanoBloom

Kontakt / Contact:Arhel d.o.o. Pustovrhova 15

1210 Ljubljana - Šentvid, Slovenia EUE-mail: [email protected]

www.arhel.siwww.lifestopcyanobloom.arhel.si

Projektni partnerji / Project partners

The robotic vessel Stop CyanoBloom 1 and a docking house at Koseze PondWith the cooperation of architects, we have built a docking housefor the robotic vessel that blends into the natural environment ofthe pond. The establishment of the robotic vessel and the dockingstation in Koseze Pond has allowed the beginning testing andongoing optimisation of technical solutions on board. Within theproject, we have carried out regular measurements of water usingthe robotic vessel and examined the impact of the use ofelectrolytic cells on green algae, which are predominant speciesof Koseze Pond.

The activities carried out within the project

The robotic vessel Stop CyanoBloom 2and implementation of monitoring atLake BledThe start of the operation of the robotic vessel on Lake Bled hasenabled us to carry out activities in a deep water body withbathing areas, where there is a thermal stratification of water andrelated stratigraphic occurrence of cyanobacteria. The monitoringof the occurrence of cyanobacteria, as well as a control ofcyanobacterial growth, must, therefore, be tailored to theirlocalised occurrence in the deeper layers of the water column.

Testing the use of electrolytic cell for thedegradation cyanotoxins and preventionof further cyanobacterial proliferationWithin the project, several laboratory and field tests have beencarried out to test the effect of the electrochemical oxidation withthe use of electrolytic cell on the growth of algae, cyanobacteria,and the release and degradation of cyanotoxins. The aim of ouroperation is a target prevention of the further proliferation ofcyanobacteria, prevention of a sudden release of cyanotoxins anda degradation of their released forms, as small as possible impacton green algae and thereby maintaining the biological balance.

Robotsko plovilo Stop CyanoBloom 1 in pristan na Koseškem bajerjuS sodelovanjem arhitektov smo zgradili pristan za plovilo, ki selepo vklaplja v naravno okolje in širšo prostorsko ureditev bajerja.Vzpostavitev robotskega plovila s pristanom na Koseškem bajerjunam je omogočila začetna testiranje in sprotno optimizacijotehničnih rešitev na plovilu. V okviru projekta smo izvajali rednemeritve vode z uporabo robotskega plovila in preverjali vplivuporabe elektrolitske celice na zelene alge, ki prevladujejo vKoseškem bajerju.

Izvedene aktivnosti vokviru projekta

Koseze Pond is a shallow water body, rich in plant nutrients and therefore with the phytoplankton,which represents food to a large fish population. The aim of protective measures in such water body isto maintain the relevant constituents of the food chain, enabling the successful development of thefish population, such as planktonic algae, zooplankton and macrophytes. At the same time, it isnecessary to control the growth of potentially harmful organisms such as toxic cyanobacteria, at alevel, which maintains the biological balance of the water body.

Robotsko plovilo Stop CyanoBloom 2 inizvajanje monitoringa na Blejskem jezeruZagon delovanja robotskega plovila na Blejskem jezeru nam jeomogočil izvedbo aktivnosti v globokem vodnem telesu z območjikopalnih voda, kjer prihaja do temperaturne plastovitosti vode ins tem povezanega plastovitega pojavljanja cianobakterij.Nadzorne meritve spremljanja pojavljanja cianobakterij, kot tudikontrola njihove razrasti, morajo biti zato prilagojenelokaliziranemu nastopu pojavljanja cianobakterij v globjih plastehvodnega stolpca.

Testiranje uporabe elektrolitske celice za razgradnjo cianotoksinov in preprečevanje nadaljnjega razraščanja cianobakterijV okviru projekta smo izvedli veliko laboratorijskih in terenskihtestiranj vpliva delovanja elektrokemijske oksidacije z elektrolitskocelico na rast alg, cianobakterij ter sproščanje in razgradnjocianotoksinov. Cilj našega delovanja je tarčno zaviranje nadaljnegarazmnoževanja cianobakterij, preprečevanje nenadnegasproščanje cianotoksinov z razgradnjo njihovih sproščenih oblikter doseganje čim manjšega vpliva na zelene alge in s temohranjanje biološkega ravnovesja.

Koseški bajer je razmeroma plitko vodno telo, bogato z rastlinskimi hranili in zaradi tega tudi sfitoplanktonom, ki predstavlja hrano veliki ribji populaciji. Cilj varstvenih ukrepov v takemvodnem telesu je ohranjanje pomembnih členov prehranjevalne verige, ki omogočajouspešen razvoj ribje populacije, kot so planktonske alge, zooplankton in makrofiti. Obenem jepotrebno uravnavanje razrasti potencialno škodljivih organizmov, kot so cianobakterije, naravni, ki ohranja biološko ravnovesje vodnega telesa.

Page 3: Ozadje in cilji projekta Project objectiveslifestopcyanobloom.arhel.si/wp-content/uploads/Stop-CyanoBloom-R… · INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJ INNOVATIVE

INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJINNOVATIVE TECHNOLOGY FOR CYANOBACTERIAL BLOOM CONTROL

LIFE 12 ENV/SI/000783 LIFE Stop CyanoBloom

Kontakt / Contact:Arhel d.o.o. Pustovrhova 15

1210 Ljubljana - Šentvid, Slovenia EUE-mail: [email protected]

www.arhel.siwww.lifestopcyanobloom.arhel.si

Projektni partnerji / Project partners

Rezultati meritev

Skladnost on-line meritev fluorescenčnihsenzorje s standardnimi metodamivrednotenja fitoplanktonaStandardne metode za zaznavo in spremljanje številčnosticianobakterij in ostale fitoplanktonske populacije v vodnem telesuzahtevajo strokovno usposobljen kader in zamudno delo vlaboratoriju. Prav zato so analize drage, rezultati pa niso več odsevtrenutnega stanja v vodnem telesu. Uporaba senzorsketehnologije, ki je nameščena na robotsko plovilo, daje rezultate vrealnem času in tako deluje kot sistem zgodnjega opozarjanja nanevarnost pojava cvetenja.

Učinkovanje elektrokemijske oksidacije zuporabo elektrolitske celice vodi vzmanjšanje števila cianobakterijskih celicin koncentracije cianotoksinovElektrokemijska oksidacije se je izkazala kot učinkovita metoda za

nadzor številčnosti različnih vrst cianobakterij. V izvedenih

opazovanjih je številčnost celic postopno upadala že po

enkratnem pretoku vzorca vode skozi elektrolitsko celico. Dodatna

prednost metode se je izkazala v uspešni razgradnji toksinov, ki se

ob postopnem razpadu celic sproščajo v vodno telo.

Vpliv elektrokemijske oksidacije na številčnost celic Microcystis aeruginosa, ki je pogost

cianobakterijski predstavnik evtrofnih vodnih teles.

The effect of electrochemical oxidation on the cell concentration of Microcystis aeruginosa,

a common cyanobacterial representative of eutrophic water bodies.

Vpliv elektrokemijske oksidacije na Planktothrix rubescens, ki je toksično cianobakterija

značilna za globoka in hladnejša vodna telesa. Številčnost cianobakterije P. rubescens zaradi

elektrokemijske oksidacije upade bolj kot z naravnim staranjem kulture. Na Blejskem jezeru

jo opazimo v obliki rdečih obarvanj na površini vode v zimskem času.

The effect of electrochemical oxidation on Planktothrix rubescens, which is a toxic

cyanobacterium characterised by deep and colder water bodies. The cell concentration of P.

rubescens decreased due to electrochemical oxidation more than in the natural ageing

culture. In Lake Bled the cyanobacteria are found in the form of red colouring on the water

surface during the winter period.

Measurement results

Compliance of online measurements offluorescence sensors with standardmethods of phytoplanktondeterminationStandard methods for the detection and monitoring of theabundance of cyanobacteria and other phytoplankton populationin the water body require professionally qualified staff and time-consuming laboratory work. That is why the analysis is expensiveand delayed results are not a reflection of the current state of thewater body. The use of sensor technology, placed on a roboticvessel gives real-time results and acts as an early warning systemto the risk of occurrence of blooming.

The electrochemical oxidation with theelectrolytic cell results in the reducednumber of cyanobacterial cells andconcentration of cyanotoxinsElectrochemical oxidation has proven to be an effective methodfor the control of the abundance of different species ofcyanobacteria. In the performed observations, the number ofcells gradually decreased after a single treatment of the watersample in the electrolytic cell. An additional advantage of themethod has shown in a successful degradation of toxins, whichare released during the gradual disintegration of thecyanobacterial cells.

Spremljanje koncentracijam sproščenih cianotoksinov v vodo po izvedbi elektrokemijske

oksidacije. Z elektrokemijsko oksidacijo smo uspeli zmanjšati koncentracijo zunajceličnih

mikrocistinov cianobakterije P. rubescens že takoj po tretiranju. V nadaljevanju koncentracija

sproščenih toksinov v vodo ni presegla koncentracije toksinov v kontrolnem vzorcu, ki ni bil

izpostavljen elektrokemijski obdelavi.

Monitoring of the concentrations of cyanotoxins released into the water after the

electrochemical oxidation. We managed to reduce the concentration of extracellular

microcystins produced by cyanobacteria P. rubescens immediately after electrochemical

oxidation. In the following hours the concentration of the released toxins into the water did

not exceed the concentration of toxins in the control sample, which was not subjected to

the electrochemical treatment.

Rezultati meritev s senzorji fluorescence so pokazali ujemanja s standardnimi metodamivrednotenja fitoplanktona, kot je določanje biovolumna. S predhodnim umerjanjem lahkosignal senzorja pretvorimo v biološke enote.The results of measurements of fluorescence sensors showed high correlation with thestandard methods of phytoplankton evaluation, such as the biovolume determination. Witha prior calibration, the sensor signals can be converted into biological units.

Page 4: Ozadje in cilji projekta Project objectiveslifestopcyanobloom.arhel.si/wp-content/uploads/Stop-CyanoBloom-R… · INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJ INNOVATIVE

INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJINNOVATIVE TECHNOLOGY FOR CYANOBACTERIAL BLOOM CONTROL

LIFE 12 ENV/SI/000783 LIFE Stop CyanoBloom

Kontakt / Contact:Arhel d.o.o. Pustovrhova 15

1210 Ljubljana - Šentvid, Slovenia EUE-mail: [email protected]

www.arhel.siwww.lifestopcyanobloom.arhel.si

Projektni partnerji / Project partners

Operation of the robotvessel

The robotic vessel for detection and control of cyanobacteria is

powered by solar energy. The vessel can automatically follow the

points on the water specified by the user by a computer program.

Three-dimensional localisation, concentration, as well as

information about the physiological status of cyanobacteria is

obtained by measuring the fluorescence of cyanobacterial

pigments. For this purpose, the chlorophyll and phycocyanin

fluorescence sensors are used.

With the electrolytic cell producing short-lived hydroxyl radicals

directly from the water, prevention of further cyanobacteria

proliferation is achieved. With the selected intensity and duration

of the electrolysis, a degradation of cyanotoxins is achieved,

cellular decomposition of cyanobacterial cells or only an

inhibition of their further proliferation.

A specially developed mechanical system allows the collection of

water samples from variable depths for accurate laboratory

processing.

The vessel reports real-time data to the user via GSM

communication. The user, therefore, obtains an accurate picture

of the current state of the water body, which can also be followed

via a web application. In addition to fluorescence sensors, the

vessel reports the information on water temperature, electrical

conductivity, pH, dissolved oxygen concentration, the position in

the water body, the strength of the wind and the photographic

image. User-friendly software allows processing of measured

data and their graphical display. The vessel is equipped with an

advanced system for automatic docking and charging of the spare

battery during inactivity.

The Early information allows us a target control of cyanobacteria in the water body resulting in no need to act on the entire body of water.

Getting real-time information about the

spatial and temporal occurrence of

cyanobacteria is a key to a successful

prevention of their excessive

proliferations.

Delovanja robotskegaplovila

Robotsko plovilo za zaznavanje in nadzor cianobakterij napaja

sončna energija. Plovilo lahko samodejno pluje po točkah, ki jih

določi uporabnik z računalniškim programom.

Trodimenzionalno lokalizacijo, koncentracijo, kot tudi informacijo

o fiziološkem stanju cianobakterij dobimo z merjenjem

fluorescence cianobakterijskih pigmentov. V ta namen

uporabljamo klorofilni in fikocianinski senzor fluorescence.

Z uporabo elektrolitske celice, ki tvori kratko obstojne hidroksilne

radikale neposredno iz vode, uravnavamo razraščanje

cianobakterij. Z izbrano jakostjo in dolžino trajanja elektrolize

razgrajujemo cianotoksine, povzročamo celični razpad

cianobakterij ali zgolj zaviramo njihovo nadaljnjo razmnoževanje.

Posebej razvit mehanski sistem omogoča odvzem vzorcev vode iz

spremenljive globine za natančnejšo laboratorijsko obdelavo.

Plovilo prek GSM komunikacije javlja pridobljene podatke v

realnem času, zato ima uporabnik vedno natančno sliko o

trenutnem stanju vodnega telesa, ki jo lahko spremlja preko

spletne aplikacije. Poleg senzorjev fluorescence plovilo javlja

informacijo o temperaturi vode, elektro prevodnosti, pH,

koncentraciji raztopljenega kisika, položaju na vodnem telesu,

jakost vetra in fotografsko sliko. Uporabniku prijazna programska

oprema omogoča obdelavo merjenih podatkov in grafični prikaz.

Plovilo je opremljeno z naprednim sistemom za avtomatsko

pristajanje in polnjenjem rezervnih akumulatorjev v času

mirovanja.

Zgodnje informacije nam omogočajo

tarčno kontrolo cianobakterij v vodnem

telesu. Učinkovanje na celotnem vodnem

telesu zato ni potrebno.

Pridobivanje informacij o prostorskem in

časovnem pojavljanju cianobakterij v

realnem času je ključno za uspešno

preprečevanje njihovega prekomernega

razraščanja.

Page 5: Ozadje in cilji projekta Project objectiveslifestopcyanobloom.arhel.si/wp-content/uploads/Stop-CyanoBloom-R… · INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJ INNOVATIVE

INOVATIVNA TEHNOLOGIJA KONTROLE CVETENJA CIANOBAKTERIJINNOVATIVE TECHNOLOGY FOR CYANOBACTERIAL BLOOM CONTROL

LIFE 12 ENV/SI/000783 LIFE Stop CyanoBloom

Kontakt / Contact:Arhel d.o.o. Pustovrhova 15

1210 Ljubljana - Šentvid, Slovenia EUE-mail: [email protected]

www.arhel.siwww.lifestopcyanobloom.arhel.si

Projektni partnerji / Project partners

LIFE project enabled development of several innovativetechnological solutions for the operation of the robotic vessel

COMBINED SMART WATER MEASUREMENTS,TREATMENT AND STORAGEA specially developed hardware within the project allows the robotic vessel theabstraction of water from different depths for measurements of water parameters, thedecision on turning on the electrolytic cell, or to abstract water samples for furtherlaboratory analysis. All the systems on board are interconnected and communicate viaan RS485 network.

WATER QUALITY FLOW-THROUGH MEASURINGCHAMBERNewly designed water measuring chamber allows online measuring of water qualityparameters on board. It enables simultaneous reading from five sensors (e.g.phycocyanin, chlorophyll, temperature, oxygen, conductivity, pH). Submersiblefluorescence sensors with the automatic cleansing system are used for cyanobacteriaand algae quantification. A magnetic stirrer is incorporated into the bottom of thechamber to prevent settling of the phytoplankton. Signals are transferred to a printedcircuit inside of an electronics enclosure, where they are converted to a digital form andtransferred to a PC for further data analysis.

ELECTROLYTIC CELL FOR PREVENTION OFCYANOBACTERIA PROLIFERATION AND DEGRADATIONOF CYANOTOXINSA single-compartment electrolytic cell equipped with boron-doped diamond (BDD)electrodes is used for electrochemical stimulation of detected cyanobacterial directly inwater. Water is pumped through the cell equipped inside with small flow deflectors toachieve laminar flow. Within the cell, short-lived hydroxyl radicals (•OH) are produceddirectly from water with the use of electric power. The BDD electrodes are advancedinert electrodes with the highest potential of •OH production achieving inhibition anddegradation of cyanotoxins, suppression of further cyanobacterial proliferation or theirlysis, depending on the electrolysis length and current density applied.

AUTOMATIC WATER SAMPLER WITH A WINCHThe sampler enables abstraction of six 1-litre water samples using a winch with a hose.The command for the sample abstraction is transmitted via RS485 network (in thevessel), via PC through USB connection, or by pressing the button on the control console(when used as an autonomous device). Innovative smart valves allow abstraction ofsamples without contamination with the water already taken. Sampler`s electronicsallows automatic collection of samples at the programmed time and depth, detection ofpossible failures (leaking containers, pump failure, clogged pipe) and avoidance of spillswith automatic shut-off.

WATER FLOW REGULATION WITH SMART VALVESThe water flow system in the vessel and the automatic sampler are equipped with smartvalves. Valve`s drive motor and integrated electronics allow for automatic control andintegration of the valves into a larger system with the synchronised operation. Flowregulation is carried out with a stepwise compression of the hose, which is inserted intothe valve. The design of the valve allows for easy replacement of the hose (e.g. to preventcontamination of the sample), the use of hoses of different diameters, and mechanicalproperties. The valve controls the flow directly by measuring the motor powerconsumption. This function provides reliable operation of the valve with no need foradditional sensors or switches.

INFORMATION SYSTEM FORTRANSFER AND PRESENTATIONOF MEASURED DATAThe integrated information system allows three-dimensional inventory of the status of a water body.With all its sensors, the vessel reports to the operatorits GPS location, depth, the presence of algae andcyanobacteria, water temperature, electricalconductivity, dissolved oxygen and pH. The vesselreports real-time data via GSM communication to theuser, providing an accurate picture of the current stateof the water body, which can be displayed by a webbrowser. GSM module sends the data also to the TCP /IP server, which can be located at a remote location ofthe operator, where the data are stored in MySQLdatabase. The user-friendly data processing softwareenables analysis and graphical representation of thestored data adapted to the geographical picture of thewater body.

AUTOMATIC DOCKINGThe vessel is navigated manually, or a route plan is set by a PC. After a completed mission,the vessel returns to its home position (1) and the automatic docking starts. With the useof a compass (2) and a robot vision (3), the vessel determines its precise position relativeto the docking station. When the position is known, robot vision (4) and measured valuesof obstacle detection sensors (5) are used as input variables of a fuzzy logic controller,which adjusts the vessel's heading and speed accordingly to enter the dock safely (6).