Overview of the Office of Clean Coal Providers Conference · Overview of the Office of Clean Coal &...

31
Joseph Giove III Director of Coal Business Operations Office of Fossil Energy Overview of the Office of Clean Coal & Carbon Management Rural Energy Providers Conference April 23, 2016

Transcript of Overview of the Office of Clean Coal Providers Conference · Overview of the Office of Clean Coal &...

Joseph Giove IIIDirector of Coal Business OperationsOffice of Fossil Energy

Overview of the Office of Clean Coal & Carbon Management

Rural Energy Providers Conference

April 23, 2016

2

The Environment is Changing for the Power Sector

‐200

‐100

0

100

200

300

400

Reference ANCR

2040

 Cap

acity

 Cha

nge  (G

W) Renew

Nuclear

C Turbine

NGCC

Oil NGSteamCoal

175

225

275

325

375

2010 2020 2030 2040

Coal Cap

acity

 (GW) AEO 2009 Reference

AEO 2009 (Est)

AEO 2014 Reference

AEO 2014 ACNR

Major changes affecting coal power:• Abundant natural gas• Regulatory environment

• Natural gas power generation predominately compensates for retired coal capacity and electricity demand growth in AEO forecasts

• This growth in natural gas power generation results in an additional 5‐6 Tcf use over reference case projections

3

The Environment is Changing for the Power Sector

• Nearly 18 gigawatts (GW) of U.S. electric generating capacity was retired in 2015.• More than 80% of the retired capacity was conventional steam coal. • The coal‐fired generating units retired in 2015 tended to be older and smaller in 

capacity than the coal generation fleet that continues to operate.

Source: U.S. Energy Information Administration, Preliminary Monthly Electric Generator Inventory

President’s Climate Action Plan: Three overarching themes

4

Mitigation (emissions reduction)• ALL OF THE ABOVE• Efficiency, Renewables, Nuclear, Gas• Coal with CCS/CCUS

Adaptation and resilience• Smart, reliable grid• Key infrastructure investments

International Partnerships• China and OECD• Coordinated international efforts

Nuclear 8% Power generation efficiency 3%Renewables 21%End-use fuel switching 12%CCS 14%End-use fuel & elec. efficiency 42%

“All of the above” required

CCS technology remains critically importantabundant, low-cost fossil energy is why

66

Office of Fossil Energy

6

Office of Clean Coal and Carbon Management

Office of Oil and Natural Gas

Strategic Petroleum Reserves

National Energy Technology Laboratory

7

Advanced Combustion

CO2 StorageAdvanced CO2 Capture and Compression

Solvents Sorbents Membranes Hybrid Process

Intensification Cryogenic Capture

Pressurized O2 membrane Chemical

looping USC Materials

Carbon Utilization (EOR)

Infrastructure (RCSPs) Geological Storage Monitoring, Verification

and Accounting

Gasification Turbines

Supercritical CO2 Direct Power Extraction

Integrated Fossil Energy Solutions

Efficiencies > 45% Capital Cost by 50%

$40/tonne CO2 CapturedNear-zero GHG emissionsNear-zero criteria pollutants

Near-zero water usage

Advanced Energy Systems

5 MWE Oxycombustion Pilot Advanced Turbines

8

Pathway for Technology CommercializationTRL 2 Successes 

from FWP, SBIR/STTR, ARPA‐E

Transfer to Office of Major Demonstrations

“Valley of Death” for Technologies

We need more 2nd generation pilots!

HECACommercial Demo of Advanced

IGCC w/ Full Carbon Capture~$5B – Total; $408M – DOE

EOR – ~2.6 MM TPY; mid-2020 start

Major CCS Demonstration Projects Project Locations & Cost Share

CCPIICCS Area 1

Southern CompanyKemper County IGCC Project

Transport Gasifier w/ Carbon Capture~$6.4 B – Total; $270M – DOE

EOR – ~3.0 MM TPY; 3Q-2016 start

Petra NovaW.A. Parish Generating StationPost Combustion CO2 Capture

$1B – Total; $167M – DOEEOR – ~1.4 MM TPY; early 2017 start

Summit TX Clean EnergyCommercial Demo of Adv. IGCC w/

Full Carbon Capture; EOR in Permian Basin

~$3.5B – Total; $450M – DOEEOR – ~1.84 MMTPY; late 2018 start

Air Products and Chemicals, Inc.CO2 Capture from Steam Methane Reformers

EOR in Eastern TX Oilfields$431M – Total; $284M – DOE

EOR – ~0.93 MM TPY; started December 2012; Over 2.5 MMT stored as of December 2015

Archer Daniels MidlandCO2 Capture from Ethanol PlantCO2 Stored in Saline Reservoir$208M – Total; $141M – DOE

SALINE– ~0.9 MM TPY; 1Q-2017 start

1010

1111

Gasification Area

Liberty Mine

Treated Effluent Reservoir

Lignite StorageDome

Water Treatment Area

Gas CleanupArea

Ash Management Area

Combined Cycle Area

Southern ‐ Kemper County Advanced IGCC with CO2 Capture 

Status Plant construction >99% complete Peak construction labor: 6,121 Lignite mine in commercial operation:

June 2013 Combined cycle commercial operation

on natural gas: Aug. 2014 Gasifier “First Fire” of natural gas

startup pilot burners: Mar 2015

Key Dates Project Awarded: Jan. 30, 2006 Project moved to MS: Dec. 5, 2008 NEPA Record of Decision: Aug. 19, 2010 Initiate excavation work: Sept. 27, 2010 Operations: Q3-2016

• Kemper County, MS• 582 MWe (net) with duct firing; 2 TRIGTM

gasifiers, 2 Siemens combustion turbines, 1 Toshiba steam turbine

• Fuel: Mississippi lignite• 67+% CO2 capture (Selexol® process);

3,000,000 tons CO2/year • EOR: Denbury Onshore LLC, Treetop

Midstream Services LLC • Total DOE CCPI Project: $2.01 B; DOE Share:

$407 MM• Total estimated project cost: ~$ 6.7B

14

W.A. Parrish, TX: 1.4M tons/yr CO2NRG/PetraNova project

Broke Ground 9/5/14! Operational in 2016

Petra Nova – NRG W.A. ParishAdvanced Post Combustion CO2 Capture 

Key Dates Project Awarded: May 2010 Air Permit: December 2012 NEPA Record of Decision: May 2013 Financial Close: July 2014 Construction: March 2014 Operation: January 2017

Status (as of 3/25/16) Foundations completed for quencher,

absorber, regenerator, compressor & HRSG. Cooling tower complete

Construction in progress on quencher, absorber, HRSG & pipeline

Regenerator being shop fabricated & compressor being manufactured

Construction: 67% complete

• Thompsons, TX (near Houston)• 240 MWe slipstream at NRG Energy’s W.A. Parish power plant (originally 60 MWe)

• Fuel: PRB sub‐bituminous coal• 90% CO2 capture (KM CDR Process®) 1,400,000 tonnes CO2/year 

• EOR: Hilcorp West Ranch oil field • Total Project Cost: ~$1 billion                                   DOE Share: $190 million

16

ADM ‐ Project Photos

Four Compressor Train Compressor & Auxiliaries

Dehydration System 24‐inch CO2 Transmission Line

17

Drilling the Monitoring Well

Hans Electrical Substation

National Sequestration Education Center

ADM ‐ Project Photos

18

ADM ‐ Project Monitoring Photos

Soil Gas and CO2 FluxNetworks

Shallow Groundwater Sampling

Archer Daniels MidlandCO2 Capture from Biofuel Plant

• Decatur, IL• CO2 (>99% purity) is a by‐product from production of fuel‐grade ethanol via anaerobic fermentation

• Up to 90% CO2 capture, dehydration (via tri‐ethylene glycol) & compression

• ~900,000 tonnes CO2 /year• Sequestration in Mt. Simon Sandstone saline fm.• Total Project: $208 MM; DOE Share: $141 MM (68%)

Status Construction >97% complete Dec. 2015 Two monitoring wells drilled: Nov. 2012 New Hans substation energized: Nov. 2014 Commissioning compression and

dehydration system completed: Sept. 2015 Injection well drilled and completed: Sept.

2015

Key Dates Phase 2 Awarded: June 15, 2010 FEED Completed: April 2011 Construction started: May 2011 UIC Class VI Injection Well Permit:

Sept. 2014; UIC Class VI Operating Permit: Early 2016

Sequestration start at full rate: 1Q-2017

20

Port Arthur, TX: : 1.1 M  tons/yr CO2Air Products, 2013

VSA VesselsVSA Vessels

Co-Gen Unit

Blowers

CO2Compressor &

TEG UnitCO2 Surge

Tanks

Existing SMR

Operational! 2.7M metric tons stored so far

Air Products & ChemicalsSteam Methane Reforming with CO2 Capture

Key Dates Phase 2 Awarded: June 15, 2010 FEED completed: Nov. 2010 Permit By Rule (PBR) and Standard

Air Permits issued: May 2011 NEPA FONSI: July 2011 Construction started: Aug. 2011 Operation started: Dec. 2012

Status PA-1 initiated operation: March 3, 2013 PA-2 initiated operation: Dec. 16, 2012 Full capacity achieved: April 2013 Has operated at >100% of design when necessary 1 MM tonnes CO2 delivered as of 4/24/14 Over 2.7 MM tonnes CO2 delivered as of

3/15/16

• Port Arthur, TX (Hydrogen plant at Valero Refinery)• 90%+ CO2 capture (Vacuum Swing Adsorption) from 2 steam‐methane reformers (SMRs) yielding              ≈925,000 tonnes CO2/year 

• ≈30 MWe cogeneration unit to supply makeup steam to SMRs and operate VSA and compression equipment

• CO2 to Denbury “Green” pipeline for EOR in Texas at West Hastings oil field

• Total Project: $431 MM; DOE Share: $284 MM (66%)

22

Large Scale Integrated Projects Worldwide

0

20

40

60

80

100

120

140

0

10

20

30

40

50

60

1972

1982

1986

1996

2000

2004

2008

2010

2013

2014

2015

2016

2017

2018

2019

2020

2022

Operate Execute Define Evaluate Cum. Volume

Num

ber o

f Pro

ject

sVolum

e CO

2 (mtpa)

Data from Global CCS Institute

23

White RosePeterhead(UK)

Uthmaniyah (KSA)

Lula (BRA)

Quest (CAN)

ESI (UAE) Gorgon (AUS)

GreenGen (PRC)Shenli

Yanchang

Global challenge            global progress

Boundary Dam (CAN)

We need more projects and more information

new global solutions still required

National Energy Technology Laboratory

Gasification Systems and Coal & Coal Biomass to Liquids Programs

Radically Engineered Modular Systems (REMS) Initiative

Portfolio Manager:  Jenny Tennant

25National Energy Technology Laboratory

Questions

Why do reactors have to be made up of cylinders and spheres?Why do we react coal as if it’s a homogenous fuel, when it’s not?Why must we remove excess carbon from coal when it’s mixed up with other gases, and then pump it underground?What if multiphase models could become powerful enough to help us manipulate coal to unprecedented levels?Is bigger always better?

Radically Engineered Modular Systems (REMS) is a new coal conversion

initiative aiming at revolutionizing coal conversion

26National Energy Technology Laboratory

REMS Foundation

The four cornerstones of this REMS are:  multiphase modeling, novel reactor design, plant‐wide process intensification and additive manufacturing R&D, all of which must be developed and deployed in tight integration

• Reduce capital costs and enable complex reactors via advanced manufacturing

• Focus on plant‐wide cost reduction opportunities through intensification and advanced manufacturing

• Increase availability through multiple modular trains in larger plants 

• Smaller modular plants will reduce the cost of functional prototypes and of using biomass (leading to GHG emission reduction without geological storage)

27National Energy Technology Laboratory

REMS R&D – Approach

• Target specific modular systems for particular locations to create locally needed products/services– Keep the work focused on reality and costs reasonable– Assure system use after testing is complete (free long term data)– Positive PR

• First Steps:  select potential REMS plant locations, and go to those locations to talk to be people who live there:– Find out what they really need and want & level of interest– Discover unknown constraints and opportunities– And that is why I am here in Alaska this week

• Current plan is for two different REMS plants to be field tested by 2025

28National Energy Technology Laboratory

Current Top Three REMS Locations‐‐ and what we think they need out of REMS

• Rural Alaska to convert subbituminous coal & biomass into lower cost power– Local Need (?):  Reduction in the COE for rural Alaskans (varies by village location)– DOE Need:  Greenhouse gas (GHG) emissions reduction compared to diesel generation (current means of power production)

– Robust & easy to use, even in 40 below weather

• Appalachia to convert bituminous coal & MSW into fertilizer, chemicals and power– Local Needs:  local jobs and/or coal sales and MSW destruction; cost of products, including MSW revenue, must be competitive

– DOE Need:  GHG emissions reduction compared to conventional production

• Military conversion systems that are very feed flexible, to create power and fuel– Military Needs:  (1) meet the lifecycle GHG requirements of EISA 2007 §526 and (2) Supply critical fuel and power to camps without lengthy supply lines (?)

– Robust & easy to use; feed to include MSW from camp

29National Energy Technology Laboratory

Questions for Alaska

• What is of more interest – creating diesel to run diesel generation sets, or creating heat and power?

• What is it that remote villages most want to change about their current situation:  – Cost of liquid fuels and/or electricity? – Destruction of municipal solid waste? – Creation of jobs?  (Making products for sale)– Creation of other products the community needs?  What are those?

• How close to the villages must a coal‐biomass conversion plant be to reduce transportation costs by enough to matter? 

• How is diesel kept liquid all winter?• How often is power lost during the winter, and how do villages 

cope?• Who is responsible in a village to run the electricity/heat  

production system?  

Plus all the answers to questions I didn’t think to ask

30National Energy Technology Laboratory

Communication Tools

A virtual bulletin board has been set up for the exchange of information on REMS‐type effortshttps://edx.netl.doe.gov/FossilREMS/

A free communication tool so you can tell us what REMS ideas you have, and a source of information on what REMS is

For Additional Information

Office of Fossil Energywww.energy.gov/fe

NETLwww.netl.doe.gov

facebook.com/FossilEnergytwitter.com/fossilenergygov