Origin of the X-Ray Flashes

12
京京京 D3 京京 京 京京京京京 : 京京 京京 ( 京京 ) 京京 京京 ( 京京 ) Ref. Yamazaki et al., astro-ph/0401044

description

Origin of the X-Ray Flashes. 京大天体核  D3 山崎 了. 共同研究者 : 井岡 邦仁 ( 阪大 ) 、中村 卓史 ( 京大 ). Ref. Yamazaki et al., astro-ph/0401044. X-ray band. γ - ray band. Light Curves of XRFs & GRBs. X-ray flash (XRF). γ-ray burst (GRB). GRB. XRF. Ep=19 keV. Ep=126 keV. - PowerPoint PPT Presentation

Transcript of Origin of the X-Ray Flashes

Page 1: Origin of the X-Ray Flashes

京大天体核  D3 山崎 了

共同研究者 : 井岡 邦仁 ( 阪大 ) 、中村 卓史( 京大 )

Ref. Yamazaki et al., astro-ph/0401044

Page 2: Origin of the X-Ray Flashes

Light Curves of XRFs & GRBs

X-ray band

γ- ray band

X-ray flash (XRF) γ-ray burst (GRB)

Page 3: Origin of the X-Ray Flashes

Spectral properties of XRFs and GRBs

Double power-low form fits spectra of XRFs and GRBs.

Photon indices α, β ( スペクトルの傾き ) は GRB と XRF で同じ。XRF の Ep (peak energy) は GRB のものよりも小さい。

Ep=126 keVEp=19 keV

XRF GRB

Page 4: Origin of the X-Ray Flashes

Rest frame Ep - Eiso relation

XRF

GRB

X-ray rich GRB

XRF(X-ray rich GRB) と GRB の ・ スペクトル以外の性質 (duration, event rate 等 )  は同じ。 ・ 観測量の分布は連続的。 ⇒ 両者の起源は同一であると考えられている。

(1+z) Ep ∝ Eiso1/2

(for GRBs and XRFs with known redshifts)

Page 5: Origin of the X-Ray Flashes

Theoretical Models of the X-ray flash

1. High redshift GRBs (Heise et al. 2001)

2. External shocks with small Lorentz factors (Dermer et al. 1999; Rossi et al. 2001)

3. Internal shocks with high Lorentz factors (Mochkovitch et al. 2003)

4. Photosphere-dominated fireball (Meszaros et al. 2002; Drenkahn 2002)

5. Jets with wide opening angles (Lamb et al. 2003)

6. Off-Axis GRBs (Yamazaki et al. 2002, 2003)

’’

Page 6: Origin of the X-Ray Flashes

O ff-Axis Jet Model of XRFsThe X-ray flashes (and the soft GRBs) are the typical GRBs observed from off-axis viewing angle.

(γ ~ 100)

XRFs

GRBs

jet

X-ray band

νFν

 

ν

γ-ray band

relativistic Doppler   effect

rela

tivis

tic

beam

ing

eff

ect GRB

XRF

Page 7: Origin of the X-Ray Flashes

LOS

Ep - Eiso relation in off-axis jet model

ν0 : frequency in the jet-comoving frame

θ= θ v - Δθ (<< 1 )γ= 100 : Lorentz factor of the jet

Ep ~ ν0δ

δ-1 = γ(1-βcosθ) ~ [1+ (γθ)2]/(2γ)

Eiso ∝δ1-α

α= -1 ~ -2 : photon index

⇒ Ep ∝ Eiso1/(1-α)

    ~ Eiso1/3 ~ 1/2

Page 8: Origin of the X-Ray Flashes

Line of sight

Jet Emission Model (Yamazaki et al. 2003)・ Spontaneous emission from instantaneously thin shell. ・ Normalization of emissivity; isotropic γ-ray energy from the source with z = 1 and θ v = 0 satisfies Eγ= Eiso (Δθ)2 /2 = 1×1051 ergs (Bloom et al. 2003)

where Eiso = 4πdL2 (1+z)-1 Sγ ( Sγ; obs. fluence )

・ Emission spectrum in the comoving frame

Page 9: Origin of the X-Ray Flashes

Maximum redshift to be detected by HETE

γ = 100

z max :

max

imum

reds

hift

Viewing angle θV / γ-1

α = -1

β = -2.5

γν’ 0 = 500 keV

Slim(2-400 keV)= 5×10-8 erg/cm2

Δθ/γ-1 = 5

Δθ/γ-1 =10

Page 10: Origin of the X-Ray Flashes

Input parameters  (10,000 events)

for z=0, θV=0

zα β

Δθ

Page 11: Origin of the X-Ray Flashes

Result of Simulation : Ep – Eiso relation

obs. best fit

Soft events (<100 keV) are off-axis emissions!

HETE detects 288 events among 10000 simulated bursts.

79 off-axis events

209 on-axis events

62 GRBs192 XRR-GRBs

34 XRFs

× : detected by HETE (off-axis)

+ : detected by HETE (on-axis)

・ : not detected by HETE

Page 12: Origin of the X-Ray Flashes

Summary

Off-axis emission from z ~ 1 can be observable. The Ep-Eiso relation may be reproduced by the off-axis jet model : off-axis emission represents large portion of the X-ray flash.

The Ep-Eiso relation, the Ep-distribution, the hardness distribution etc. depend on the unknown functional form of the opening angle distribution.

⇒ Ep-Eiso relation constrains the jet opening angle distribution, and therefore the ratio of GRBs to core-collapse SNe !!!