Optimizing fuel cell design with COMSOL Mlih...

35
Optimizing fuel cell design with Optimizing fuel cell design with COMSOL COMSOL Mlih i Mlih i COMSOL COMSOL Multiphysics Multiphysics Presenter: Dr. Kai Fei (費凱) Dr Chin-Hsien Cheng(鄭欽獻) Dr. Chin-Hsien Cheng(鄭欽獻) COMSOL User Conference 2012 Nov. 9 2012 Taipei Taiwan 1

Transcript of Optimizing fuel cell design with COMSOL Mlih...

  • Optimizing fuel cell design with Optimizing fuel cell design with COMSOLCOMSOL M l i h iM l i h iCOMSOL COMSOL MultiphysicsMultiphysics

    Presenter: Dr. Kai Fei (費凱)Dr Chin-Hsien Cheng(鄭欽獻)Dr. Chin-Hsien Cheng(鄭欽獻)

    COMSOL User Conference 2012 Nov. 9 2012 Taipei Taiwan

    1

  • OutlineOutline

    • Fuel cell introduction

    • Simulation detail

    • FC applicationsFC applications– 2D MEA model (HT-PBI)– Multi-scale simulations (conceptual)

    2

  • How fuel cell worksHow fuel cell worksBipolar plate

    •Bipolar plate (graphite): ~10000 μmC h dBipolar plate

    electron conduction

    •Gas channel : ~1000 μm

    Cathode

    O2 O2 μ

    gas transport

    •GDL (Carbon cloth/paper): ~250 μmGDL

    Catalyst layerH+

    e-

    GDL

    MembraneCatalyst layer

    GDL (Carbon cloth/paper): 250 μm

    electron conduction and gas/water transport

    •CL (Pt Carbon Nafion): ~10 μm

    y y

    GDL •CL (Pt, Carbon, Nafion): ~10 μmelectron conduction, gas/water transport

    d i d h i l iMEAH2 H2

    Bipolar plateproton conduction and chemical reaction

    •Membrane (Nafion): ~100 μmAnode

    3

    proton conduction and water transportOver all: H2+O2→H2O

  • Components single cell and stackComponents, single cell and stack

    Polymer electrolytePolymer electrolyte

    Carbon paper

    Single cell

    FC stackFC stack

    4

    Bipolar plate Catalyst layer

  • Complex species transportComplex species transport

    Liquid waterMulti-componentMulti-phase

    ChannelPorous media

    Gas(H O )

    proton

    water vapor Temperature(H2, O2 etc)

    electron

    p p

    Dissolve water

    Couple/dependentCouple/dependentMesh problem User input equations

    5

    Couple/dependentCouple/dependentMesh problem User input equations

  • Governing equationsGoverning equations• Conservation of species: • Bulter Volmer equation

    O2O2O2eff, SCD- Conservation of species:

    RT

    Fexp

    RTF

    exp)(jj ,,0jcja

    ref

    i

    CC

    • Bulter-Volmer equation

    H2H2H2 eff, SCD- SCD

    f

    • Agglomerate model is used wvwvwveff, SCD-

    eff• Conservation of charge: PBI O2Pt/C

    eSolideffe S- peelectrolyteffP S-

    Pt/C

    Pt/C

    Pt/CPt/C

    peelectrolytP

    Tff STk- • Conservation of energy: Pt/C Pt/C

    Pt/C

    6

    Teff STk

  • Source termsSource termsS AGDL ACL PEM CCL CGDLSourceTerms

    AGDL ACL PEM CCL CGDL

    SO2 mol/(m3 s) 0Fjc 4/O2 ( )

    SH2 mol/(m3 s) 0

    S mol/(m3 s) MS /

    Fja 2/

    SMS /

    jc

    MS / MS /Swv mol/(m s)

    Sλ mol/(m3 s) 0OHl MS 2/ SMS OHl 2/

    )( eqMa EW

    OHl MS 2/

    )( eqM

    a EW

    OHl MS 2/

    Sl (kg/m3s)

    Se (A /m3) 0 0lS lS

    j

    OHc

    OHl

    MFj

    MSS

    2

    2

    4

    cjlS

    e ( / )

    Sp (A/m3) 0

    S (W/m3) 2I

    aj

    aj2I I 2

    cj

    cj)( STj 2I

    7

    ST (W/m ) lghSI

    leffe

    lg

    hSIj leff

    effp lg

    2

    )(

    hSInF

    j

    leff

    lghSI

    leffe

  • Transport parametersTransport parameters751400 )/101325()333/(10055.1 75.140 2

    02 PTDD OHH

    )/101325()333/(102982.0 75.140 2 PTD OH

    )/101325()333/(102652.0 75.140 2 PTDO

    ))/2768exp(1013 70 2 TD fO ))/2768exp(101.3,2 TD nafionO

    30 )1(101.3 )/2436(28.070 ,2 TnafionOH eeD

    173)1161(10174 )/2436(80 TeeD 173 )1161(1017.4 )(,2 nafionOH eeD

    )/666exp(1033.1 52 THNafionO

    11 1 ))13031(1268exp()326.0514.0(0

    Tp

    1))11(1268exp(187900

    8

    1 ))303

    (1268exp(1879.0 Tp

  • Kinetic parametersKinetic parameters 0 eelectroltysolid

    )1

    3431(exp)/( 0343,0,0 TR

    EVSij

    acta

    Kref

    aref

    a

    RTF

    jFC

    k crefcrefO

    exp4

    1,0

    2 343 TR

    )1

    3431(exp)/( 0343,0,0 TR

    EVSij

    actc

    Kref

    cref

    c

    O2

    FFP )1( MXs

    0P : lcondl sPKS

    )exp()exp()(

    2

    2,0 RT

    FRT

    FPPjj ref

    H

    Hrefaa

    kP

    Fj O24

    0P : )1( 2

    RTMXs

    PKS OHwvcondl

    )1(/3 ,2 CL

    effeffO

    agg Dkr

    kHFj Naf

    Oc

    2

    4

    3 ff

    )3/(1)3coth(3 2

    9

  • Simulation flow chartSimulation flow chartCOMSOL geometry toolsModel geometry COMSOL geometry toolsImport from CAD files

    Parameters input ConstantSubdomain expresses

    •ConvergenceM hp

    Direct (UMFPACK)

    •Mesh

    Solve equations( )

    Stationary/parametricsAdaptive mesh refinement

    Post processing COMSOL postprocessing toolsExport according to your own need

    10

    Export according to your own need

  • Challenges & solutionsChallenges & solutions

    •• ConvergenceConvergence– Mainly due to coupled equations (8) and lots of y p q ( )

    variable dependent parameters.Appropriate value of initial valuepp op ate va e o t a va eUsing RESTART to solve equations step by step

    •• MeshMesh•• MeshMesh– Finer or coarser mesh are both possible to solve the

    bl d h d b dproblem (adaptive method can be used)

    G i f 2 3 4 2 !!!11

    Great improvement form ver.2.3 ver.4.2 !!!

  • Models used in COMSOLModels used in COMSOL

    • Chemical Engineering Module– Mass Transport Convection and Diffusion (4)p ( )– Energy Transport Convection and Conduction(1)

    AC/DC M d l• AC/DC Module– Conductive Media DC (2)

    • COMSOL Multiphysics ModulePDE Coefficient Form(1)– PDE, Coefficient Form(1)

    All solved variables are dependent

    12

    p

  • What we need isWhat we need is…

    User friendly interfaceFlexible mesh generation

    Couple different User friendly interface

    variables at willUser friendly interface

    COMSOL Multiphysics

    Easy user define functioninputPowerful post-processing

    13

  • Examples solved by COMSOLProton exchange membrane fuel cell- Proton exchange membrane fuel cell

    14

  • 2D simulations2D simulationsRibGas• Simulation domain Rib

    Gas channel

    RibGas channelchannel

    Cathode GDLC h d GDL 200Cathode CL

    Anode CL

    Cathode GDL: 200μmCathode CL: 20μmElectrolyte: 50μmAnode CL 10μm

    15

    Anode GDLAnode CL: 10μmAnode GDL 200μm

  • INCREASE REDUCEINCREASECL performance

    REDUCECL cost

    Pt loadingPBI contentP /C %Pt/C wt%Support materialCL thicknessAlternative catalyst material

    CL ith diff r nt PBI t% mp iti nCL with different PBI wt% compositionsPerformance can be increased!

    Cost can be reduced!

    16

  • Multi layer CL designMulti-layer CL designN if iti f PBI t tNon-uniform composition of PBI content

    CGDLCGDL

    CCL (multi-layer)

    MEM

    ACL ( i l l )ACL (single layer)

    AGDL

    MEA structure

    17

  • Case studied(1/2) single layerCase studied(1/2) – single layerPBI 含量 5 t% 10 t% 20 t% 30 t%PBI 含量 5wt% 10wt% 20wt% 30wt%

    觸媒層厚度 2e-5m 2.05e-5m 2.3e-5m 2.35e-5m

    PBI薄膜厚度 1e-8m 2.4e-8m 5.5e-8m 6e-8m

    孔隙率 0.439 0.436 0.404 0.382

    Pt/C體積分率 0.510 0.459 0.386 0.267

    PBI體積分率 0.0506 0.104 0.209 0.3507

    彎曲率 1.3 1.6 2.8 4.5

    Pt loading 0.5mg/cm2 0.5mg/cm2 0.5mg/cm2 0.5mg/cm2g g g g g

    Optimizing PBI content in single CL design

    18

    p g g g

  • Case studied(2/2) multi layerCase studied(2/2) – multi-layer

    觸媒層結構 %PBI Pt loading 觸媒層厚度 PBI薄膜厚度

    (a) cathode 5wt% 0.333mg/cm2 2e-5/2 m 1e-8m

    30wt% 0.167mg/cm2 2.35e-5/2m 3e-8m

    (b) cathode 10wt% 0.333mg/cm2 2.05e-5/2m 2e-8m

    30wt% 0.167mg/cm2 2.35e-5/2m 3e-8m

    (c) cathode 5wt% 0.167mg/cm2 2e-5/3m 1e-8m

    10wt% 0 167mg/cm2 2 05e 5/3m 2e-8m10wt% 0.167mg/cm2 2.05e-5/3m 2e 8m

    20wt% 0.166mg/cm2 2.3e-5/3m 2.2e-8m

    Optimizing PBI content distribution in multi-CL design

    19

  • Experimental validation- single layer

    5 wt% of PBI5 wt% of PBI

    is the best

    G d m t h ith p rim nt l d t

    20

    Good match with experimental data

  • Detail analysis (single layer)Detail analysis (single layer)

    DaR PBIratiodiff OPBI

    2

    16Ld

    ma Ptratio

    21

    Resistivity of gas diffusion

    Lda catPtPtratio

    Effective Pt reaction area

  • Parametric study (1/2)Parametric study (1/2)

    Temperature effect Porosity effect

    22

    p

  • Parametric study (2/2)Parametric study (2/2)

    Totuorsity effect Thickness effect

    23

  • Cathode O distributionCathode O2 distribution

    channel rib U=0.2V

    5wt% 20wt%

    10wt% 30wt%

    24

  • Temperature distributionTemperature distributionU=0.2Vchannel rib

    5wt% 20wt%

    2510wt% 30wt%

  • Experimental validation- multi-layer

    Good match with experimental data

    Higher PBI content is required g qfor sub-layer close to membrane- For increasing proton conductivity

    Lower PBI content is required for sub-layer close to GDL- For increasing gas diffusivity

    26

  • Detail analysis (multi layer)Detail analysis (multi-layer)

    Resistivity of diff i n

    Effective Pt r ti n r

    Proton conductivitygas diffusion Pt reaction area

    Different effect for different physical properties

    27

    for different regions is observed

  • Internal distributionsInternal distributions

    28

    Oxygen distribution Temperature distribution

  • New multi layer CL designNew multi-layer CL design

    A new triple-layer CL designis proposed (3-5-7wt%) and is p p ( )shown to have better performancethan single layer design

    29

  • Examples solved by COMSOLConceptual multi scale simulation- Conceptual multi-scale simulation

    30

  • Why multi scale simulation?Why multi-scale simulation?

    • From fundamental point of view…– All macroscopic transport properties (eg. diffusivity) p p p p ( g y)

    are ensemble average of microscopic transport phenomenap

    – Traditional correlations is inadequate to describe what really happenwhat really happen

    • Challenges…– No real couple multi-scale simulation package can be

    found– Alternative way to do this is necessary

    31

  • Concept of multi scaleConcept of multi-scale

    Macro nanoField distribution Transport properties

    Done by

    Semi-empirical relation derived base on atomistic scale simulation

    yCOMSOL

    base on atomistic scale simulation

    Take advantage of COMSOL’s very flexible and user friendly /

    32

    interface/functions!

  • Simulation proceduresSimulation procedures1299 )(104589.210438.5 1299,2 smD NafionO

    )(104678.3108814.2 12109,2 smD NafionOH

    Estimated by molecular dynamics simulations

    COMSOLInput into COMSOL

    simulation

    33

  • Diffusivity distributionDiffusivity distributionCMD Conventional

    O2 diffusivity inside Nafion

    CMD Conventional

    H2O diffusivity inside Nafion

    Similar performance but different internal distribution

    34

    p Different optimization design will be proposed !!!

  • Thanks for your attention!Thanks for your attention!

    35