On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’....

7
International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 5 | Iss.3| Mar. 2015 | 9| On ranges and null spaces of a special type of operator named βˆ’ . – Part I Rajiv Kumar Mishra Assistant Professor, Department of Mathematics , Rajendra College, Chapra (Jai Prakash University,Chapra) Bihar-841301 I. Introduction Dr. P. Chandra has defined a trijection operator in his Ph.D. thesis titled β€œ Investigation into the theory of operators and linear spaces”. [1]. A projection operator E on a linear space X is defined as 2 = as given in Dunford and Schwartz [2] , p .37 and Rudin [3], p.126. In analogue to this , E is a trijection operator if 3 = . It is a generalization of projection operator in the sense that every projection is a trijection but a trijection is not necessarily a projection. II. Definition Let X be a linear space and E be a linear operator on X. We call E a βˆ’ if 3 + 2 = 1+ , being a scalar. Thus if =0 , 3 = . . trijection. We see that 2 = β‡’ 3 = and above condition is satisfied. Thus a projection is also a βˆ’ . III. Main Results 3.1 We first investigate the case when an expression of the form 2 + is a projection where E is a βˆ’ . For this we need ( 2 + ) 2 = 2 + . β‡’ 2 4 + 2 2 +2 3 = 2 + ……………………………………………………………(1) βˆ’ , 3 = 1+ βˆ’ 2 4 = . 3 = 1+ 2 βˆ’ 3 = 1+ 2 βˆ’ 1+ βˆ’ 2 = 1+ + 2 2 βˆ’(1 + ) We put these values in (1) and after simplifying { 2 1+ + 2 βˆ’βˆ’(2 βˆ’ 2 )} 2 +2 βˆ’ 2 1+ βˆ’ =0 Equating Coefficients of E & 2 to be 0, we get 2 1+ + 2 βˆ’ βˆ’ 2 βˆ’ 2 =0 …………………………………………………………(2) 2 βˆ’ 2 1+ βˆ’ =0 ……………………………………………………………………..(3) Adding (2) and (3), We get 2 βˆ’ 2 1+ βˆ’ + 2 1+ + 2 βˆ’βˆ’ =0 β‡’ 2 βˆ’ 2 + 2 + 2 + 2 βˆ’ βˆ’ =0 β‡’ 2 +2 + 2 βˆ’ + =0 β‡’ ( + ) 2 βˆ’ + =0 β‡’ ( + ) + βˆ’ 1 =0 β‡’Either + =0 or + =1 ABSTRACT: In this article, βˆ’ has been introduced which is a generalization of trijection operator as introduced in P.Chandra’s Ph. D. thesis titled β€œInvestigation into the theory of operators and linear spaces” (Patna University,1977). We obtain relation between ranges and null spaces of two given βˆ’ under suitable conditions. Key Words: projection, trijection, βˆ’

Transcript of On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’....

Page 1: On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – Part I

International

OPEN ACCESS Journal Of Modern Engineering Research (IJMER)

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 5 | Iss.3| Mar. 2015 | 9|

On ranges and null spaces of a special type of operator named

𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – Part I

Rajiv Kumar Mishra Assistant Professor, Department of Mathematics , Rajendra College, Chapra (Jai Prakash University,Chapra)

Bihar-841301

I. Introduction Dr. P. Chandra has defined a trijection operator in his Ph.D. thesis titled β€œ Investigation into the

theory of operators and linear spaces”. [1]. A projection operator E on a linear space X is defined as 𝐸2 = 𝐸

as given in Dunford and Schwartz [2] , p .37 and Rudin [3], p.126. In analogue to this , E is a trijection operator

if 𝐸3 = 𝐸. It is a generalization of projection operator in the sense that every projection is a trijection but a

trijection is not necessarily a projection.

II. Definition Let X be a linear space and E be a linear operator on X. We call E a πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘› if

𝐸3 + πœ†πΈ2 = 1 + πœ† 𝐸, πœ† being a scalar. Thus if πœ† = 0

, 𝐸3 = 𝐸 𝑖. 𝑒.𝐸 𝑖𝑠 π‘Ž trijection. We see that 𝐸2 = 𝐸 β‡’ 𝐸3 = 𝐸 and above condition is satisfied. Thus a

projection is also a πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›.

III. Main Results 3.1 We first investigate the case when an expression of the form π‘ŽπΈ2 + 𝑏𝐸 is a projection where E is a

πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘› . For this we need

(π‘ŽπΈ2 + 𝑏𝐸)2 = π‘ŽπΈ2 + 𝑏𝐸 .

β‡’ π‘Ž2𝐸4 + 𝑏2𝐸2 + 2π‘Žπ‘πΈ3 = π‘ŽπΈ2 + 𝑏𝐸 ……………………………………………………………(1)

πΉπ‘Ÿπ‘œπ‘š π‘‘π‘’π‘“π‘–π‘›π‘–π‘‘π‘–π‘œπ‘› π‘œπ‘“πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘› ,

𝐸3 = 1 + πœ† 𝐸 βˆ’ πœ†πΈ2

π‘ π‘œ 𝐸4 = 𝐸.𝐸3 = 1 + πœ† 𝐸2 βˆ’ πœ†πΈ3

= 1 + πœ† 𝐸2 βˆ’ πœ† 1 + πœ† 𝐸 βˆ’ πœ†πΈ2

= 1 + πœ† + πœ†2 𝐸2 βˆ’ πœ†(1 + πœ†)𝐸

We put these values in (1) and after simplifying

{π‘Ž2 1 + πœ† + 𝑏2 βˆ’ π‘Ž βˆ’ πœ†(2π‘Žπ‘ βˆ’ π‘Ž2πœ†)}𝐸2

+ 2π‘Žπ‘ βˆ’ π‘Ž2πœ† 1 + πœ† βˆ’ 𝑏 𝐸 = 0

Equating Coefficients of E & 𝐸2 to be 0, we get

π‘Ž2 1 + πœ† + 𝑏2 βˆ’ π‘Ž βˆ’ πœ† 2π‘Žπ‘ βˆ’ π‘Ž2πœ† = 0 …………………………………………………………(2)

2π‘Žπ‘ βˆ’ π‘Ž2πœ† 1 + πœ† βˆ’ 𝑏 = 0 ……………………………………………………………………..(3)

Adding (2) and (3), We get

2π‘Žπ‘ βˆ’ π‘Ž2πœ† 1 + πœ† βˆ’ πœ† + π‘Ž2 1 + πœ† + 𝑏2 βˆ’ π‘Ž βˆ’ 𝑏 = 0

β‡’ 2π‘Žπ‘ βˆ’ π‘Ž2πœ† + π‘Ž2 + π‘Ž2πœ† + 𝑏2 βˆ’π‘Ž βˆ’ 𝑏 = 0

β‡’ π‘Ž2 + 2π‘Žπ‘ + 𝑏2 βˆ’ π‘Ž + 𝑏 = 0

β‡’ (π‘Ž + 𝑏)2 βˆ’ π‘Ž + 𝑏 = 0

β‡’ (π‘Ž + 𝑏) π‘Ž + 𝑏 βˆ’ 1 = 0

β‡’Either π‘Ž + 𝑏 = 0 or π‘Ž + 𝑏 = 1

ABSTRACT: In this article, πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘› has been introduced which is a generalization of trijection operator as introduced in P.Chandra’s Ph. D. thesis titled β€œInvestigation into the theory of operators

and linear spaces” (Patna University,1977). We obtain relation between ranges and null spaces of two

given πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›π‘  under suitable conditions.

Key Words: projection, trijection, πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›

Page 2: On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – Part I

On ranges and null spaces of a special type of operator named πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›. – Part I

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 5 | Iss.3| Mar. 2015 | 10|

So for projection, the above two cases will be considered

Case (1): let π‘Ž + 𝑏 = 1 then 𝑏 = 1 βˆ’ π‘Ž

Putting the value of b = 1 - a in equation (2) , we get

π‘Ž2 1 + πœ† + πœ†2 βˆ’ 2π‘Ž 1 βˆ’ π‘Ž πœ† βˆ’ π‘Ž + (1 βˆ’ π‘Ž)2 = 0

β‡’ π‘Ž2 πœ†2 + 3πœ† + 2 βˆ’ π‘Ž 3 + 2πœ† + 1 = 0

β‡’ π‘Ž2 πœ† + 1 πœ† + 2 βˆ’ π‘Ž πœ† + 1 + πœ† + 2 + 1 = 0

β‡’ [a(πœ† + 1)-1] [a(πœ† + 2) βˆ’ 1]=0

β‡’ π‘Ž =1

πœ†+1 π‘œπ‘Ÿ

1

πœ†+2

Then 𝑏 =πœ†

πœ†+1 or

πœ†+1

πœ†+2

Hence corresponding projections are 𝐸2

πœ†+1+

πœ†πΈ

πœ†+1 π‘Žπ‘›π‘‘

𝐸2

πœ†+2+

(πœ†+1)𝐸

πœ†+2

Case (2) :- Let a + b = 0 or b = βˆ’π‘Ž

So from Equation (2)

π‘Ž2 1 + πœ† + π‘Ž2 βˆ’ π‘Ž βˆ’ πœ† βˆ’2π‘Ž2 βˆ’ π‘Ž2πœ† = 0

β‡’ π‘Ž2 πœ†2 + 3πœ† + 2 βˆ’ π‘Ž = 0

β‡’ π‘Ž π‘Ž πœ† + 1 πœ† + 2 βˆ’ 1 = 0

β‡’ π‘Ž =1

πœ†+1 πœ†+2 ; (Assuming π‘Ž β‰  0)

Therefore, 𝑏 =βˆ’1

πœ†+1 πœ†+2

Hence the corresponding projection is

𝐸2βˆ’πΈ

πœ†+1 πœ†+2

So in all we get three projections. Call them A, B & C.

i.e. A= 𝐸2

πœ†+2+

(1+πœ†)𝐸

πœ†+2 , B =

𝐸2βˆ’πΈ

πœ†+1 πœ†+2

and C = 𝐸2

1+πœ†+

πœ†πΈ

1+πœ† .

3.2 Relation between A,B and C

A+B = 𝐸2

πœ†+2+

(1+πœ†)𝐸

πœ†+2+

𝐸2

πœ†+1 πœ†+2 βˆ’

𝐸

πœ†+1 πœ†+2

=𝐸2 πœ†+1 +(πœ†+1)2𝐸+𝐸2βˆ’πΈ

πœ†+1 πœ†+2

=𝐸2 πœ†+2 +πœ†(πœ†+2)𝐸

πœ†+1 πœ†+2

=𝐸2+πœ†πΈ

πœ†+1

=𝐸2

πœ†+1+

πœ†πΈ

πœ†+1= 𝑐

Hence (𝐴 + 𝐡)2 = 𝐢2 β‡’ 𝐴2 + 𝐡2 + 2𝐴𝐡 = 𝐢2

β‡’ 𝐴 + 𝐡 + 2𝐴𝐡 = 𝐢

β‡’ 2𝐴𝐡 = 0(𝑆𝑖𝑛𝑐𝑒 𝐴 + 𝐡 = 𝐢)

β‡’ 𝐴𝐡 = 0

Let πœ‡ = πœ† + 1

Then A =𝐸2

πœ‡+1+

πœ‡πΈ

πœ‡+1, 𝐡 =

𝐸2βˆ’πΈ

πœ‡ πœ‡+1 and 𝐢 =

𝐸2

πœ‡+

(πœ‡βˆ’1)𝐸

πœ‡

Also 𝐴 βˆ’ πœ‡π›½ =𝐸2

πœ‡+1+

πœ‡πΈ

πœ‡+1βˆ’

𝐸2

πœ‡+1+

𝐸

πœ‡+1

=πœ‡πΈ+𝐸

πœ‡+1 =

πœ‡+1 𝐸

πœ‡+1= 𝐸

Thus 𝐸 = 𝐴 βˆ’ πœ‡π΅.

Page 3: On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – Part I

On ranges and null spaces of a special type of operator named πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›. – Part I

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 5 | Iss.3| Mar. 2015 | 11|

3.3 On ranges and null spaces of 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’ We show that

𝑅𝐸 = 𝑅𝐢 π‘Žπ‘›π‘‘ 𝑁𝐸 = 𝑁𝐢

Where 𝑅𝐸 stands for range of operator E and 𝑁𝐸 for Null Space of E and similar notations for other operators.

Let π‘₯ ∈ 𝑅𝐸 π‘‘β„Žπ‘’π‘› π‘₯ = 𝐸𝑧 π‘“π‘œπ‘Ÿ π‘ π‘œπ‘šπ‘’ 𝑧 𝑖𝑛 𝑋.

Therefore,

𝐢π‘₯ = 𝐢𝐸𝑧 = πœ‡βˆ’1 𝐸+𝐸2 𝐸𝑧

πœ‡

= πœ‡βˆ’1 𝐸2+𝐸3 𝑍

πœ‡

= πœ‡βˆ’1 𝐸2+πœ‡πΈβˆ’(πœ‡βˆ’1)𝐸2 𝑍

πœ‡ (Since 𝐸3 = 1 + πœ† 𝐸 βˆ’ πœ†πΈ2)

= πœ‡πΈ

πœ‡ 𝑧 = 𝐸𝑧 = π‘₯

Thus 𝐢π‘₯ = π‘₯ β‡’ π‘₯ ∈ 𝑅𝐢

Therefore 𝑅𝐸 βŠ† 𝑅𝐢

Again if π‘₯ ∈ 𝑅𝐢 π‘‘β„Žπ‘’π‘› π‘₯ = 𝐢π‘₯ = 𝐸2+ πœ‡βˆ’1 𝐸

πœ‡ π‘₯

=𝐸(𝐸+πœ†πΌ )π‘₯

πœ†+1 ∈ 𝑅𝐸

Hence 𝑅𝐢 βŠ† 𝑅𝐸

Therefore 𝑅𝐸 = 𝑅𝐢

Now , z∈ 𝑁𝐸 β‡’ 𝐸𝑧 = 0

β‡’ 𝐸2+ πœ‡βˆ’1 𝐸

πœ‡ 𝑧 = 0

β‡’ 𝐢𝑧 = 0

β‡’ z ∈ 𝑁𝐢

Therefore , 𝑁𝐸 βŠ† 𝑁𝐢

Also 𝑖𝑓 z∈ 𝑁𝐢 β‡’ 𝐢𝑧 = 0 β‡’ 𝐸2+ πœ‡βˆ’1 𝐸

πœ‡ 𝑧 = 0

β‡’ 𝐸 𝐸2+ πœ‡βˆ’1 𝐸

πœ‡ 𝑧 = 0

β‡’ 𝐸3+ πœ‡βˆ’1 𝐸2

πœ‡ 𝑧 = 0

β‡’ πœ‡πΈ

πœ‡ 𝑧 = 0 β‡’ 𝐸𝑧 = 0 β‡’ 𝑧 ∈ 𝑁𝐸

Thus 𝑁𝑐 βŠ† 𝑁𝐸,

Therefore , 𝑁𝐸 = 𝑁𝐢

Now we show that

𝑹𝑨 = 𝒛: 𝑬𝒛 = 𝒛 𝒂𝒏𝒅 𝑹𝑩 = {𝒛:𝑬𝒛 = βˆ’ππ’›}

Since A is a Projection ,

𝑅𝐴 = 𝑧: 𝐴𝑧 = 𝑧

Let 𝑧 ∈ 𝑅𝐴. Then 𝐸𝑧 = 𝐸𝐴𝑧 = 𝐸 𝐸2+πœ‡πΈ

πœ‡+1 𝑧

= 𝐸3+πœ‡πΈ2

πœ‡+1 𝑧

= 𝐸3+ πœ‡βˆ’1 𝐸2+𝐸2

πœ‡+1 𝑧

= πœ‡πΈ+𝐸2

πœ‡+1 𝑧

= 𝐴𝑧 = 𝑧

Thus 𝑅𝐴 βŠ† {𝑧: 𝐸𝑧 = 𝑧}

Conversely , Let 𝐸𝑧 = 𝑧 π‘‘β„Žπ‘’π‘› 𝐸2𝑧 = 𝑧

So 𝐴𝑧 = 𝐸2+πœ‡πΈ

πœ‡+1 𝑧 =

𝑧+πœ‡π‘§

πœ‡+1= 𝑧 β‡’ 𝑧 ∈ 𝑅𝐴

Page 4: On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – Part I

On ranges and null spaces of a special type of operator named πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›. – Part I

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 5 | Iss.3| Mar. 2015 | 12|

Hence 𝑧: 𝐸𝑧 = 𝑧 βŠ† 𝑅𝐴

Therefore, 𝑅𝐴 = {𝑧: 𝐸𝑧 = 𝑧}

Next we show that

𝑅𝐡 = {𝑧: 𝐸𝑧 = βˆ’πœ‡π‘§}

Since B is a Projection,

𝑅𝐡 = 𝑧: 𝐡𝑧 = 𝑧

Let 𝐸𝑧 = βˆ’πœ‡π‘§ π‘‘β„Žπ‘’π‘› 𝐸2𝑧 = πœ‡2𝑧

Hence (𝐸2βˆ’πΈ

πœ‡(πœ‡+1)) z =

πœ‡ 2𝑧+πœ‡π‘§

πœ‡ (πœ‡+1)=

πœ‡ (πœ‡+1)

πœ‡ (πœ‡+1) 𝑧 = 𝑧

i.e. 𝐡𝑧 = 𝑧 (𝑠𝑖𝑛𝑐𝑒 𝐡 =𝐸2βˆ’πΈ

πœ‡ (πœ‡+1) )

β‡’ 𝑧 ∈ 𝑅𝐡

π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ , 𝑧: 𝐸𝑧 = βˆ’πœ‡π‘§ βŠ† 𝑅𝐡

Conversely , let 𝑧 βŠ† 𝑅𝐡 .π‘‡β„Žπ‘’π‘› 𝐡𝑧 = 𝑧

Hence 𝐸𝑧 = 𝐸𝐡𝑧 = 𝐸 𝐸2βˆ’πΈ

πœ‡(πœ‡+1) 𝑧

= 𝐸3βˆ’πΈ2

Β΅(Β΅+1) 𝑧

But 𝐸3 βˆ’ 𝐸2 = πœ‡πΈ βˆ’ πœ‡ βˆ’ 1 𝐸2 βˆ’ 𝐸2

= πœ‡πΈ βˆ’ πœ‡πΈ2 = πœ‡(𝐸 βˆ’ 𝐸2)

So 𝐸𝑧 =πœ‡ πΈβˆ’πΈ2 𝑧

πœ‡ (πœ‡+1) =

βˆ’πœ‡ 𝐸2βˆ’πΈ 𝑧

πœ‡ (πœ‡+1)

= βˆ’πœ‡π΅π‘§ = βˆ’πœ‡π‘§

π‘†π‘œ 𝑅𝐡 βŠ† {𝑧: 𝐸𝑧 = βˆ’πœ‡π‘§}

Therefore 𝑅𝐡 = {𝑧: 𝐸𝑧 = βˆ’πœ‡π‘§}

Now we show that 𝑹𝑨 βˆ©π‘Ήπ‘© = {𝟎}

Let 𝑧 ∈ 𝑅𝐴 ∩ 𝑅𝐡

Then 𝑧 ∈ 𝑅𝐴 π‘Žπ‘›π‘‘ 𝑧 ∈ 𝑅𝐡

If 𝑧 ∈ 𝑅𝐴 π‘‘β„Žπ‘Žπ‘› 𝐸𝑧 = 𝑧

If 𝑧 ∈ 𝑅𝐡 π‘‘β„Žπ‘Žπ‘› 𝐸𝑧 = βˆ’πœ‡π‘§

Thus 𝐸𝑧 = 𝑧 = βˆ’πœ‡π‘§

β‡’ πœ‡π‘§ + 𝑧 = 0 β‡’ πœ‡ + 1 𝑧 = 0 β‡’ 𝑧 = 0 (𝑠𝑖𝑛𝑐𝑒 πœ‡ + 1 β‰  0)

Therefore , 𝑅𝐴 ∩ 𝑅𝐡 = {0}

Theorem (1): If π‘¬πŸ 𝒂𝒏𝒅 π‘¬πŸ 𝒂𝒓𝒆 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’π’” 𝒐𝒏 𝒂 π’π’Šπ’π’†π’‚π’“ 𝒔𝒑𝒂𝒄𝒆

𝑿 𝒂𝒏𝒅 π‘¬πŸ π‘¬πŸ = π‘¬πŸπ‘¬πŸ = 𝟎 𝒕𝒉𝒆𝒏 π‘¬πŸ + π‘¬πŸ π’Šπ’” 𝒂𝒍𝒔𝒐 𝒂

𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’ such that

π‘΅π‘¬πŸ+π‘¬πŸ= π‘΅π‘¬πŸ

βˆ©π‘΅π‘¬πŸ and π‘Ήπ‘¬πŸ+π‘¬πŸ

= π‘Ήπ‘¬πŸβŠ•π‘Ήπ‘¬πŸ

Proof :- Since 𝐸1𝐸2 = 𝐸2𝐸1 = 0 ,

(𝐸1 + 𝐸2 )2 = 𝐸1

2 + 𝐸22 and (𝐸1 + 𝐸2)3=𝐸1

3 + 𝐸23

π‘†π‘œ (𝐸1 + 𝐸2 )3 + πœ†(𝐸1 + 𝐸2 )

2 = 𝐸13 + 𝐸2

3 + πœ†(𝐸12 + 𝐸2

2)

= 𝐸13 + πœ† 𝐸1

2 + 𝐸23 + πœ†πΈ2

2

= 1 + πœ† 𝐸1 + 1 + πœ† 𝐸2

= 1 + πœ† (𝐸1 + 𝐸2 )

Hence 𝐸1 + 𝐸2 𝑖𝑠 π‘Ž πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›

Let 𝐴1 ,𝐡1 ,𝐢1 respectively projections in case of 𝐸1; 𝐴2 ,𝐡2 , 𝐢2 in case of

𝐸2 π‘Žπ‘›π‘‘ 𝐴,𝐡, 𝐢 𝑖𝑛 π‘π‘Žπ‘ π‘’ π‘œπ‘“πΈ1 + 𝐸2

π΄π‘™π‘ π‘œ 𝐢1 + 𝐢2 =𝐸1

2

πœ‡+

(πœ‡βˆ’1)𝐸1

πœ‡+

𝐸22

πœ‡+

(πœ‡βˆ’1)𝐸2

πœ‡

=1

πœ‡ 𝐸1

2 + 𝐸22 +

πœ‡βˆ’1

πœ‡ 𝐸1 + 𝐸2 = 𝐢

Page 5: On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – Part I

On ranges and null spaces of a special type of operator named πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›. – Part I

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 5 | Iss.3| Mar. 2015 | 13|

Thus 𝑅𝐸1+𝐸2= 𝑅𝐢 = 𝑅𝐢1+𝐢2

Now we show that 𝑅𝐢1+𝐢2= 𝑅𝐢1

+ 𝑅𝐢2

Let π‘§πœ–π‘…πΆ1+𝐢2 π‘‘β„Žπ‘’π‘› 𝑧 = 𝐢1 + 𝐢2 𝑧1π‘“π‘œπ‘Ÿ π‘ π‘œπ‘šπ‘’ 𝑧1 𝑖𝑛 𝑋

= 𝐢1𝑧1 + 𝐢2𝑧1πœ–π‘…πΆ1+ 𝑅𝐢2

π‘†π‘œ 𝑅𝐢1+𝐢2βŠ† 𝑅𝐢1

+ 𝑅𝐢2

Conversely, 𝑙𝑒𝑑 𝑧 πœ– 𝑅𝐢1+ 𝑅𝐢2

π‘‘β„Žπ‘’π‘› 𝑧 = 𝑧1 + 𝑧2; where 𝑧1πœ–π‘…πΆ1, 𝑧2πœ–π‘…πΆ2

Hence 𝐢1𝑧1 = 𝑧1 π‘Žπ‘›π‘‘ 𝐢2𝑧2 = 𝑧2

But 𝐢2𝑧1 = 𝐢2𝐢1𝑧1 = 0 ( 𝑆𝑖𝑛𝑐𝑒 𝐸1𝐸2 = 𝐸2𝐸1 = 0)

Similarly 𝐢1𝑧2 = 𝐢1𝐢2𝑧2 = 0

Hence 𝑧 = 𝑧1 + 𝑧2 = 𝐢1𝑧1 + 𝐢2𝑧2 + 𝐢1𝑧2 + 𝐢2𝑧1

= 𝐢1 + 𝐢2 𝑧1 + 𝑧2 = 𝐢1 + 𝐢2 𝑧

Thus 𝑧 ∈ 𝑅𝐢1+𝐢2

Therefore, 𝑅𝐢1+ 𝑅𝐢1

βŠ† 𝑅𝐢1+𝐢2

Hence 𝑅𝐢1+𝐢2= 𝑅𝐢1

+ 𝑅𝐢2

If 𝑧 ∈ 𝑅𝐢1∩ 𝑅𝐢2

π‘‘β„Žπ‘’π‘› 𝑧 ∈ 𝑅𝐢1π‘Žπ‘›π‘‘ 𝑧 ∈ 𝑅𝐢2

If 𝑧 ∈ 𝑅𝐢1 π‘‘β„Žπ‘’π‘› 𝐢1𝑧 = 𝑧 π‘Žπ‘›π‘‘ if 𝑧 ∈ 𝑅𝐢2

π‘‘β„Žπ‘’π‘› 𝐢2𝑧 = 𝑧

Now 𝐢1𝑧 = 𝑧 = 𝐢2𝑧 = 𝐢2 𝐢1𝑧 = 𝐢2𝐢1 𝑧 = 0

β‡’ 𝑧 = 0

Therefore 𝑅𝐢1∩ 𝑅𝐢2

= {0}

Hence 𝑅𝐢1+𝐢2= 𝑅𝐢1

⨁ 𝑅𝐢2

So finally , We have

𝑅𝐸1+𝐸2= 𝑅𝐢 = 𝑅𝐢1+𝐢2

= 𝑅𝐢1⨁ 𝑅𝐢2

= 𝑅𝐸1⨁ 𝑅𝐸2

Now we prove

π‘΅π‘¬πŸ+π‘¬πŸ= π‘΅π‘¬πŸ

∩ π‘΅π‘¬πŸ

Or 𝑡π‘ͺ𝟏+π‘ͺ𝟐= 𝑡π‘ͺ𝟏

∩ 𝑡π‘ͺ𝟐

Let 𝑧 ∈ 𝑁𝐢1∩ 𝑁𝐢2

β‡’ 𝐢1𝑧 = 0 = 𝐢2𝑧

β‡’(𝐢1 + 𝐢2)z = 0

β‡’ 𝑧 ∈ 𝑁𝐢1+𝐢2

Therefore 𝑁𝐢1∩ 𝑁𝐢2

βŠ† 𝑁𝐢1+𝐢2

Conversely , let 𝑧 ∈ 𝑁𝐢1+𝐢2β‡’ 𝐢1 + 𝐢2 𝑧 = 0

β‡’ 𝐢1𝑧 + 𝐢2𝑧 = 0

β‡’ 𝐢1𝑧 = βˆ’πΆ2𝑧

Hence 𝐢1𝑧 = 𝐢12𝑧 = 𝐢1 𝐢1𝑧 = 𝐢1 βˆ’πΆ2𝑧 = βˆ’πΆ1𝐢2𝑧 = 0

β‡’ 𝑧 ∈ 𝑁𝐢2

Also 𝐢2𝑧 = 𝐢22𝑧 = 𝐢2 𝐢2𝑧 = 𝐢2 βˆ’πΆ1𝑧 = βˆ’πΆ2𝐢1𝑧 = 0

β‡’ 𝑧 ∈ 𝑁𝐢2

So 𝑧 ∈ 𝑁𝐢1βˆ©π‘πΆ2

Therefore , 𝑁𝐢1+𝐢2βŠ†π‘πΆ1

βˆ©π‘πΆ2

Hence 𝑁𝐢1+𝐢2= 𝑁𝐢1

∩ 𝑁𝐢2

Or , 𝑁𝐸1+𝐸2= 𝑁𝐸1

∩ 𝑁𝐸2

Theorem (2): If 𝐸1 π‘Žπ‘›π‘‘ 𝐸2 π‘Žπ‘Ÿπ‘’ πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›π‘  π‘œπ‘› π‘Ž π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘ π‘π‘Žπ‘π‘’ 𝑋,then

𝐢1𝐸2 = 𝐢2𝐢1𝐸1 ⇔ 𝑅𝐸2= 𝑅𝐸2

⋂𝑅𝐸1⨁𝑅𝐸2

⋂𝑁𝐸1

Proof : Let 𝑅𝐸2= 𝑅𝐸2

⋂𝑅𝐸1⨁𝑅𝐸2

⋂𝑁𝐸1

Let 𝑧 ∈ 𝑋 π‘‘β„Žπ‘Žπ‘› 𝐸2𝑧 ∈ 𝑅𝐸2.𝐿𝑒𝑑 𝐸2𝑧 = 𝑧1 + 𝑧2;

where 𝑧1 ∈ 𝑅𝐸2⋂𝑅𝐸1

, 𝑧2 ∈ 𝑅𝐸2⋂𝑁𝐸1

Page 6: On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – Part I

On ranges and null spaces of a special type of operator named πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›. – Part I

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 5 | Iss.3| Mar. 2015 | 14|

Now, 𝑧1 ∈ 𝑅𝐸2⋂𝑅𝐸1

β‡’ 𝑧1 ∈ 𝑅𝐸2 π‘Žπ‘›π‘‘ 𝑧1 ∈ 𝑅𝐸1

β‡’ 𝐸2𝑧1 = 𝑧1π‘Žπ‘›π‘‘ 𝐸1𝑧1 = 𝑧1

β‡’ 𝐢2𝑧1 = 𝑧1π‘Žπ‘›π‘‘ 𝐢1𝑧1 = 𝑧1 (Since 𝑅𝐸 = 𝑅𝐢)

Therefore , 𝑧1 = 𝐢1𝑧1 = 𝐢1 𝐢2𝑧1 = 𝐢1𝐢2𝑧1

𝑧2 ∈ 𝑅𝐸2⋂𝑁𝐸1

β‡’ 𝑧2 ∈ 𝑅𝐸2 π‘Žπ‘›π‘‘ 𝑧2 ∈ 𝑁𝐸1

𝑧2 ∈ 𝑅𝐸2β‡’ 𝐢2𝑧2 = 𝑧2 , 𝑧2 ∈ 𝑁𝐸1

β‡’ 𝐢1𝑧2 = 0 (since 𝑁𝐸 = 𝑁𝐢)

So 𝐢1 𝐸2𝑧 = 𝐢1 𝑧1 + 𝑧2 = 𝐢1𝑧1 + 𝐢1𝑧2 = 𝑧1 + 0 = 𝑧1

Also 𝐢2𝐢1𝐸2𝑧 = 𝐢2𝑧1 = 𝑧1

Therefore , 𝐢1𝐸2𝑧 = 𝐢2𝐢1𝐸2𝑧 π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ 𝑧 𝑖𝑛 𝑋

Hence 𝐢1𝐸2 = 𝐢2𝐢1𝐸2

Conversly , let 𝐢1𝐸2 = 𝐢2𝐢1𝐸2 , π‘‘β„Žπ‘Žπ‘› 𝐢1𝐸22 = 𝐢2𝐢1𝐸2

2

Hence 𝐢2𝐢1𝐢2 = 𝐢2𝐢1 πœ‡βˆ’1 𝐸2+𝐸2

2

πœ‡

= πœ‡βˆ’1

πœ‡ 𝐢2𝐢1𝐸2 +

1

πœ‡ 𝐢2𝐢1𝐸2

2

= πœ‡βˆ’1

πœ‡ 𝐢1𝐸2 +

1

πœ‡ 𝐢1𝐸2

2 (Since𝐢1𝐸2 = 𝐢2𝐢1𝐸2 )

= 𝐢1 πœ‡βˆ’1

πœ‡ 𝐸2 +

1

πœ‡ 𝐸2

2 = 𝐢1𝐢2

Let z ∈ 𝑅𝐸2 , π‘‘β„Žπ‘Žπ‘› 𝐢2𝑧 = 𝑧. 𝐿𝑒𝑑 𝑦 = 𝐢1𝑧 ∈ 𝑅𝐸1

Also 𝑦 = 𝐢1𝑧 = 𝐢1𝐢2𝑧 = 𝐢2𝐢1𝐢2𝑧 ∈ 𝑅𝐸2

So y ∈ 𝑅𝐸2⋂𝑅𝐸1

Also , 𝐢2 𝑧 βˆ’ 𝑦 = 𝐢2 𝑧 βˆ’ 𝐢1𝑧 = 𝐢2(𝑧 βˆ’ 𝐢1𝐢2𝑧)

= 𝐢2𝑧 βˆ’ 𝐢2𝐢1𝐢2𝑧 = 𝐢2𝑧 βˆ’ 𝐢1𝐢2𝑧 = 𝑧 βˆ’ 𝐢1𝑧 = 𝑧 βˆ’ 𝑦

Hence 𝑧 βˆ’ 𝑦 ∈ 𝑅𝐸2

Also 𝐢1 𝑧 βˆ’ 𝑦 = 𝐢1 𝑧 βˆ’ 𝐢1𝑧 = 𝐢1𝑧 βˆ’ 𝐢12𝑧 = 𝐢1𝑧 βˆ’ 𝐢1𝑧 = 0

β‡’ 𝑧 βˆ’ 𝑦 ∈ 𝑁𝐸1

Hence 𝑧 βˆ’ 𝑦 ∈ 𝑅𝐸2⋂𝑁𝐸1

. So z = 𝑦 + 𝑧 βˆ’ 𝑦 ∈ 𝑅𝐸2⋂𝑅𝐸1

+ 𝑅𝐸2⋂𝑁𝐸1

β‡’ 𝑅𝐸2βŠ† 𝑅𝐸2

⋂𝑅𝐸1+ 𝑅𝐸2

⋂𝑁𝐸1

Obviously , 𝑅𝐸2⋂𝑅𝐸1

+ 𝑅𝐸2⋂𝑁𝐸1

βŠ† 𝑅𝐸2

Hence 𝑅𝐸2= 𝑅𝐸2

⋂𝑅𝐸1+ 𝑅𝐸2

⋂𝑁𝐸1

Also, 𝑅𝐸2⋂𝑅𝐸1

⋂𝑅𝐸2⋂𝑁𝐸1

= 𝑅𝐸2∩ 𝑅𝐸1

∩ 𝑁𝐸1= 𝑅𝐸2

∩ 0 = {0}

Hence 𝑅𝐸2= 𝑅𝐸2

⋂𝑅𝐸1⨁𝑅𝐸2

⋂𝑁𝐸1

Theorem (3) : If 𝐸1 ,𝐸2 are two πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›π‘  π‘œπ‘› π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘ π‘π‘Žπ‘π‘’ 𝑋, π‘‘β„Žπ‘’π‘›

𝐸2𝐢1 = 𝐸2𝐢1𝐢2 ⇔ 𝑁𝐸2= 𝑁𝐸2

∩ 𝑅𝐸1βŠ•π‘πΈ2

∩ 𝑁𝐸1

Proof: Let 𝑁𝐸2= 𝑁𝐸2

∩ 𝑅𝐸1βŠ•π‘πΈ2

βˆ©π‘πΈ1

Let 𝑧 ∈ 𝑋 , π‘‘β„Žπ‘’π‘› 𝐸2 𝐼 βˆ’ 𝐢2 𝑧 = 𝐸2 βˆ’πΈ2𝐢2 𝑧 = 𝐸2 βˆ’ 𝐸2 𝑧 = 0

Hence 𝐼 βˆ’ 𝐢2 𝑧 ∈ 𝑁𝐸2

Let 𝐼 βˆ’ 𝐢2 𝑧 = 𝑧1 + 𝑧2; π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑧1 ∈ 𝑁𝐸2∩ 𝑅𝐸1

π‘Žπ‘›π‘‘ 𝑧2 ∈ 𝑁𝐸2βˆ©π‘πΈ1

Hence 𝐸1𝑧2 = 0, 𝐸2𝑧1 = 0, 𝐸2𝑧2 = 0, 𝐢1𝑧1 = 𝑧1

Now 𝐸2𝐢1 𝐼 βˆ’ 𝐢2 𝑧 = 𝐸2𝐢1 𝑧1 + 𝑧2 = 𝐸2(𝐢1𝑧1 + 𝐢1𝑧2)

= 𝐸2 𝑧1 + 𝐢1𝑧2 = 𝐸2𝑧1 + 𝐸2𝐢1𝑧2 = 𝐸2𝐢1𝑧2 = 𝐸2 𝐸1

2+ πœ‡βˆ’1 𝐸1

πœ‡ 𝑧2

=𝐸2𝐸1

2𝑧2

πœ‡ +

πœ‡βˆ’1

πœ‡ 𝐸2𝐸1𝑧2 = 0

Hence for any z, 𝐸2𝐢1 𝐼 βˆ’ 𝐢2 𝑧 = 0

Therefore ,𝐸2𝐢1 𝐼 βˆ’ 𝐢2 = 0 β‡’ 𝐸2𝐢1 = 𝐸2𝐢1𝐢2

Conversely , let the above relation hold

Page 7: On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – Part I

On ranges and null spaces of a special type of operator named πœ† βˆ’ π‘—π‘’π‘π‘‘π‘–π‘œπ‘›. – Part I

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 5 | Iss.3| Mar. 2015 | 15|

Let 𝑧 ∈ 𝑁𝐸2π‘‘β„Žπ‘’π‘› 𝐸2𝑧 = 0 π‘‘β„Žπ‘’π‘› 𝐢2𝑧 =

𝐸22+ πœ‡βˆ’1 𝐸2

πœ‡ 𝑧 = 0

𝑆𝑖𝑛𝑐𝑒 𝐸1 𝐼 βˆ’ 𝐢1 𝑧 = 𝐸1 βˆ’ 𝐸1𝐢1 𝑧 = 0 , β‡’ 𝐼 βˆ’ 𝐢1 𝑧 ∈ 𝑁𝐸1

π΄π‘™π‘ π‘œ,𝐸2 𝐼 βˆ’ 𝐢1 𝑧 = 𝐸2𝑧 βˆ’ 𝐸2𝑐1𝑧 = 𝐸2𝑧 βˆ’ 𝐸2𝑐1𝑐2𝑧

= 0 βˆ’ 𝐸2𝑐1𝑐2𝑧 = 0(𝑠𝑖𝑛𝑐𝑒 𝐸2𝑧 = 0 β‡’ 𝐢2𝑧 = 0)

π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ , 𝐼 βˆ’ 𝐢1 𝑧 ∈ 𝑁𝐸2 𝐻𝑒𝑛𝑐𝑒 𝐼 βˆ’ 𝐢1 𝑧 ∈ 𝑁𝐸1

∩ 𝑁𝐸2

Also 𝐸2𝑐1𝑧 = 𝐸2𝑐1𝑐2𝑧 = 𝐸2𝑐1 𝑐2𝑧 = 0

Hence 𝑐1𝑧 ∈ 𝑁𝐸2. Also 𝐢1𝑧 ∈ 𝑅𝐸1

Hence 𝐢1𝑧 ∈ 𝑁𝐸2∩ 𝑅𝐸1

π‘ π‘œ 𝑧 = 𝐼 βˆ’ 𝐢1 𝑧 + 𝑐1𝑧 ∈ 𝑁𝐸2βˆ©π‘πΈ1

+ 𝑁𝐸2∩ 𝑅𝐸1

π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ ,𝑁𝐸2βŠ† 𝑁𝐸2

βˆ©π‘πΈ1+ 𝑁𝐸2

∩ 𝑅𝐸1

But 𝑁𝐸2∩ 𝑁𝐸1

+ 𝑁𝐸2∩ 𝑅𝐸1

βŠ† 𝑁𝐸2

π‘†π‘œ 𝑁𝐸2= 𝑁𝐸2

∩ 𝑅𝐸1+ 𝑁𝐸2

∩ 𝑁𝐸1

Also , 𝑁𝐸2∩ 𝑅𝐸1

βˆ©π‘πΈ2∩ 𝑁𝐸1

= 𝑁𝐸2∩ 𝑅𝐸1

βˆ©π‘πΈ1 = 𝑁𝐸2

∩ 0 = {0}

π‘†π‘œ 𝑁𝐸2= 𝑁𝐸2

∩ 𝑅𝐸1βŠ• 𝑁𝐸2

∩ 𝑁𝐸1

REFERENCES [1]. Chandra , P: β€œ Investigation into the theory of operators and linear spaces.” (Ph.D. Thesis, Patna University , 1977) [2]. Dunford, N. and Schwartz, J.: β€œ Linear operators Part I”, Interscience Publishers, Inc., New York,1967, P. 37 [3]. Rudin, W. : β€œ Functional Analysis”, Mc. Grow- Hill Book Company , Inc., New York, 1973,P.126