Números Binomiais

18
5.3. Các bài toán 137 Tóm l/i ta luôn có S 1+ 1 2 + 1 3 + ... + 1 p - 2 + 1 p - 1 (mod p) Theo đnh lí Wolstenholme ta có 1+ 1 2 + 1 3 + ... + 1 p - 2 + 1 p - 1 0 (mod p) S 0 (mod p) S . . . p Ví d 5.14. Cho các sL nguyên không âm i; j ; n tho£ mãn : i + j n. Chøng minh r‹ng: 2 n-i-j n X p=0 n p p i p j 4 Li gi£i. Không m§t tính tŒng quát gi£ sß i j . Ta có: n p p i p j = n i n - i n - p p j Đt A j = n X p=0 n i n - i n - p p j Xét bi”u thøc F (x)= n X j =0 A j x j = n X j =0 n X p=0 n i n - i n - p p j x j = n i n X p=0 n - i n - p n X j =0 p j x j = n i n X p=0 n - i n - p (1 + x) p Chuyên đ• Đflng Thøc TŒ Hæp N Di„n đàn Toán hc

description

Números Binomiais

Transcript of Números Binomiais

  • 5.3. Cc bi ton 137

    Tm li ta lun c S 1 + 12

    +1

    3+ ...+

    1

    p 2+

    1

    p 1(mod p)

    Theo nh l Wolstenholme ta c

    1 +1

    2+

    1

    3+ ...+

    1

    p 2+

    1

    p 1 0 (mod p) S 0 (mod p)

    S... p

    V d 5.14. Cho cc s nguyn khng m i; j;n tho mn : i+ j n.Chng minh rng:

    2nij

    np=0

    (n

    p

    )(p

    i

    )(p

    j

    )4

    Li gii.Khng mt tnh tng qut gi s i j.

    Ta c:(n

    p

    )(p

    i

    )(p

    j

    )=

    (n

    i

    )(n in p

    )(p

    j

    )t Aj =

    np=0

    (n

    i

    )(n in p

    )(p

    j

    )Xt biu thc

    F (x) =

    nj=0

    Ajxj

    =

    nj=0

    np=0

    (n

    i

    )(n in p

    )(p

    j

    )xj

    =

    (n

    i

    ) np=0

    (n in p

    ) nj=0

    (p

    j

    )xj

    =

    (n

    i

    ) np=0

    (n in p

    )(1 + x)p

    Chuyn ng Thc T Hp N Din n Ton hc

  • 138 5.3. Cc bi ton

    =

    (n

    i

    )(1 + x)n

    np=0

    (n in p

    )1

    (1 + x)np

    =

    (n

    i

    )(1 + x)n

    (1 +

    1

    1 + x

    )ni=

    (n

    i

    )(1 + x)i(2 + x)ni

    Vy F (x) =(n

    i

    )(1 + x)i(2 + x)ni v Aj l h s ca xj trong khai

    trin ca F (x).D thy l h s ca cc n thc ca x c bc b hn j trong khaitrin (2 + x)ni u chia ht cho 2nij

    Do 2nij |Aj . y l pcm.

    V d 5.15 (Australia MO). Tm gi tr k t nhin nh nht sao chos

    n m : km+ n+ 1

    (2n

    n+m

    ) N

    4

    Li gii.

    Trc ht ta chng minh1

    m+ 1

    (2m

    m

    ) Z

    Ta c:

    1

    m+ 1

    (2m

    m

    )=

    (1 m

    m+ 1

    )(2m

    m

    )=

    (2m

    m

    ) (2m)!

    (m 1)!(m+ 1)!

    =

    (2m

    m

    ) (2m)!

    (m 1)!(m+ 1)!=

    (2m

    m

    )(

    2m

    m 1

    ) Z

    Gi s cho trc s m N. V vi n = m, s km+ n+ 1

    (2n

    n+m

    )=

    k

    2m+ 1phi l s t nhin nn gi tr phi tm k N phi chia ht

    cho 2m+ 1, v th k 2m+ 1.

    Din n Ton hc N Chuyn ng Thc T Hp

    Ti liu tham kho

    [1] http://diendantoanhoc.net/forum/

    [2] http://www.artofproblemsolving.com/

    [3] http://www.math.net.vn

    [4] http://forum.mathscope.org/

    [5] 102 Combinatorial Problems, Titu Andreescu, Zuming Feng

    171

  • 170 6.5. Bi tp

    Bi 2. Chng minh rng vi mi s t nhin n 1 chng ta c:nr=1

    r

    (n

    r

    )2= n

    (2n 1n 1

    ).

    Bi 3. (IMO 1989) Cho n, k l cc s nguyn dng v S l tp hpgm n im trn mt phng tha mn:(1) Khng c ba im no thuc tp S thng hng.(2) Vi mi im P thuc tp S th c t nht k im thuc Scch u vi im P.Chng minh rng: k m n bng

    2m+ 1

    n+m+ 1

    (2n

    n+m

    )=

    (1 nm

    n+m+ 1

    )(2n

    n+m

    )=

    (2n

    n+m

    ) (2n)!

    (n+m+ 1)!(nm 1)!

    =

    (2

    n+m

    )(

    2n

    n+m+ 1

    ) Z

    Vy gi tr k nh nht bng 2m+ 1.

    V d 5.16 (T8/419-THTT). Tm tt c cc cp s nguyn dng n, ktha mn iu kin (

    3n

    n

    )= 3n.nk

    4

    Li gii.Ta c: (

    3n

    n

    )= 3n.nk

    (3n)!n!(2n)!

    = 3n.nk

    (3n 2)!(3n 1).3n2n2(n 1)!(2n 1)!

    = 3n.nk

    (3n 2)!(n 1)!(2n 1)!

    =2.3n1nk+1

    3n 1

    V

    (3n 2)!(n 1)!(2n 1)!

    =

    (3n 2n 1

    ) Z 2.3n1.nk+1

    ... 3n 1 (5.4)

    Li c (3, 3n 1) = 1 v (n, 3n 1) = 1 nn t (5.4) suy ra

    2... 3n 1 3n 1 2 n 1

    Chuyn ng Thc T Hp N Din n Ton hc

  • 140 5.3. Cc bi ton

    Do n = 1. Ta c(

    3n

    n

    )= 3n.nk

    (3

    1

    )= 3.1k

    ng thc ny tha mn vi mi s k nguyn dng.Vy cp s (n, k) cn tm l (1, k) vi k l s nguyn dng bt k.

    Nhn xt. C th gii bi ton ny bng cch khc nh sau:Vi n = 1, ta c kt qu nh trn; vi n 2, bng quy np ta chng

    minh rng(

    3n

    n

    )6... 3n nn bi ton khng tha mn.

    V d 5.17 (IMO 1974). Chng minh rng vi mi s nguyn dngn th

    nk=0

    (2n+ 1

    2k + 1

    )23k 6

    ... 54

    Li gii (1).Ta c:

    nk=0

    (2n+ 1

    2k + 1

    )23k =

    nk=0

    (2n+ 1

    2k

    )23(nk)

    Mt khc v 16 chia 5 d 1 nn ta c:

    23(ni) 12ni

    =2i

    2n(mod 5)

    Suy ra 2n.nk=0

    (2n+ 1

    2k + 1

    ).23k S2n+1 (mod 5)

    vi S2n+1 =nk=0

    (2n+ 1

    2k

    )2i

    Do vy, gi ta s i tnh S2n+1 =nk=0

    (2n+ 1

    2k

    )2i

    Xt hm sinh f(x) = (1 + x

    2)2n+1 =2n+1i=0

    (i

    2n+ 1

    )2i,theo nh l

    RUF th:

    S2n+1 =1

    2(f(1) + f(1)) = 1

    2

    ((1 +

    2)2n+1 + (1

    2)2n+1

    )Din n Ton hc N Chuyn ng Thc T Hp

    6.5. Bi tp 169

    rng 0 = (1 1)r =ri=0

    (1)i(r

    i

    )= 1

    ri=1

    (1)i1(r

    i

    ).

    Vy chng ta cri=1

    (1)i1(r

    i

    )= 1, tc l x c m 1 ln

    v phi.

    Vy nguyn l b tr c chng minh.

    Nhn xt.Qua mt s bi ton v v d trn cc bn c th thy, phng phpm bng hai cch c din t bng ngn ng hon ton d hiu.Bng cch chng ta c th p dng gii c nhanh gn mt s biton m cc phng php khc t ra km hu hiu v phc tp hn.

    Bn cnh u im trn th phng php m bng hai cch cng cnhiu nhc im v tng i yu i vi cc bi ton phc tp (nhtng an du, tng cha phn thc). Vn quan trng trong vic sdng phng php ny l ta phi phn tch c bi di dngmt bi ton m! iu ny cn ti s quan st v kh nng nhybn ca mi ngi. Tuy nhin cn mt s cch nhn bit du hiu vchuyn i h thng cho phng php ny, song do thi gian gp rtnn tc gi cha c iu kin gii thiu n bn c trong chuyn ny.Hn gp li cc bn vo mt dp khc!

    Sau cng, mi cc bn cng luyn tp vi mt s bi ton sau:

    6.5 Bi tp

    Bi 1. Chng minh rng vi mi s t nhin n k 1 chng ta c:

    k

    (n

    k

    )= n

    (n 1k 1

    )= (n k + 1)

    (n

    k 1

    )

    Chuyn ng Thc T Hp N Din n Ton hc

  • 168 6.4. ng dng m hai cch gii cc bi ton ri rc

    T chng ta c:

    b

    h=

    (c

    2

    )(k

    2

    ) = c(c 1)k(k 1)

    V d 6.17 (Nguyn l b tr). Cho A1, A2, ..., An l cc tp bt k.Khi chng ta c:

    ni=1

    Ai

    =ni=1

    |Ai|

    1i

  • 142 5.3. Cc bi ton

    Ta c:(n

    k

    )=n

    k

    (n 1k 1

    )nn

    (qpm

    n

    )=

    (qpm

    kq

    )=q

    kpm

    (qpm1

    kq1

    )

    Do (k, p) = 1 v(qpm1

    kp1

    )l s nguyn dng suy ra

    (qpm

    n

    )... pm

    M n 1 nn pm... pmn+1

    T ta c iu phi chng minh. Li gii (2).Ta c: (

    qpm

    n

    )=qpm(qpm 1)(qpm n+ 1)

    n!(5.5)

    Gi a v b th t l s m cao nht ca p trong phn tch tiu chun

    ca t v mu trong (5.5) th(qpm

    n

    )... pab.

    Nhn thy a m.

    b =

    n

    p

    +

    n

    p2

    + ...

    n

    pk

    vi k N, pk n pk+1

    n(

    1

    p+

    1

    p2+ ...+

    1

    pk

    ) 3 v tphp M = {1, 2, ..., p}. Vi mi s nguyn k tha mn 1 k p ta t

    Chuyn ng Thc T Hp N Din n Ton hc

  • 144 5.3. Cc bi ton

    : Ek = {A M : |A| = k} v xk =AEk

    (minA+ maxA).

    Chng minh rng:

    p1k=1

    xk

    (p

    k

    ) 0 (mod p3)

    4

    Li gii.Gi s A = {m1;m2; ...;mk} Ek.Suy ra A = {p+ 1m1; ...; p+ 1mk} Ek. Ta c nhn xt sau:Nu m1 = minA th p+ 1m1 = maxA v mk = maxAth p+ 1mk = minASuy ra:

    2xk =AEk

    (m1 +p+1+ak+p+1ak) =AEk

    2(p+1) =

    (p

    k

    )2(p+1)

    hay xk =(p

    k

    )(p+ 1).

    Do ta cn chng minh (p+ 1)p1k=1

    (p

    k

    )2 0 (mod p3) hay

    p1k=1

    (p

    k

    )2 0 (mod p3) (5.6)

    Tht vy,ta c: (p

    k

    )... p 1

    p

    (p

    k

    )=

    (p 1)!k!(p k)!

    Do (5.6) tng ng vi:p1k=1

    ((p 1)!k!(p k)!

    )2 0 (mod p)

    t ak =(p 1)!k!(p k)!

    k!ak = (p 1)(p 2)...(p k + 1) (1)k1(k 1)! (mod p) kak (1)k1 (mod p)

    Din n Ton hc N Chuyn ng Thc T Hp

    6.3. ng dng phng php m gii cc bi ton th 165

    vo tp ny mt phn t o l xi vi qui c nu trong 4 s cchn t Ai trong c phn t xi th ng ngha vi trong 2 cpban u c 1 phn t lp li 2 ln trong 3 phn t cn li.

    Sau khi chn ra 4 phn t nu ko c xi th ta c(

    3

    2

    )= 3 cch

    to chng thnh 2 cp.Nu c xi th c 3 cch gn gi tr cho xi (l mt trong 3 gi trcn li) vi mi gi tr xi ch cho ng 1 cch phn cp. Tm li

    trng hp ny s c 3ni=1

    (ki + 1

    4

    ).

    Bc 3: Xt biu thc v phi (m theo cch 2)

    T n tp ny ta to cni=1

    (ki2

    )cp phn t thuc cng tp.

    Do v phi l s cch chn ra 2 cp nh vy.

    T y ta c iu phi chng minh.

    6.3 ng dng phng php m gii cc bi ton th

    V d 6.14. Trong mt bui hp c n ngi tham gia v c mt s cibt tay (mi ci bt tay to thnh t hai ngi, hai ngi bt ri thkhng bt tay li). Chng minh rng nu s ngi tham gia bt tay lmt s l th s ci bt tay c to ra l mt s chn.Bi ton trn tng ng vi bi ton sauCho th G = (V,E). Khi

    2|E| =vV

    deg(v).

    Trong V l s nh v E l s cnh ca th. 4Li gii.

    y chng ta gii bi ton trn theo phng php m bng haicch.

    Chuyn ng Thc T Hp N Din n Ton hc

  • 164 6.2. ng dng chng minh ng thc t hp

    Bc 3: Xt biu thc v phi (m theo cch 2)Gi an l s tp con ca tp (1; 2; ...;n) m khng cha 2 snguyn lin tip.Xt an+1Nu phn t cui cng l n+ 1 th phn t lin trc n khngth l n, nn c an1 tp con.Nu phn t cui cng khng phi l n+ 1 th c an tp con. an+1 = an + an1D thy a0 = 1; a1 = 2 nn

    an =5 + 3

    5

    10

    (1 +

    5

    2

    )n+

    5 3

    5

    10

    (1

    5

    2

    )nNh vy:

    bn+12 ci=0

    (i

    n i+ 1

    )=

    5 + 3

    5

    10

    (1 +

    5

    2

    )n+

    5 3

    5

    10

    (1

    5

    2

    )n

    V d 6.13. Cho k1; k2; ...; kn l cc s nguyn dng ln hn 1. Chngminh rng:

    1i

  • 146 5.3. Cc bi ton

    Nn:

    S

    3m1= (n+ 3

    3n 1.+ 3

    (3n 1)2.2)3m

    + (n+ 3

    3n 1.2 + 3

    (3n 1)2.)3m

    + (n+ 3

    3n 1 + 3

    (3n 1)2)3m

    t

    (n+ 3

    3n 1.+ 3

    (3n 1)2.2)3m = am

    (n+ 3

    3n 1.2 + 3

    (3n 1)2.)3m = bm(n+ 3

    3n 1 + 3

    (3n 1)2)3m = cm

    Ch 1 + + 2 = 0; 3 = 1 v an + bn + cn l s nguyn vi mi n

    Ta c: a1 + b1 + c1 = 3n; a3 + b3 + c3...3n; a5 + b5 + c5

    ...3n.

    Gi s a2i+1 + b2i+1 + c2i+1... 3n vi mi i < k ta c:

    a2k+1 + b2k+1 + c2k+1 = (a2k1 + b2k1 + c2k1)(a2 + b2 + c2)

    (a2k3 + b2k3 + c2k3)(a2b2 + c2b2 + a2c2)+ a2b2c2(a2k5 + b2k5 + c2k5)

    chia ht cho 3n theo gi thit quy np.

    Nn theo nguyn l qui np th a2k+1 + b2k+1 + c2k+1... 3n vi mi k

    nguyn dng, tc l S chia ht cho n3m.

    Hay1

    n3m

    mk=0

    (3m

    3k

    )(3n 1)k Z

    V d 5.22 (Mongolia TST 2011). Cho p l s nguyn t. Chng minhrng

    pk=0

    (1)k(p

    k

    )(p+ k

    k

    ) 1 (mod p3)

    4

    Li gii.Xt hm sinh:

    f(x) =p=0

    pk=0

    (1)k(p

    k

    )(p+ k

    k

    )xp

    Din n Ton hc N Chuyn ng Thc T Hp

    6.2. ng dng chng minh ng thc t hp 163

    Bc 3: Xt biu thc v phi (m theo cch 2)Gi xn l s cch chia tha mn bi ton vi n hc sinh.Xt xn+1Gi s nhm c chia cui cng c k ngi, khi c k cchchia nhm ny ( thc ra l k cch chn nhm trng), v gn+1kcch chia n k ngi trc, nn c k.gn+1k cch chia.Quy c g0 = 1, ta c: g1 = 1

    gn+1 =nk=0

    kgn+1k

    gn+1 = 3gn gn1Kt hp vi g0 = 1, g1 = 1 ta c:

    gn =15

    (1 +52

    )2n+1

    (1

    5

    2

    )2n+1Nh vy ta c iu phi chng minh.

    V d 6.12. Tnh tng:

    bn+12 ci=0

    (n i+ 1

    i

    )4

    Li gii.

    Bc 2: Xt biu thc v tri (m theo cch 1)Ta m s tp con c i phn t ca tp hp (1; 2; 3; ...;n) mkhng cha hai s nguyn lin tip.Gi A l h tt c cc tp con c tnh cht nu trn v B l ttc cc tp con ca tp hp 1; 2; ...;n (r 1).Xt nh x f : A B nh sau:f : a1; a2; ...; ar b1; b2; ...; br vi bi = ai i+ 1, i = 1; r

    D thy f l 1 song nh nn |A| = |B| =(n i+ 1

    i

    )

    bn+12 ci=0

    (n i+ 1

    i

    )l s cc tp con ca 1; 2; ...;n

    Chuyn ng Thc T Hp N Din n Ton hc

  • 162 6.2. ng dng chng minh ng thc t hp

    + Nu tt c cc gia nh u c con c nhn qu th c(n

    n

    ).2n cch pht qu.

    Vy tng cng cnk=0

    (n

    k

    ).2k cch pht qu.

    Bc 3: Xt biu thc v phi (m theo cch 2)Mi gia nh th c 3 cch (c 2 con u khng c qu, c 2 conu c qu, hoc 1 a c qu 1 a khng c qu).

    Nh vy c tt c 3n cch pht qu.T y ta c iu phi chng minh.

    V d 6.11.Chng minh rng:

    nk=1

    (n+ k 1

    2k 1

    )=

    15

    (1 +52

    )2n+1

    (1

    5

    2

    )2n+14

    Li gii.

    Bc 1: Pht biu li thnh bi ton m quen thuc.Mt lp hc c n hc sinh i d ngoi. C gio chia thnh mts nhm v trong mi nhm chn ra mt nhm trng tinqun l.Hi c tt c bao nhiu cch chia?

    Bc 2: Xt biu thc v tri (m theo cch 1)Xt s nhm l k. M hnh ha bi ton nh sau:Ta cho trng nhm cm mt ci ct, gia 2 nhm c 1 ci ctnn c tt c 2k 1 ci ct trong n+ k 1 v tr.

    Do vi k nhm th c(n+ k 1

    2k 1

    )cch chia.

    Nh vy c tt cnk=1

    (n+ k 1

    2k 1

    )cch chia.

    Din n Ton hc N Chuyn ng Thc T Hp

    5.3. Cc bi ton 147

    Ta c:

    f(x) =p=0

    pk=0

    (1)k(p

    k

    )(p+ k

    k

    )xp

    =k=0

    (1)k(p

    k

    )xpk

    p=0

    (p+ k

    k

    )xk

    =k=0

    (1)k(p

    k

    )xpk 1

    (1 x)p+1

    =xp

    (1 x)p+1k=0

    (p

    k

    )(1x

    )k=

    xp

    (1 x)p+1

    (1 1

    x

    )p= 1

    1 x= 1 x x2 ...

    Suy rap

    k=0

    (1)k(p

    k

    )(p+ k

    k

    ) 1 (mod p3)

    V d 5.23. Cho p l s nguyn t l. Chng minh rng

    T =

    pk=0

    (p

    k

    )(p+ k

    k

    ) (2p + 1)

    ... p24

    Li gii.Ta c:

    T =

    pk=0

    (p

    k

    )(p+ k

    k

    ) (2p + 1) =

    pk=0

    (p

    k

    )(p+ k

    k

    )

    (p

    k=0

    (p

    k

    )+ 1

    )

    T =p1k=1

    (p

    k

    )(p+ k

    p

    )+ 1 +

    (2p

    p

    )

    (p1k=1

    (p

    k

    )+ 3

    )

    =

    p1k=1

    (p

    k

    )((p+ k

    k

    ) 1)

    +

    ((2p

    p

    ) 2)

    Chuyn ng Thc T Hp N Din n Ton hc

  • 148 5.4. Bi tp

    Ta cn chng minhp1k=1

    (p

    k

    )((p+ k

    k

    ) 1)

    ... p2 th ta ch cn chng

    minh(p+ k

    k

    ) 1

    ... p vi 1 k p 1 v(p

    k

    )... p.

    Tht vy :(p+ k

    k

    ) 1 = (p+ k)!

    p!.k! 1 = (p+ 1)(p+ 2)...(p+ k) k!

    k!

    V (p+ 1)(p+ 2)...(p+ k) k! (mod p) (p+ 1)(p+ 2)...(p+ k) k! chia ht cho p v k!.

    M (p, k!) = 1 (p+ 1)(p+ 2)...(p+ k) k!... k!p

    (p+ k

    k

    ) 1

    ... p

    p1k=1

    (p

    k

    )[(p+ k

    k

    ) 1]... p2

    M ta li c(

    2p

    p

    ) 2

    ... p2 (nh l Wolstenholme, xem bi 5.1)

    Do , ta c T... p2.

    5.4 Bi tp

    Bi 1. Cho p l s nguyn t v p 5. Chng minh rng(

    2p

    p

    ) 2

    (mod p3)

    Bi 2. (Putnam 1997) Cho p l s nguyn t v a, b l s dng thamn a b > 0. Chng minh(

    pa

    pb

    )(a

    b

    )(mod p)

    Bi 3. Cho p l s nguyn t. Chng minh rng

    k = 0, p 1 :(p 1k

    ) (1)k (mod p)

    Din n Ton hc N Chuyn ng Thc T Hp

    6.2. ng dng chng minh ng thc t hp 161

    Bc 2: Xt biu thc v tri (m theo cch 1)Sau chn ra 3 bn cho ba v tr nht, nh, ba,..., bt th thtng cn tnh chnh l s cch chn .

    Bc 3: Xt biu thc v phi (m theo cch 2)Chn lun hng nht, nh,...bt ngay t n bn v b sung thmmt s bn trong n 3 bn cn li thi vng chung kt.Nu chn kiu ny ny th c n(n 1)(n 2)2n3 gii php v 1s bn chn theo cch kia chnh l 1 tp con trong n 3 c cnli.

    T c kt qu cn tm l n(n 1)(n 2)2n3T y ta c iu phi chng minh.

    V d 6.10.Chng minh rng:

    kn

    (n

    k

    ).2k = 3n

    4

    Li gii.

    Bc 1: Pht biu li thnh bi ton m quen thuc.C n gia nh trong 1 cng ty, mi gia nh c 2 ngi con. Nhnngy trung thu, cng ty t chc pht qu cho cc chu c kt quhc tp cao, nhng trong cng 1 gia nh khng c 2 chu nocng c nhn qu. Hi c bao nhiu cch pht qu?

    Bc 2: Xt biu thc v tri (m theo cch 1)

    + Nu khng c gia nh no c con c nhn qu th c(n

    0

    ).20 cch pht qu.

    + Nu c 1 gia inh c con c nhn qu th c(n

    1

    ).21 cch

    pht qu.

    + ... ...

    Chuyn ng Thc T Hp N Din n Ton hc

  • 160 6.2. ng dng chng minh ng thc t hp

    Bc 2: Xt biu thc v tri (m theo cch 1)Thy ghp n hc sinh nam v n hc sinh n thnh n i. (viclm ny coi nh thc hin t u v khng nh hng g ncch chia v ca thy)

    - Chn ra k i v chia cho mi i 1 v - c 2k(n

    k

    )cch chn

    (v mi i c 1 v nn k i s c 2k kt cc khc nhau), nhvy cn li n k v v n k i cn li. Thy tip tc chn ran k

    2

    i v chia cho mi i 2 v - c

    (n knk2

    ) cch.- By gi thy cn li S = n k 2

    n k

    2

    v.

    S = 0 nu n k l s chn (khi n v c chia ht)S = 1 nu n k l s l (khi chic v cn li dnh cho thy)- D thy rng k c th nhn cc gi tr t 0 n n

    Bc 3: Xt biu thc v phi (m theo cch 2)Nu n v c chia ngu nhin cho 2n hc sinh v c mnh th

    xy ra(

    2n+ 1

    n

    )trng hp.

    Do , theo cch chia ca thy ta c tt c:nk=0

    2k(n

    k

    )(n knk2

    )cc cch chia n v cho 2n+ 1 ngi.T y ta c iu phi chng minh.

    V d 6.9. Tnhnk=3

    (k 2)(k 1)k(n

    k

    )4

    Li gii.

    Bc 1: Pht biu li thnh bi ton m quen thuc.Gi s c n bn tham gia thi hi khe Ph ng vng s tuyncn chn ra mt s bn vo vng chung kt.

    Din n Ton hc N Chuyn ng Thc T Hp

    5.4. Bi tp 149

    Bi 4. Cho p l s nguyn t v gi bt k k, a N : 0 a pk 1.Chng minh rng(

    pk 1a

    ) (1)a (mod p)

    Bi 5. Chng minh rng nu n = 2m 1 th k = 0, n :(n

    k

    )l s l.

    Bi 6. Tm s d ca(

    2009

    k

    )khi chia cho 2011.

    Bi 7. Cho k l s t nhin chn v p l s nguyn t l. Chng minh

    rng nu k khng chia ht cho p 1 thp1i=1

    (p

    i

    )k ... pk+1Bi 8. Tm tt c s nguyn n > 1 sao cho k N \ {1} :

    (kn

    n

    )... kn.

    Bi 9. Chng minh rng:

    2.1

    (2000

    2

    )+ 3.2

    (2000

    3

    )+ ..+ 2000.1999

    (2000

    1999

    )... 3998000

    Bi 10. Chng minh rng vi mi s t nhin n k :

    CLN[(n

    k

    );

    (n+ 1

    k

    ); . . . ;

    (n+ k

    k

    )]= 1

    Chuyn ng Thc T Hp N Din n Ton hc

  • 6.2. ng dng chng minh ng thc t hp 159

    xk+1 > max {x1, x2, ..., xk}Hi c bao nhiu cch chn?

    Bc 2: Xt biu thc v tri (m theo cch 1)ng vi mi xk+1 = i+ 1, (1 i n), ta c i cc chn x1, i cchchn x2, ...; i cch chn xk.Do , s cc cch chn l: S = 1k + 2k + ...+ nk

    Bc 3: Xt biu thc v phi (m theo cch 2)Ta s chn ra k+ 1 s t n+ 1 s, s ln nht, ta chn lm xk+1,cc s cn li, ta sp th t l xong.Gi i(0 i k) l s cc phn t bng nhau trong nhmx1, x2, ..., xk.

    Chn k i+ 1 s khc nhau t n+ 1 s, ta c(

    n+ 1

    k i+ 1

    )cch.

    Xp th t k i s khc nhau vo k ch trng (cc ch trng cnli, hin nhin dnh cho i s bng nhau), ta c Akik cch.Vy s cch chn l:

    S =k1i=0

    Akik

    (n+ 1

    k i+ 1

    )

    T y ta c iu phi chng minh.

    V d 6.8.

    nk=0

    2k(n

    k

    )(n knk2

    ) = (2n+ 1n

    )4

    Li gii.

    Bc 1: Pht biu li thnh bi ton m quen thuc.Thy Th, GVCN lp 10A gm n hc sinh nam v n hc sinhn. Ti nay, Rp chiu phim quc gia, chiu mt b phim rthay, thy nh t chc cho c lp i xem... Cui cng thy Thch mua c n v. Thy suy ngh:

    Chuyn ng Thc T Hp N Din n Ton hc

  • 158 6.2. ng dng chng minh ng thc t hp

    Bc 2: Xt biu thc v tri (m theo cch 1)Cho 8n vin bi ny vo 4n hp, mi hp c 2 vin:u tin chn ra ng k hp sao cho mi hp c ng 1 vin bic ly ra.

    S cch chn 2n 2k hp trong 4n hp l(

    4n

    2n 2k

    ) Trong mi hp trong 2n 2k hp trn ta chn ra ng 1 bi,

    trong 2 vin bi c trong hp, nn s cch chn l22n2k = 4nk

    Chn 2k vin bi cn li trong 2n+2k hp cn li sao cho mi

    hp s c ng 2 bi c chn s l k hp nn c(

    2n+ 2k

    k

    )cch chn.

    Bc 3: Xt biu thc v phi (m theo cch 2)Ta s m s cch chn 2n vin bi t 8n vin bi ny khi c(

    8n

    2n

    )cch.

    T suy ra s cch chn 2n trong 8n vin bi theo cch m th

    2 s lnk=0

    4nk(

    4n

    2n+ 2k

    )(2n+ 2k

    k

    )T y ta c iu phi chng minh.

    V d 6.7. Chng minh rng:

    1k + 2k + ...+ nk =k1i=0

    Akik

    (n+ 1

    k i+ 1

    )vi k = 1, 2, 3, ... 4Li gii.

    Bc 1: Pht biu li thnh bi ton m quen thuc:T tp cc s nguyn dng A = {1, 2, ..., n+ 1}, ta chn ra bsp th t (x1, x2, ..., xk+1) tha mn iu kin:

    Din n Ton hc N Chuyn ng Thc T Hp

    Chng

    6K thut m bng haicch chng minhng thc t hp

    6.1 Nguyn l m bng hai cch 152

    6.2 ng dng chng minh ng thc thp 153

    6.3 ng dng phng php m gii ccbi ton th 165

    6.4 ng dng m hai cch gii cc biton ri rc 167

    6.5 Bi tp 169

    Hong Minh Qun (batigoal)Nguyn Hin Trang (tranghieu95)

    Tm tt ni dung

    K thut m bng hai cch l mt phng php ph bin v c nhiu tc gi vit v n. Tuy nhin bn c hiu ti sao li giic nh th, hoc cch xy dng cc bc gii cho bi ton s dngk thut ny nh th no th nhiu bi vit li cha cp n. Trongkhun kh bi vit nh ny tc gi hy vng cung cp c phn no tng ca phng php ny ti bn c.

    151

  • 152 6.1. Nguyn l m bng hai cch

    6.1 Nguyn l m bng hai cch

    Cng mt s lng th kt qu m c theo hai cch lnh nhau .

    Nguyn l tng chng nh rt n gin ny nhng li l khi ngunca nhiu tng gii cc bi ton t hp hay v kh. Bi vit sauy s phn tch mt s tng cho vic s dng nguyn l ny. chng minh mt ng thc t hp c dng A = B. Chng ta cth thc hin cc bc d on sau y s dng phng php mbng hai cch:

    6.1.1 Cc bc thc hin

    Bc 1: Pht biu li bi ton v m mt s kin quen thuc.

    Bc 2: m theo v tri ca ng thc.

    Bc 3: m theo v phi ca ng thc.

    6.1.2 Ghi nh cn thit

    Nu v tri (hoc v phi) l tng cc biu thc th cch mv tri (hoc v phi) ta chia thnh cc trng hp ring m dng quy tc cng.

    Nu v tri (hoc v phi) l tch cc biu thc th cch mv tri (hoc v phi) ta chia thnh cc cng on cng honthnh m dng quy tc nhn.

    Trong bi vit ny, chng ti minh ha k thut m bng hai cchthng qua cc bi ton ni ting v a phn l cc bi ton, cc nhl c tn nhm minh ha cho tng ca bi vit.Sau y l mt s ng dng ca phng php m bng hai cch.Chng ti phn tch v trnh by chi tit hai v d m u, cc v dsau tng phn tch tng t.

    Din n Ton hc N Chuyn ng Thc T Hp

    6.2. ng dng chng minh ng thc t hp 157

    V d 6.5. Vi n nguyn dng cho trc. Chng minh rng:

    nk=0

    (2k

    k

    )(2n 2kn k

    )= 4n

    4

    Li gii.

    Bc 1: Pht biu li thnh bi ton m quen thuc:Mt on thng c di n c t bng 4 mu, D,X, V, T .

    Bc 2: Xt biu thc v tri (m theo cch 1)Ta s chn ra mt tp cch t mu D v X sao cho D +X = k

    th s cch chn s lki=0

    (i

    k

    )(k

    k i

    )=

    (2k

    k

    )khi s cch chn ra cc on mu V, T s lkj=0

    (n kj

    )(n kk j

    )=

    (2n 2kn k

    )

    Bc 3: Xt biu thc v phi (m theo cch 2)R rng ta c 4n cch nh th.

    Do vi mi k c nh th ta c s cch t s l(

    2k

    k

    )(2n 2kn k

    )Cho k chy t 0 n n ta c s cch t mu l

    ni=0

    (2k

    k

    )(2n 2kn k

    )T y ta c iu phi chng minh.

    V d 6.6.

    nk=0

    4nk(

    4n

    2n+ 2k

    )(2n+ 2k

    k

    )=

    (8n

    2n

    ); n N

    4

    Li gii.

    Bc 1: Pht biu li thnh bi ton m quen thuc: Xt 8nvin bi.

    Chuyn ng Thc T Hp N Din n Ton hc

  • 156 6.2. ng dng chng minh ng thc t hp

    V d 6.4. Chng minh rng vi n m thk0

    (n

    k

    )(k

    m

    )=

    (n

    m

    )2nm

    4

    Li gii.

    Bc 1: Pht biu li bi ton m quen thuc:Gi s rng t n hc sinh ca lp hc, gio vin ch nhim cnchn ra mt i vn ngh s lng ngi ty , trong c mhc sinh cm micro. Khi gio vin ch nhim c hai phngn thc hin.

    Bc 2: Xt biu thc v tri (m theo cch 1)

    Trc ht gio vin chn ra k ngi t n ngi. Khi c(n

    k

    )cch chn , sau t k ngi ny s chn ly m ngi cm micro.Cho k chy t 0 n n chng ta c

    k0

    (n

    k

    )(k

    m

    ) Bc 3: Xt biu thc v phi (m theo cch 2)

    Chn ngay m hc sinh cm Micro t n hc sinh ca lp, sau chn b sung thm mt nhm ty t nm ngi cn li. Trongnm ngi ny i vi mi ngi c th c chn hoc khngc chn nn c 2nm cch chn.

    Vy c thy c(n

    m

    )2nm

    Do chng ta ck0

    (n

    k

    )(k

    m

    )=

    (n

    m

    )2nm

    Nhn xt. Vi tng tng t v d trn, bn c c th chng minhng thc sau:Chng minh rng vi n,m N th

    mr=0

    2nr(n

    r

    )(m

    r

    )=

    nr=0

    (n+m r

    m

    )(n

    r

    ).

    Din n Ton hc N Chuyn ng Thc T Hp

    6.2. ng dng chng minh ng thc t hp 153

    6.2 ng dng chng minh ng thc t hp

    V d 6.1. (Chng minh ng thc Pascal)Vi mi s nguyn dng n k 1 chng ta c(

    n

    k

    )=

    (n 1k 1

    )+

    (n 1k

    )4

    Li gii.

    Bc 1: Pht biu li thnh bi ton m quen thuc:Tri h ton hc c n hc sinh tham d ban t chc cn chn rak hc sinh lm bi thi mn t hp . Nh vy ban t chc c haicch m s cch chn.

    Bc 2: Xt biu thc v tri (m theo cch 1)Nu chn k hc sinh bt k trong n hc sinh th ban t chc c(n

    k

    )cch chn.

    Bc 3: Xt biu thc v phi (m theo cch 2)Quan st v phi ta thy v phi l tng ca hai biu thc thp nn iu gi cho chng ta nh ti xt cc kh nng dng quy tc cng.Gi s Long l mt trong n hc sinh .

    Phng n 1 :Nu Long c chn tham d thi mn t hp th cn chnk 1 ngi trong s n 1 ngi cn li. Khi ban t chc

    c(n 1k 1

    )cch chn.

    Phng n 2 :Nu Long khng c chn thi mn t hp th cn chn racho k ngi trong s n 1 ngi cn li. Khi ban t

    chc c(n 1k

    )cch chn.

    Chuyn ng Thc T Hp N Din n Ton hc

  • 154 6.2. ng dng chng minh ng thc t hp

    Nh vy theo nguyn l m bng hai cch chng ta c ng thc cchng minh.

    V d 6.2. Chng minh rng:(n

    0

    )+

    (n

    1

    )+ ...+

    (n

    n

    )= 2n

    4

    Li gii.

    Bc 1: Pht biu bi ton di li di dng ton m quenthuc: Tm s cch chn mt s s t n s cho trc.

    Bc 2: Xt biu thc v tri (m theo cch 1)

    + Nu chn 0 vin c(n

    0

    )cch

    + Nu chn 1 vin c(n

    1

    )cch

    + ... ...

    + Nu chn n vin c(n

    n

    )cch

    Vy tng cng c(n

    0

    )+

    (n

    1

    )+

    (n

    2

    )+ ...+

    (n

    n

    )cch.

    Bc 3: Xt biu thc v phi (m theo cch 2)Mi s s c 2 trng thi (c chn v khng c chn), mc n s nh vy nn c 2n cch chn.

    Nh vy ta c iu cn chng minh.

    V d 6.3. (Chng minh ng thc Vandermonde.)(n

    0

    )(m

    k

    )+

    (n

    1

    )(m

    k 1

    )+...+

    (n

    k

    )(m

    0

    )=

    (m+ n

    k

    ); vi k n m.

    4Li gii.

    Din n Ton hc N Chuyn ng Thc T Hp

    6.2. ng dng chng minh ng thc t hp 155

    Bc 1: Pht biu li thnh bi ton m quen thuc. Cng tyX gm n nhn vin nam v m nhn vin n cn chn ra k ngi lp thnh i tnh nguyn.

    Bc 2: Xt biu thc v phi (m theo cch 1)Chn ngu nhin k ngi trong cng ty gm n+m ngi th c(m+ n

    k

    )cch chn.

    Bc 3: Xt biu thc v tri (m theo cch 2)Quan st v tri ta thy v tri cc s hng thnh phn l tchca hai biu thc t hp nn iu gi cho chng ta nh tixt cc kh nng dng quy tc nhn.

    Chn ra i nhn vin nam v ki nhn vin n th c(n

    i

    )(m

    k i

    )cch. V s ngi c chn l ty trong gii hn cho php kngi nn cho i chy t 0 n k, ta c tng tt c cc cch chnnh vy l:(

    n

    0

    )(m

    k

    )+

    (n

    1

    )(m

    k 1

    )+ ...+

    (n

    k

    )(m

    0

    )Vy ng thc c chng minh.

    Nhn xt. ng thc Vandermonde c vit thu gn nh sau:ki=0

    (n

    i

    )(m

    k i

    )=

    (m+ n

    k

    )Khi :a. Vi m = n th chng ta c ng thc quen thuc

    ni=0

    (n

    i

    )2=

    (2n

    n

    )b. Vi (0 ki ni); i = 1, r th

    k1+k2+...+kr=k

    (n1k1

    )(n2k2

    )...

    (nrkr

    )=

    (n1 + n2 + ...+ nr

    k

    )

    Chuyn ng Thc T Hp N Din n Ton hc