Numerical Stability Analysis of PTW Solu7ons in Excitable...

49
Numerical Stability Analysis of PTW Solu7ons in Excitable RD Systems M. Osman Gani Meiji University Joint work Professor Toshiyuki Ogawa (Meiji Uni.) November 28, 2014

Transcript of Numerical Stability Analysis of PTW Solu7ons in Excitable...

Page 1: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Numerical  Stability  Analysis  of  PTW  Solu7ons  in  Excitable  RD  Systems  

M.  Osman  Gani      Meiji  University  

 

Joint  work      Professor  Toshiyuki  Ogawa  (Meiji  Uni.)  

反応拡散現象にみられる境界層とその周辺の数理  November  28,  2014  

 

Page 2: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Outline      •  Background  and  Mo:va:on                  (Some  basics  about  heart  and  heart  cells  contrac:on)  •  Exis:ng  mathema:cal  models  for  cardiac  electrical  ac:vi:es    •  Existence  and  stability  of  PTWs  for  FHN  model  •  Existence  and  stability  of  PTWs  for  a  proposed  model  •  Eckhaus  and  Hopf  type  instability  •  Spiral  wave  instability  in  2D  •  Summary  

 

 

Page 3: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Excitable  media

•  The system which has one stable rest state (monostable) with small perturbations is called excited system.

           •  Examples:    1.  The  axon  of  a  nerve  cell  or  neuron    2.  The  Belousov-­‐Zhabo:nsky  (BZ)  reac:on    3.  The  predator-­‐prey  models  of  popula:on  dynamics    4.  Cardiac  cell  etc.                                                                                      

Page 4: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Common  PaTerns  in  Excitable  media

Rota:ng  Spiral    Single  wave  front  

Target  PaTern    More  than  one  wave  front  

Periodic  Traveling  Wave  

Scroll  Wave    

Winfree(1974)  

1D:  

Traveling  Pulse   Traveling  Front  

2D:   3D:  

Page 5: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Spiral  PaTerns  in  Nature  1.  Spiral  PaTerns  in  nature    

2.  Spiral  paTerns  in  BZ  reac:on  

E.  Mihailov  et  al.,  Faraday  Discuss  (120),2001  

3.  Wave  in  Cardiac  :ssue  

www.rit.edu/cos/sms/acm/research/cardiac.php

hTp://thevirtualheart.org  

hTp://en.wikipedia.org  /wiki/Logarithmic_spiral  

hTp://www.messersmith.name/  wordpress/2010/10/24/  of-­‐turbans-­‐and-­‐alien-­‐wri:ng/  

Winfree  (1974)  

Page 6: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

What  is  the  heart?  

Flow  of  blood:=  inferior  vena  cava  and  superior  vena  cava  (from  the  body)  è  right  atrium  èright  ventricleè  lungs  è  le_  atrium  è  le_  ventricle  è  aorta  (to  the  body).  

Page 7: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Electrical  Ac:vi:es  in  Cardiac  Cells  

 (Silverthorn  (2012),  Figure  14:  13)  

Page 8: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Cardiac  Conduc:on  System  

Gordon  (2013)  

Page 9: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Cardiac  Ac:on  Poten:al  

Gordon  (2013)   Klabunde(2011)  

Page 10: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Electrocardiogram  (ECG/EKG)  

Gordon  (2013)  

•  P  wave:  depolariza:on  of  the  atria  during  atrial  systole  •  QRS  complex:  depolariza:on  of  the  ventricles  during  ventricular  systole  •  T  wave  :  repolariza:on  of  the  ventricles  during  the  relaxa:on  phase    

u Normal  Heart  Cycle=70/min.  

Electrical  signal  on  the  surface  of  body  as  a  consequence  of  the  ac:on  poten:als  inside  the  heart    

Page 11: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

ECG  abnormali:es  

Silverthorn  (2012),  Fig.  14.15h  

Page 12: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

1D  and  2D  wave  PaTerns  

www.thevirtualheart.org  

Page 13: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Fast-­‐slow  system  

Here        ε is  very  small  :me  constant  and  t  is  a  slow  :me      

Now  if  we  scale  :me  by       t = ετ ,,  then  the  above  equa:ons  will  take  the  form    

(2)

dudτ

= f (u,v)

dvdτ

= ε g(u,v)

!

"##

$##

(1)εdudt= f (u,v); u∈ Rn

dvdt=g(u,v); v ∈ Rm

"

#$$

%$$

0 ≤ ε <<1, ,    is  a  fast  :me    τ

Many  models  in  mathema:cal  physiology  have  a  system  of  differen:al  equa:ons:          

Page 14: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Fast-­‐slow  system  

(2)0

dudτ

= f (u,v)

dvdτ

= 0

!

"##

$##

(1)00 = f (u,v)dvdt=g(u,v)

!

"#

$#

Now  ,  if  we  take  the  formal  limit    ε = 0 ,then  (1)  and  (2)  implies:    ,which  is  slow  dynamics  and  solu:ons  lie    on  the  slow  manifold  (cubic  curve)    or  cri:cal  manifold    

dudτ

= f (u,v),which  is  fast  dynamics  and  we  say  for  fixed          ,  the  equa:on            is  a  fast  dynamics  or  fast  subsystem      

v

ε u=u(1−u)(u− a)− vv = u−γv

As  for  example:  •  FitzHugh-­‐Nagumo  Equa:on:      

v

u0 1a Fast

Fast

Slo

w

Slo

w

tv =0

u =0t

Page 15: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Hodgkin-­‐Huxley  Model  (1952)  

Cmdvdt= −gNam

3h(v− vNa )− gKn4 (v− vK )− gL (v− vL )+ Iapp

dmdt

=αm (v)(1−m)−βm (v)m

dhdt=αh (v)(1− h)−βh (v)h

dndt=αn (v)(1− n)−βn (v)n

where    “v”  is  the  membrane  poten:al  (fast  variable),  “m”  is  the  sodium  ac:va:on  variable  (fast  variable),  “h”  is  the  sodium  inac:va:on  variable  (slow  variable),  “n”  is  the  potassium  ac:va:on  variable  (fast  variable).          

m,  n,  and  h  are  called  ga:ng  variables,                is  the  applied  current,                  is  the  membrane  capacitance,                                          are  constant    equilibrium  poten:als  and  the  other  parameters  are  constant.    

VNa,VK ,VLCm

Iapp

Keener  and  Sneyd  (2010)  

In  order  to  describe  the  ac:on  poten:al  propaga:on  on  squids  (a  large  nerve  cell)    

Page 16: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Noble  Model  (1962)  (For  the  Cardiac  Cell  Dybnamics)  

Keener  and  Sneyd  (2010)  

Based  on  the  Hodgkin-­‐Huxley  model  Noble  in  1962  proposed  the  first  physiological  model  for  the  dynamics  of  Purkinje  fiber  cardiac  cells.  

The  main  mo:va:on  with  the  Noble  model  was  to  have  a  prolong  plateau  phase  in  the  ac:on  poten:al.  

Several  Ionic  Models:  McAllister  et  al.  (1975);  Beeler  and  Reuter  (1977);  Sharp  and  Joyner  (1980);  Ebihara  and  Johnson  (1980);  Luo  and  Rudy  (1991);  Winslow  et  al.  (1993);  Luo  and  Rudy  (1994a,b),  etc.  

Page 17: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Two-­‐variable  Reduc:on  of  HH  Model    [FitzHugh’s  Fast-­‐Slow  approach(1960,1961)]    

Set                                                and                                          .    h+ n = 0.8 m =m∞(v)This  reduces  to  a  two-­‐variable  fast-­‐slow  system  as  follows:    

Cmdvdt= −gNam∞(v)(0.8− n)(v− vNa )− gKn

4 (v− vK )− gL (v− vL )

dndt=αn (v)(1− n)−βn (v)n

Keener  and  Sneyd  (2010)  

Page 18: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Two-­‐variable  FitzHugh-­‐Nagumo  Model  (Simplified  HH  Model)  

dudt= u(1−u)(u− a)− v

dvdt= ε(u−γv)

0 < a <1/ 20 < ε <<1

u:  fast  ac:vator  (excitable)  variable,  v:  slow  inhibitor  (recovery)  variable  

u  works  like  membrane  poten:al  and    v  plays  the  role  of  ga:ng  variables        Iapp = 0

v

u0 1a Fast

Fast

Slo

w

Slo

w

tv =0

u =0t

a = 0.07,ε = 0.001,γ = 2.0

0 100 200 300 400 500 600 700 800 900 1000−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

v(t)

u(t)

Other  two-­‐variable  models:    Pertsov  et  al.  (1984);  Karma  (1993);  Panfilov  and  Hogeweg  (1993);    Aliev  and  Panfilov  (1996);  Panfilov  (1998);  etc.    

Page 19: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Goal  

The   purpose   of   this   work   is   to   study   the  existence   and   stability   of   Periodic   Traveling  Wave   solu:ons   (PTWs)   in   the   FHN   model  and  in  a  proposed  variant  of  the  FHN  model.      

Page 20: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Standard  FitzHugh-­‐Nagumo  model    

g(u,v) = 0f (u,v) = 0

Fig:  Nullclines  of  the  FHN  model  

ut = duΔu+u(1−u)(u− a)− vvt = dvΔv+ε(u−γv)

0 < a <1/ 20 < ε <<1du >> dv

“u”:  fast  ac:vator  (excitable)  variable,  “v”:  slow  inhibitor  (recovery)  variable  

“u”  works  like  membrane  poten:al  and    “v”  plays  the  role  of  ga:ng  variables        

0 20 40 60 80 100 120 140 160 180 200−0.2

0

0.2

0.4

0.6

0.8

1

1.2

v(x)

u(x)

Pulse  profile    

a = 0.2,ε = 0.001, γ = 2.5,du = 0.05,dv = 0.005

Page 21: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

What  is  PTW  solu:on?  

u(x, t) =U(z) v(x, t) =V (z),and  Subs:tu:ng     where      z = x − ctis  a  travelling  wave  coordinate,  in  the  model  equa:ons  we  have  a  system  of  ODE  of  the  form  :      

du !!U + c !U + f (U,V ) = 0dv !!V + c !V + g(U,V ) = 0

where     ' denotes  w.r.to  z

A_er  reducing  the  first  order  the  above  system  yields:  

!U = P!P = (−cP − f (U,V )) / du!V =Q!Q = (cQ− g(U,V )) / dv

where  ‘c’  is  the  wave  speed    

A  PTW  solu:on  is  a  limit  cycle  solu:on  of  this  ODE  system.  

Page 22: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Stability  of  PTWs  

In  order  to  understand  the  stability  of  PTWs    our  interest    is  to  calculate  the  essen:al  spectra  of  the  PTWs.      

u(x, t) =U(z) v(x, t) =V (z)and  Again  Subs:tu:ng     where      z = x − ctand  neglec:ng  the  non-­‐linear  terms  yields  a  linearized  PDE  :      

∂∂tulin = D

∂2

∂x2ulin +

ulin. ΔF

ulin (x, t) =u(x, t)−

U(z).where  

We  obtain  the  eigenvalue  problem:  Again  subs:tu:ng    

ulin (x, t) = eλtU(z)

λU = c d

dzU +D d 2

dz2U +U . Δ

F

with  boundary  condi:on      U(L) =

U(0)exp(iγ ), for some γ ∈ R,

Where  L  is  the  period  of  the  PTW,          is  the  phase  shi_  across  one  period  of  the  wave,                is  the    Jacobian  matrix  of                                                          along  the  PTW,  D  is  the  diffusion  matrix  ,                is  the  eigenfunc:on  and                is  the  eigenvalue.      

γ ΔF

( f (u,v), g(u,v)) U

λ

Page 23: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Eckhaus  and  Hopf  Instabili:es  of  the  PTWs  

J.  A.  SherraT,    Adv  Comput  Math    (2013)  

Page 24: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Method  of  Con:nua:on  (FHN  Model)  !U = P!P = (−cP −U(1−U)(U − a)+V ) / du!V =Q!Q = (cQ−ε(U −γV )) / dv

1.  4-­‐dim  ODE  system:  u(x, t) =U(z)v(x, t) =V (z)z = x − ct

Where,  

2.  Linearized  PDE:    

∂ulin∂t

= du∂2ulin∂x2

+ulin (−3U2 + 2(1+ a)U − a)+ vlin (−1)

∂vlin∂t

= dv∂2vlin∂x2

+ulin (ε)+ vlin (−εγ )

ulin (x, t) = u(x, t)−U(z)vlin (x, t) = v(x, t)−V (z)

where  

3.  First  order  eigenvalue  problem:    ddz

Ulin

Mlin

VlinNlin

!

"

#####

$

%

&&&&&

= (A(z)+λB)

Ulin

Mlin

VlinNlin

!

"

#####

$

%

&&&&&

A =

0 1 0 0

−1du(−3U 2 + 2(1+ a)U − a) −c

du1du

0

0 0 0 1−εdv

0 εγdv

−cdv

"

#

$$$$$$$

%

&

'''''''

where  

and  B =

0 0 0 01du

0 0 0

0 0 0 0

0 0 1dv

0

!

"

#######

$

%

&&&&&&&

Page 25: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Existence  of  PTWs  as  a  func:on  of  the  parameter  “    ”  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

c

gamma

8.9e+1

8.9e+1

9.0e+1

9.2e+1

1.0e+2

1.0e+2

1.0e+2

1.1e+2

1.2e+2

1.3e+2

6.5e+1

6.5e+1

6.6e+1

6.8e+1

7.0e+1

7.4e+1

7.8e+1

8.3e+1

9.0e+1

1.0e+2

4.7e+1

4.8e+1

4.8e+1

5.0e+1

5.2e+1

5.4e+1

5.7e+1

6.1e+1

6.6e+1

7.4e+1

3.3e+1

3.4e+1

3.4e+1

3.5e+1

3.6e+1

3.8e+1

4.0e+1

4.3e+1

4.7e+1

5.3e+1

2.2e+1

2.2e+1

2.3e+1

2.3e+1

2.4e+1

2.5e+1

2.7e+1

2.9e+1

3.2e+1

3.5e+1

1.4e+1

1.4e+1

1.4e+1

1.4e+1

1.5e+1

1.6e+1

1.7e+1

1.8e+1

2.0e+1

2.2e+1

7.5e00

7.6e00

7.8e00

8.0e00

8.3e00

8.7e00

9.3e00

9.9e00

1.1e+1

1.2e+1

4.0e00

4.0e00

γ

=No  PTWs  

-0.4-0.2

0 0.2 0.4 0.6 0.8

1

U

-1-0.8-0.6-0.4-0.2

0 0.2 0.4 0.6 0.8

1

P

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.1 0.11 0.12

V-0.012

-0.01-0.008-0.006-0.004-0.002

0 0.002 0.004 0.006 0.008

0.01

0 0.2 0.4 0.6 0.8 1Q

z/Period

Page 26: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Stability  of  PTWs  and  Essen:al  Spectra  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

c

gamma

Since  the  curvature  of  the  spectrum  changes  sign  at  the  origin,    This  indicate  a  stability  change  of  Eckhaus  type.  

=Stable  PTW  =Unstable  PTW  

-0.005 -0.004 -0.003 -0.002 -0.001 0

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Im(e

igen

valu

e)

0 2

Re(eigenvalue)

Re=0.0E-1

-0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Im(e

igen

valu

e)

0 2

Re(eigenvalue)

Re=6.720E-6

Page 27: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Stability  Boundary  of  Eckhaus  type  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

c

gamma

Stable

Unstable

0

10

20

30

40

50

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

pe

rio

d

c

Fold: c=0.1906E-01

Eckhaus:c=0.3438626E-01

Min. stable period=9.24

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.02 -0.015 -0.01 -0.005 0

Im(e

igenvalu

e)

Re(eigenvalue)

Re=0.0E-1

-0.04

-0.02

0

0.02

0.04

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002

Im(e

igenvalu

e)

Re(eigenvalue)

Re=9.763E-4

iii γ = 2.5

Page 28: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Our  proposed  model    ut = duΔu+u(1−u)(u− a)− vvt = dvΔv+ε(du(b−u)(u+ c)− v)

0 < a <1/ 20 < ε <<1b >1

u:  fast  ac:vator  (excitable)  variable,  v:  slow  inhibitor  (recovery)  variable  

a,b,c,d,ε,du,dv are  parameters;     du >> dv

0 5 10 15 20 25 30 35 40 45 50−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

u(x)

v(x)

3

4

1 1

Pulse  Profile  Nullclines  of  the  model  

g(u,v) = 0

f (u,v) = 0 more    slow  

Page 29: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Neuron  and  Cardiac  Ac:on  Poten:als  membrane  

•  An  ac7on  poten7al  is  a  short-­‐las:ng  event  in  which  the  electrical  membrane              poten:al  of  a  cell  rapidly  rises  and  falls  

•  Cardiac  AP  has  a  prolonged  plateau  phase  las:ng  around  300  millisecond  (ms)  compared  with  1  ms  in  nerves.  

Neuron  AP     Cardiac  AP  

Plateau  Phase  

(FHN)   m-­‐FHN  

Page 30: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Ac:on  Poten:als  as  a  func:on  of  parameter  “    ”  ba   b   c   d   du   dv   ε  

0.07   free   3.0   0.21   0.05   0.005   0.011  

0 50 100 150 200 250 300 350 400 450

−0.2

0

0.2

0.4

0.6

0.8

1

t

u

b=1.05b=1.1b=1.2

Ac:on  Poten:als  Nullclines  

−0.2 0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25b=1.1

b=1.2

b=1.05

u

v

g=0

f=0

Page 31: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

PDE  Simula:on    (Bifurca:on  Diagram)  

System  size  =  Spa:al  period,  i.e.  L=  l=25  

The  bifurca:on  point  is  found  at  b=1.0295.    Let  us  say  this  cri:cal  value      b1

1.026 1.027 1.028 1.029 1.03 1.031 1.032 1.03317.5

18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

b

max

and

min

wid

th o

f wav

e pu

lses

maximum widthminimum width

0

5

10

15

20

8500

9000

9500

10000

tx

0

5

10

15

20

80008200

84008600

88009000

92009400

96009800

10000

tx

0 5 10 15 20 25

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

Page 32: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Bifurca:on  Diagram  (L=50,  l=25)  

1.029 1.03 1.031 1.032 1.033 1.034 1.035 1.036 1.037 1.038

12

14

16

18

20

22

24

26

28

30

b

max

. and

min

. wid

th o

f wav

e pu

lses

maximum widthminimum width

0 10 20 30 40 50−0.4

−0.2

0

0.2

0.4

0.6

0.8

1b=1.035

x

u

b2The  bifurca:on  point  is  detected  here  at  b  =  1.0343.  Let  us  say  this  cri:cal  value    

b1 < b2 <So  one  can  expect:    

b=1.038  

b=1.025  

0 10 20 30 40 50−0.4

−0.2

0

0.2

0.4

0.6

0.8

1b=1.03

x

u

Page 33: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Stable  and  Oscillatory  PaTern  of  Solu:ons      

b=1.038   b  =  1.03  

Stable  paTern   Oscillatory  PaTern  

Page 34: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

For  Con:nua:on  Technique  in  the  Proposed  Model  

!U = P!P = (−cP −U(1−U)(U − a)+V ) / du!V =Q!Q = (−cQ−ε(dU(b−U)(U + c)−V )) / dv

1.  4-­‐dim  ODE  system:  u(x, t) =U(z)v(x, t) =V (z)z = x − ct

Where,  

2.  Linearized  PDE:    

∂ulin∂t

= du∂2ulin∂x2

+ulin (−3U2 + 2(1+ a)U − a)+ vlin (−1)

∂vlin∂t

= dv∂2vlin∂x2

+ulin (ε(−3dU2 + 2(db− dc)U + dbc))+ vlin (−ε)

ulin (x, t) = u(x, t)−U(z)vlin (x, t) = v(x, t)−V (z)

where  

3.  First  order  eigenvalue  problem:    ddz

Ulin

Mlin

VlinNlin

!

"

#####

$

%

&&&&&

= (A(z)+λB)

Ulin

Mlin

VlinNlin

!

"

#####

$

%

&&&&&

A =

0 1 0 0

−1du(−3U 2 + 2(1+ a)U − a) −c

du1du

0

0 0 0 1−εdv[−3dU 2 + 2(db− dc)U + dbc] 0 ε

dv−cdv

"

#

$$$$$$$

%

&

'''''''

where  

and  A =

0 0 0 01du

0 0 0

0 0 0 0

0 0 1dv

0

!

"

#######

$

%

&&&&&&&

Page 35: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Existence  of  PTWs  in  the  Proposed  Model  

   =  No  PTWs  

0.04

0.06

0.08

0.1

0.12

0.14

1 1.1 1.2 1.3 1.4 1.5

c

b

1.4e+1

1.5e+1

1.5e+1

1.6e+1

1.7e+1

1.9e+1

2.1e+1

2.6e+1

3.8e+1

1.2e+1

1.2e+1

1.2e+1

1.3e+1

1.4e+1

1.5e+1

1.7e+1

2.1e+1

3.2e+1

9.5e00

9.8e00

1.0e+1

1.1e+1

1.1e+1

1.2e+1

1.4e+1

1.7e+1

2.5e+1

7.7e00

7.9e00

8.2e00

8.6e00

9.0e00

9.7e00

1.1e+1

1.3e+1

1.9e+1

6.3e00

6.5e00

6.8e00

7.1e00

7.6e00

8.3e00

9.8e00

1.4e+1

5.7e00

6.1e00

7.0e00

9.5e00

5.7e00

-0.4-0.2

0 0.2 0.4 0.6 0.8

1

U

-0.8-0.6-0.4-0.2

0 0.2 0.4 0.6 0.8

1

P

0 0.02 0.04 0.06 0.08

0.1 0.12 0.14

V

-0.04-0.03-0.02-0.01

0 0.01 0.02 0.03 0.04

0 0.2 0.4 0.6 0.8 1

Q

z/Period

Page 36: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Stability  of  the  PTWs  Through  Essen:al  Spectra  

0.04

0.06

0.08

0.1

0.12

0.14

1 1.1 1.2 1.3 1.4 1.5

c

b

=  Stable  PTWs  =  Unstable  PTWs  =  No  PTWs    =  Stability  boundary  (Eckhaus  Type)  

-0.025 -0.02 -0.015 -0.01 -0.005 0

-0.1

-0.05

0

0.05

0.1

Im(e

igen

valu

e)

0 2

Re(eigenvalue)

Re=0.0E-1

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Im(e

igen

valu

e)

0 2

Re(eigenvalue)

Re=7.73E-3

Page 37: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Fast  Family  of  PTWs  

0.04

0.06

0.08

0.1

0.12

0.14

1 1.1 1.2 1.3 1.4 1.5

c

b

25

15

10 Unstable(U)

U Stable

0.04

0.06

0.08

0.1

0.12

0.14

1 1.01 1.02 1.03 1.04 1.05 1.06

c

b

25

15

10

StableUnstable

b2b1

Magnifica:on  

•  Fast  Family  crosses  the  stability  boundary  in  our  model  •  The  bifurca:on  points  b_1  and  b_2  lie  in  the  unstable  area  

=  Fast  family  with  constant  period  

Page 38: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Bifurca:on  Diagrams  or  Dispersion  Curves  

0

10

20

30

40

50

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

perio

d

c

Fold: c=0.4350E-01

Fold: c=0.6494E-01

Fold: c=0.1269E+00

E

Min. stable period=6.51 0

10

20

30

40

50

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

perio

d

c

Fold: c=0.3794E-01

Fold: c=0.6293E-01E

Min. stable period=6.88 0

10

20

30

40

50

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

perio

dc

Fold: c=0.3731E-01

Fold: c=0.6274E-01

Min. stable period=37.1

E

b=1.1   b=1.04   b = b2 =1.0343

0

10

20

30

40

50

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

perio

d

c

Fold: c=0.5076E-01

Fold: c=0.6815E-01

Fold: c=0.1255E+00

0

10

20

30

40

50

0.06 0.07 0.08 0.09 0.1 0.11 0.12

perio

d

c

Fold: c=0.5394E-01

Fold: c=0.6971E-01

Fold: c=0.1247E+00

0

10

20

30

40

50

0.055 0.06 0.065 0.07 0.075

perio

d

cb=2.2   b=1.25   b=1.2  

Page 39: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

 Essen:al  Spectra  (  Eckhaus  and  Hopf  instability)  

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14

c

b

f

e

cd

a

b

-0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Im(e

igen

valu

e)

0 2

Re(eigenvalue)

Re=9.821E-4

-0.003 -0.0025 -0.002 -0.0015 -0.001 -0.0005 0-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Im(e

igen

valu

e)

0 2

Re(eigenvalue)

Re=0.0E-1

-0.0002 -0.00015 -0.0001 -5e-05 0 5e-05 0.0001 0.00015

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Im(e

igen

valu

e)

0 2

Re(eigenvalue)

Re=8.787E-5

-0.0001 -8e-05 -6e-05 -4e-05 -2e-05 0 2e-05-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Im(e

igen

valu

e)0 2

Re(eigenvalue)

Re=-1.127E-5

-0.0001 -5e-05 0 5e-05 0.0001 0.00015 0.0002

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Im(e

igen

valu

e)

0 2

Re(eigenvalue)

Re=1.688E-4

Page 40: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

 Essen:al  Spectra  in  the  different  parts  of  a  dispersion  curve        

4

6

8

10

12

14

16

18

20

0.025 0.03 0.035 0.04

peri

od

c

Fold: c=0.2364E-01

E

H

Min. stable period=10.85(H)

Min. stable period=8.10(E)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-0.005 -0.004 -0.003 -0.002 -0.001 0

Im(e

igenvalu

e)

Re(eigenvalue)

Re=0.0E-1

-0.02

-0.01

0

0.01

0.02

-0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0

Im(e

igenval

ue)

Re(eigenvalue)

Re=-3.433E-7

-0.02

-0.01

0

0.01

0.02

-0.0002-0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

Im(e

igenv

alue

)

Re(eigenvalue)

Re=3.213E-4

-0.02

-0.01

0

0.01

0.02

0 0.0005 0.001 0.0015 0.002

Im(e

igenvalu

e)

Re(eigenvalue)

Re=1.713E-3

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.0005 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Im(e

igen

valu

e)

Re(eigenvalue)

Re=2.883E-3

iii

iv

ii

i

v

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Im(e

igenv

alue)

Re(eigenvalue)

Re=-4.309E-3

vi

Dispersion  curve  for  b=1.05  

Page 41: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

PDE  Simula:on  as  a  consequence  of  the  Hopf  instability    

0 20 40 60 80 8440

8460

8480

8500

x

t

L=86.96,  l=10.87    

0 20

40 60

80

4860

4880

4900

x

t

L=86.4,  l=10.8    

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

c

b

period=10.85U S

U

Page 42: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

FHN  vs  m-­‐FHN  

0

10

20

30

40

50

0.055 0.06 0.065 0.07 0.075

perio

d

c

b=2.2  

0

10

20

30

40

50

0.048 0.05 0.052 0.054 0.056 0.058 0.06 0.062 0.064

perio

d

c

Eckhaus:c=0.561E-1

Min. stable period=17.96

a=0.24  

0.04

0.06

0.08

0.1

0.12

0.14

1 1.1 1.2 1.3 1.4 1.5

c

b

25

15

10 Unstable(U)

U Stable

0

0.05

0.1

0.15

0 0.05 0.1 0.15 0.2 0.25

c

a

25

25

U

S

•  Thus  in  our  model  by  controlling  the  parameter  “b”  we  control  the  stability  of  solu:ons  •  The  fast  family  with  sufficiently  large  period  always  stable  in  the  FHN  model,  whereas  in  our              model  they  crosses  the  stability  boundary  and  this  is  responsible  for  the  oscillatory  paTern  of              solu:on  in  the  full  PDE  simula:on    

Remarks:  

Page 43: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Spiral  wave  forma:on  

b =1.05

Page 44: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Spiral  pulses  widths  increasing  as  b  decreased  

Ini:al  data   b=1.2  

b=1.05   b=1.04  

b=1.3  

b=1.03  

b=1.1  

b=1.035  

Page 45: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Calcula:on  of  Spiral  Pulse  widths  and  onset  of  oscilla:on  

Figure:  Max  and  Min  width  of  spiral  pulses  as  a  funcMon  of  b.    

Pulse  width  = x1 − x2

0 10 20 30 40 50 60 70 80 90 100−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

x1 x2

BA

1 2 3 4 5 6 7 8 9 100

5

10

15

20

25

30

35

b

Wid

ths

of s

pira

l pul

ses

Maximum widthMinimum width

b=1.038

Speed  of  parallel  wave  in  2D  as  a  func:on  of  b  (asterisk  line)    

0.04

0.06

0.08

0.1

0.12

0.14

1 1.1 1.2 1.3 1.4 1.5

c

b

15

U S

U

Page 46: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Stability  of  PTWs  when  “              “  

0.04

0.06

0.08

0.1

0.12

0.14

1 1.1 1.2 1.3 1.4 1.5

c

b

25

15

UStable

Unstable(U)

dv = 0.005

0.04

0.06

0.08

0.1

0.12

0.14

1 1.1 1.2 1.3 1.4 1.5

c

b

25

15

U

S

U

dv = 0

0

10

20

30

40

50

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

perio

d

c

Fold: c=0.3952E-01

Fold: c=0.6553E-01

E(0.05143,8.86)

b=1.05dv = 0

0

10

20

30

40

50

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

perio

d

c

Fold: c=0.3899E-01

Fold: c=0.6327E-01

b=1.05

EE(0.0438,6.52)

dv = 0.005

dv = 0

Page 47: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

PDE  Simula:on,  when      dv = 0

0 30 60 90 120 6000

6030

6060

6090

x

t

b=1.03  

0 30 60 90 120 6000

6030

6060

6090

x

t

b=1.055                  b=1.045    Onset  of  instability      

However,  for  d_v=0.005,  the  onset  of  instability  b  =  1.0355  

Page 48: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Spiral  Dynamics,  when  d_v=0    

Ini:al  data  

b=1.05  

b=1.2  b=1.1  

b=1.04  

Thus  the  stable  spiral  paTern    bifurcate  to  an  unstable  paTern  between  b=1.1  and  b=1.05    

Page 49: Numerical Stability Analysis of PTW Solu7ons in Excitable ...cmma.mims.meiji.ac.jp/events/files/20151128Gani.pdfNumerical Stability Analysis of PTW Solu7ons in Excitable RD Systems

Summary   •  We  have  studied  the  stability  of  PTWs  numerically    in  FHN-­‐type  RD  systems  for  excitable  media    

•  We  found  two  types  of  instability  in  the  proposed  model:                                            Eckhaus  type  and  Hopf  type  •  The  fast  family  is  stable  in  the  FHN  model,  whereas  it    crosses  the  stability  boundary  in  the  proposed  model.    

•  The  alternans,  i.e.  the  oscilla:on  of  pulse  width,  is  a  consequence  of  the  instability  of  PTWs.  

•  The  onset  of  spiral  wave  instability  was  observed  as  a  consequence  of  Eckhaus  instability  of  the  PTWs.  

Thank  you  for  your  aQen7on!!