Nucleation and avalanches in film with labyrintine magnetic domains

22
Nuclea’on and avalanches in films with labyrinthine magne’c domains Andrea Benassi & Stefano Zapperi

Transcript of Nucleation and avalanches in film with labyrintine magnetic domains

Page 1: Nucleation and avalanches in film with labyrintine magnetic domains

Nuclea'on  and  avalanches    in  films  with  labyrinthine  

magne'c  domains  

Andrea  Benassi  &  Stefano  Zapperi  

 

Page 2: Nucleation and avalanches in film with labyrintine magnetic domains

Outline  Experiments  on  labyrinthine  domains  

 Our  phase  field  model  

 Characteris>cs  Lengths  and  avalanche  sta>s>cs  

     

A  new  version  of  the  phase  field  model    

Ironing  stripe  domains    

Memory  effects              

In-­‐plane  magne>za>on:  very  preliminary  results  (yesterday)  

Page 3: Nucleation and avalanches in film with labyrintine magnetic domains

Labyrinthine  domains  

Phys.Rev.Le*.  92,  077206  (2004)      

 

Phys.Rev.B  71,  104431  (2005)  

Deconvolving  nucleaAon  

they  find  a  0.5  exponent  

Page 4: Nucleation and avalanches in film with labyrintine magnetic domains

Labyrinthine  domains  

Avalanche  staAsAcs  taken  over  different  intervals  of  the  hysteresis  

loop  show  different  criAcal  exponents  

Appl.Phys.Le*.  95,  182504  (2009)  

Page 5: Nucleation and avalanches in film with labyrintine magnetic domains

A  phase  field  model  

V =Ku

4

�m2

2− m4

4

�m =

M(r)

Ms= m(x, y)

Page 6: Nucleation and avalanches in film with labyrintine magnetic domains

A  phase  field  model  

V =Ku

4

�m2

2− m4

4

�m =

M(r)

Ms= m(x, y)

∂M(r, t)

∂t= −Γ

δH[M(r, t)]

δM(r, t)

Energy  funcAonal  power  expansion  +  

linear  relaAon  between  Ame  and  energy  fluctuaAons  

Small  Ame  fluctuaAons  hypothesis  

Page 7: Nucleation and avalanches in film with labyrintine magnetic domains

A  phase  field  model  

�hr(r)� = 0

�hr(r)hr(r�)� = Dδ(r− r�)

V =Ku

4

�m2

2− m4

4

�m =

M(r)

Ms= m(x, y)

∂M(r, t)

∂t= −Γ

δH[M(r, t)]

δM(r, t)

Energy  funcAonal  power  expansion  +  

linear  relaAon  between  Ame  and  energy  fluctuaAons  

Small  Ame  fluctuaAons  hypothesis  

2  dimensionless  parameters  

� = 2�

A/Ku

α = Ku/4µ0M2s

γ = d/�4π

Page 8: Nucleation and avalanches in film with labyrintine magnetic domains

A  phase  field  model  

�hr(r)� = 0

�hr(r)hr(r�)� = Dδ(r− r�)

V =Ku

4

�m2

2− m4

4

�m =

M(r)

Ms= m(x, y)

∂M(r, t)

∂t= −Γ

δH[M(r, t)]

δM(r, t)

Energy  funcAonal  power  expansion  +  

linear  relaAon  between  Ame  and  energy  fluctuaAons  

Small  Ame  fluctuaAons  hypothesis  

2  dimensionless  parameters  

� = 2�

A/Ku

α = Ku/4µ0M2s

γ = d/�4π

Page 9: Nucleation and avalanches in film with labyrintine magnetic domains

Two  different  limit  behaviors  

Depending  on  the  film  thickness  and  on  the  disorder  strength  we  can  have  two  limit  

behaviors  

-4 -2 0

-0.5

0

0.5

4 2

b

cd

f a

! = 0.5! = 0.6! = 0.7

h

e

g

b c da

f g he

Page 10: Nucleation and avalanches in film with labyrintine magnetic domains

Two  different  limit  behavors  

MulAple  nucleaAon  and  coalescence  by  bridging  

Expansion  by  branching  of  a  single  domain  and  lateral  fa*ening    

Page 11: Nucleation and avalanches in film with labyrintine magnetic domains

Characteris'c  lengths  

m(x, y, �d) = sin

�πx

�d

m(x, y, �w) = tanh

�x

�w

�d = α/γ domain width

�w =√2� domain wall width

�n nucleation diameter

MinimizaAon  of  the  energy  with  respect  to  a  fixed  magneAzaAon  configuraAon  with  one  parameter:  

NucleaAon  depends  strongly  on  disorder,  any  analyAcal  theory  is  useless!!!  

Page 12: Nucleation and avalanches in film with labyrintine magnetic domains

Characteris'c  lengths  

m(x, y, �d) = sin

�πx

�d

m(x, y, �w) = tanh

�x

�w

�d = α/γ domain width

�w =√2� domain wall width

�n nucleation diameter

MinimizaAon  of  the  energy  with  respect  to  a  fixed  magneAzaAon  configuraAon  with  one  parameter:  

NucleaAon  depends  strongly  on  disorder,  any  analyAcal  theory  is  useless!!!  

Avalanches  

Page 13: Nucleation and avalanches in film with labyrintine magnetic domains

Triggering  of  minor  avalanches  

The  difference  between  consecuAve  magneAzaAon  maps  allows  a  direct  imaging  

of  avalanches    

Page 14: Nucleation and avalanches in film with labyrintine magnetic domains

Avalanche  sta's'cs  Analysis  of  different  loop  regions:    •  The  maximum  avalanche  size  decreases  as  

the  domain  density  reaches  its  maximum  

•  NucleaAon  and  bridging,  with  their  characterisAc  size,  affect  the  size  distribuAon  

       NucleaAon  and  annihilaAon:      •  For  nucleaAon  to  take  place  a  barrier  must  

be  overcame,  its  value  goes  as  1/γ

•  AnnihilaAon  is  almost  independent  of  the  dipolar  field  strength  

•  At  zero  temperature  the  gaussian  distribuAon  is  due  to  the  spaAal  disorder  

       

Page 15: Nucleation and avalanches in film with labyrintine magnetic domains

Avalanche  sta's'cs  Different  film  thickness:    

•  The  avalanche  cutoff  increases  when  γ  is  decreased,  following  the  corresponding  increase  of  the  domain  width  and  confirming  that  α/γ  is  the  relevant  parameter  controlling  the  size  of  the  scaling  regime  

Different  Disorder  strength:    

•  The  Larger  D  the  larger  the  external  field  at  which  walls  depin,  the  larger  their  jumps.    

•  Increasing  D  the  domains  shape  is  slightly  affected  by  the  disorder  strength  but              is  almost  independent  of  D,  

•  NucleaAon  diameter              decreases  with  increasing  D  

     

�d = α/γ domain width

�n nucleation diameter

Page 16: Nucleation and avalanches in film with labyrintine magnetic domains

Phase  field  model  reloaded  

V = [1− λ(r)]Ku

4

�m2

2− m4

4

m = α

�dV

dm+∇2m

�− γ

�dr�

m(r�)

|r− r�|3 + hr(r) + he(t) +R(t)

�hr(r)� = 0 �hr(r)hr(r�)� = Dδ(r− r�)

Two  new  randomness  sources  means  two  new  physical  parameters  to  be  introduced…    

�λ(r)� = 0 �λ(r)λ(r�)� = Aδ(r− r�)

�R(r)R(r�)� = 2KBT δ(r− r�)δ(t− t�)�R(r)� = 0

Random  field  

Temperature  noise  

Anisotropy  disorder  

Random  field  and  random  anisotropy  has  the  same  effect  on  the  domains  topography,  except  that  the  type  of  domain  dynamics  (nucleaAon/coalescence  or  branching)  seems  to  be  a  bit  more  sensiAve  to  A  than  D.  

Page 17: Nucleation and avalanches in film with labyrintine magnetic domains

Phase  field  model  reloaded  

V = [1− λ(r)]Ku

4

�m2

2− m4

4

m = α

�dV

dm+∇2m

�− γ

�dr�

m(r�)

|r− r�|3 + hr(r) + he(t) +R(t)

�hr(r)� = 0 �hr(r)hr(r�)� = Dδ(r− r�)

Two  new  randomness  sources  means  two  new  physical  parameters  to  be  introduced…    

�λ(r)� = 0 �λ(r)λ(r�)� = Aδ(r− r�)

�R(r)R(r�)� = 2KBT δ(r− r�)δ(t− t�)�R(r)� = 0

Random  field  

Temperature  noise  

Anisotropy  disorder  

Random  field  and  random  anisotropy  has  the  same  effect  on  the  domains  topography,  except  that  the  type  of  domain  dynamics  (nucleaAon/coalescence  or  branching)  seems  to  be  a  bit  more  sensiAve  to  A  than  D.  

Page 18: Nucleation and avalanches in film with labyrintine magnetic domains

Ironing  stripe  domains  

No  disorder  (realizaAon  1)   No  disorder  (realizaAon  2)   Gaussian  disorder  

•  The  final  orientaAon  of  the  parallel  stripes  depends  on  the  iniAal  random  configuraAon  •  The  presence  of  disorder  inhibits  the  complete  reorientaAon    

OscillaAng  external  field  perpendicular  to  the  film  surface:  

he(r) = h0 sin(ωt)

ω = 0.0126 � Γµ0 ≡ 1 h0 = 2 < hsat � 4

Page 19: Nucleation and avalanches in film with labyrintine magnetic domains

Memory  effects  Hysteresis  loop  unrolled:  

Ame  

<m>

Page 20: Nucleation and avalanches in film with labyrintine magnetic domains

Memory  effects  Hysteresis  loop  unrolled:  

Ame  

<Φ>

Page 21: Nucleation and avalanches in film with labyrintine magnetic domains

m = α

�dV

dm+∇2m

�− γ

�dr�

m(r�)

|r− r�|3 + hr(r) + he(t) +R(t)

In-­‐plane  Magne'za'on    Just  modifying  the  dipolar  (stray)  field,  our  scalar  model  seems  to  be  able  to  reproduce  the  domain  dynamics  of  in-­‐plane  films.      Now  the  magneAzaAon  is  assumed  to  be  oriented  only  along  the  x-­‐axis  ranging  in  [-­‐1,+1]  an  External  field  is  applied  along  the  same  axis  to  record  hysteresis  loops.  

�dr�

2(x− x�)2 − (y − y�)2

|r− r�| m(r�)

Page 22: Nucleation and avalanches in film with labyrintine magnetic domains

Open  Issues:  Which  quanAAes  can  be  used  to  characterize  the  memory  effects  and  the  stripes  domains?      One  Hysteresis  loop  takes  24  hours:  •  Do  we  really  need  to  be  so  slow  in  increasing  the  field?  •  How  many  loops  to  test  memory  effects?  •  (Easy)  ParallelizaAon  will  speed  up  our  calculaAons  by  a  factor  of  4      Up  to  now  we  used  only  white  noise,  does  it  make  sense  to  define  a  characterisAc  length  for  the  noise  correlaAon?      Working  in  reciprocal  space  enable  us  to  deal  with  large  systems  but  we  are  forced  to  use  periodic  boundary  condiAons.  Edge  effects  cannot  be  taken  into  account  in  the  simulaAons      In  the  case  of  a  bubbles  lamce,  can  we  play  with  an  external  oscillaAng  field  in  the  same  way  we  do  for  stripe  domains,  to  try  to  order  the  lamce?