Normal

33
Tipificación de la variable Para poder utilizar la tabla tenemos que transformar la variable X que sigue una distribución N (μ, σ) en otra variable Z que siga una distribución N (0, 1). Cálculo de probabilidades en distribuciones normales La tabla nos da las probabilidades de P (z ≤ k), siendo z la variable tipificada. Estas probabilidades nos dan la función de distribución Φ (k). Φ (k) = P (z ≤ k)

Transcript of Normal

Page 1: Normal

Tipificación de la variable

Para poder utilizar la tabla tenemos que transformar la variable X que sigue una

distribución N (μ, σ) en otra variable Z que siga una distribución N (0, 1).

Cálculo de probabilidades en distribuciones normales

La tabla nos da las probabilidades de P (z ≤ k), siendo z la variable tipificada.

Estas probabilidades nos dan la función de distribución Φ (k).

Φ (k) = P (z ≤ k)

Page 2: Normal

Determine el área bajo la curva normal

Ala derecha de z= -0.85.

Entre z = 0.40 y z = 1.30.

Entre z =0.30 y z = 0.90.

Desde z = - 1.50 hasta z =-0.45

Estos resultados se obtuvieron con las tablas anexas al final de los problemas

A – 1 – 0.1977 = 0.8023

B – 0.9032 – 0.6554 = 0.2478

C – 0.8159 – 0.3821 = 0.4338

D – 0.0668 + (1 – 0.3264) = 0.7404

Page 3: Normal

2- Las puntuaciones de una prueba estandarizada se distribuyen normalmente con media de 480 y desviación estándar de 90.

¿Cual es la proposición de puntuaciones mayores a 700? ¿Cual es el 25º? ¿Percentil de las puntuaciones? Si la puntuación de alguien es de 600. ¿En que percentil se

encuentra? ¿Qué proporción de las puntuaciones se encuentra entre 420 y 520? µ = 480 σ = 90

A - Z = (700-480)/90 = 2.44 el área a la derecha de Z es 0.0073 B – la puntuación de z en el 25 º percentil -0.67 El 25 º percentil es entonces 480 - 0.67 (90) = 419.7 C – z = (600-480)/90 = 1.33 el área a la derecha de z es 0.9082 Por lo que una puntuación de 600 esta en el percentil 91 D - z = (420 - 480)/90 = - 0.67 Z = (520 – 480)/90 = 0.44 El área entre z = - 0.67 y z = 0.44 es 0.6700 – 0.2514 = 0.4186

Page 4: Normal

La resistencia de una aleación de aluminio se distribuye normalmente con media de 10 giga pascales (Gpa) desviación estándar de 1.4 Gpa.

¿Cuál es la probabilidad de que una muestra de esta aleación tenga resistencia mayor a 12 GPa?

Determine el primer cuartil de la resistencia de esta aleación.

Determine el 95º. Percentil de la resistencia de esta aleación.

RESULTADOS

µ = 10 σ = 1.4

A) z = (12 -10)/1.4 = 1.43 el área ala derecha de z = 1.43 es 1 –0.9236 = 0.0764

B) la puntuación de z en el 25 º percentil es -0.67

El 25 º percentil es entonces 10 - 0.67 (1.4) = 9.062 Gpa.

C) la puntuación de z en el 95 º percentil es 1.645

El 25 º percentil es entonces 10 + 1.645(1.4) = 12.303 Gpa.

Page 5: Normal

La penicilina es producida por el hongo penicillium, que crece en un caldo, cuyo contenido de azúcar debe controlarse con cuidado. La concentración optima e azúcar es de 4.9 mg/mL. Si la concentración excede los 6 mg/mL, el hongo muere y el proceso debe suspenderse todo el día

A) ¿Si la concentración de azúcar en tandas de caldo se distribuye normalmente con media 4.9 mg/mL y desviación estándar 0.6 mg/mL en que proporción de días se suspenderá el proceso?

Page 6: Normal

B) El distribuidor ofrece vender caldo con una concentración de azúcar que se distribuye normalmente con medida de 5.2 mg/mL y desviación estándar de 0.4 mg/mL ¿este caldo surtirá efectos con menos días de producción perdida?

RESULTADOS

(6 – 4.9)/0.6 =1.83 1 – 0.9664 = 0.0336

Z = (6 – 5.2)/0.4 = 2.00 1 – 0.9772 = 0.0228

Con este caldo el proceso se suspendería el 2.28% de los días

Page 7: Normal

5- El volumen de las llantas llenadas por cierta maquina se distribuye con media de 12.05 onzas y desviación estándar de 0.03 onzas.

¿Qué proporción de latas contiene menos de 12 onzas? La medida del proceso se puede ajustar utilizando calibración.

¿En que valor debe fijarse la media para que el 99% de las latas contenga 12 onzas o mas?

Si la media del procesos sigue siendo de 12.05 onzas. ¿En que valor debe fijarse la media para que el 99% de las latas contenga 12 onzas o mas?

RESULTADOS (12 – 12.05)/0.03 = -1.67 la proporción es 0.0475

Z= -2.33 entonces -2.33=(12 - µ)/0.03 despejando µ = 12 .07 onzas

– 2.33 = (12-12.05)/ σ despejando σ = 0.0215 onzas

Page 8: Normal

En estadística, la distribución binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos.

Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q= 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.

Page 9: Normal

UNA DE LAS FORMULAS PARA EL BINOMIAL

El resultado obtenido en cada prueba es independiente de los resultados obtenidos anteriormente, esto es que el valor de la probabilidad de cada prueba no se afecta por pruebas anteriores, ni afecta pruebas futuras.

La probabilidad del suceso "éxito" es constante, la representamos por p, y no varía de una prueba a otra. La probabilidad de el suceso "fracaso" es 1- p y la representamos por q .

El experimento consta de un número n de pruebas.De la “n” pruebas , calculamos la probabilidad de “k” éxitos.

Page 10: Normal

Consideremos el siguiente juego, la apuesta a un número al arrojar un dado. Consideraremos un "éxito" si sale el número que eligimos, y un "fracaso" si sale otro número.

Tenemos que:

p = 1/6

q = 1-p = 5/6

Si hacemos una sola prueba donde P(k) es la probabilidad de k exitos.

tenemos que:

n = 1

P(0) = q = 5/6

P(1) = p = 1/6

Page 11: Normal

.- La concentración de partículas en una suspensión es 2 por mL. Se agita por completo la concentración, y posteriormente se extraen 3 mL. Sea X el numero de partículas que son retiradas. Determine.

a) P(X=5) b) P(X≤2) c) μX

d) σx

a) P(X=5)= e-6 * P(X=5)= 2.478752177x10-3 *

P(X=5)= 2.478752177x10-3 * 64.8

P(X=5)= 0.160623141

Page 12: Normal

b) P(X≤2) P(X=0)= e-6 * P(X=1)= e-6 * P(X=0)= 2.478752177x10-3 * P(X=1)= 2.478752177x10-3 *

P(X=0)= 2.478752177x10-3 * 1 P(X=1)= 2.478752177x10-3 * 6

P(X=0)= 2.478752177x10-3 P(X=1)= 0.014872513

P(X=2)= e-6 * P(X≤2)= P(X=0)+P(X=1)+P(X=2) P(X=2)= 2.478752177x10-3 * P(X≤2)=

2.478752177+0.014872513+ 0.044617539 P(X=2)= 2.478752177x10-3 * 18

P(X=2)= 0.044617539 P(X≤2)= 0.061968804

Page 13: Normal

una variable aleatoria X tiene una distribucionbinomial y una variable Y tiene una distribucion de Poisson. Tanto X como Y tienen medias iguales a 3. ¿Es posible determinar que variable aleatoria tiene la varianza mas grande? Elija una de las siguientes respuestas:

i) Sí, X tiene la varianza mas grande.

ii) Sí, Y tiene la varianza mas grande

iii) No, se necesita conocer el numero de ensayos, para X.

iv) No, se necesita conocer la probabilidad de éxito, p, para X.

v) No, se necesita conocer el valor de λ para Y.

Page 14: Normal

Fórmula para determinar la varianza en una distribución binomial:

σ2x= (1-p)

σ2x= (1-3)

σ2x= -2

Formula para determinar la varianza en una distribución Poisson:

σ2y= λ

σ2y= 3

Respuesta:

ii) Sí, Y tiene la varianza más grande

Page 15: Normal

suponga que 0.03 % de los contenedores plásticos producidos en cierto proceso tiene pequeños agujeros que los dejan inservibles. X representa el numero de contenedores en una muestra aleatoria de 10 000 que tienen este defecto. Determine:

a) P(X=3)

b) P(X≤2)

c) P(1≤X<4)

d) μX

e) σx

a) P(X=3)= e-3*

P(X=3)= 0.049787068 *

P(X=3)= 0.049787068 * 4.5

P(X=3)= 0.0224041807

Page 16: Normal

b) P(X≤2) P(X=0)= e-3 * P(X=1)= e-3 * P(X=0)= 0.049787068 * P(X=1)= 0.049787068 *

P(X=0)= 0.049787068 * 1 P(X=1)= 0.049787068 * 3

P(X=0)= 0.049787068 P(X=1)= 0.149361205

P(X=2)= e-3* P(X≤2)= P(X=0)+P(X=1)+P(X=2) P(X=2)= 0.049787068 * P(X≤2)=

0.049787068+0.149361205+ 0.149361205 P(X=2)= 0.049787068 * 4.5

P(X=2)= 0.0224041807 P(X≤2)=0.42319008

Page 17: Normal

c) P(X<2) P(X=1)= e-3 * P(X=2)= e-3* P(X=1)= 0.049787068 * P(X=2)= 0.049787068 *

P(X=1)= 0.049787068 * 3 P(X=2)= 0.049787068 * 4.5

P(X=1)= 0.149361205 P(X=2)= 0.0224041807

P(X=3)= e-3* P(X<2)= P(X=1)+P(X=2)+P(X=3) P(X=3)= 0.049787068 * P(X<2)=

0.149361205+0.224041807+ 0.224041807 P(X=3)= 0.049787068 * 4.5

P(X=3)= 0.0224041807 P(X<2)= 0.597444819

Page 18: Normal

d) μX

μX= 3

e) σx

σx=

σx= 1.732030808

Page 19: Normal

.- el numero de mensajes recibidos por el tablero computado de anuncios es una variable aleatoria de Poisson con una razón media de ocho mensajes por hora.

a) ¿Cuál es la probabilidad de que se reciban cinco mensajes en una hora?

b) ¿Cuál es la probabilidad de que se reciban diez mensajes en 1.5 horas?

c) ¿Cuál es la probabilidad de que se reciban menos de tres mensajes en 11/2 horas?

a) ¿Cuál es la probabilidad de que se reciban cinco mensajes en una hora?

P(X=3)= e-8* P(X=3)= 3.354626279x10-4 *

P(X=3)= 3.354626279x10-4 * 273.0666667

P(X=3)= 0.09160366

Page 20: Normal

b) ¿Cuál es la probabilidad de que se reciban diez mensajes en 1.5 horas?

P(X=10)= e-12*

P(X=10)= 6.144212353x10-6 *

P(X=10)= 6.144212353x10-6 * 17062.76571

P(X=10)= 0.104837255

Page 21: Normal

c) ¿Cuál es la probabilidad de que se reciban menos de tres mensajes en 11/2 horas?

P(X=0)= e-12* P(X=1)= e-12* P(X=0)= 6.144212353x10-6 * P(X=1)= 6.144212353x10-6 *

P(X=0)= 6.144212353x10-6 * 1 P(X=1)= 6.144212353x10-6 * 12

P(X=0)= 6.144212353x10-6 P(X=1)= 7.373054824x10-5

P(X=2)= e-12* P(X<3)= P(X=0)+P(X=1)+P(X=2) P(X=2)= 6.144212353x10-6 * P(X<3)= 6.144212353x10-6 + 7.373054824x10-5 + P(X=2)= 6.144212353x10-6 * 72 4.423832894x10-4 =

P(X=2)= 4.423832894x10-4 P(X<3)= 5.2225805x10-4

Page 22: Normal

La distribución gamma se puede caracterizar del modo siguiente: si se está interesado en la ocurrencia de un evento generado por un proceso de Poisson de media lambda, la variable que mide el tiempo transcurrido hasta obtener n ocurrencias del evento sigue una distribución gamma con parámetros a= nlambda(escala) y p=n (forma). Se denota

Gamma(a,p).

Por ejemplo, la distribución gamma aparece cuando se realiza el estudio de la duración de elementos físicos (tiempo de vida).

Esta distribución presenta como propiedad interesante la “falta de memoria”. Por esta razón, es muy utilizada en las teorías de la fiabilidad, mantenimiento y fenómenos de espera (por ejemplo en una consulta médica “tiempo que transcurre hasta la llegada del segundo paciente”).

Page 23: Normal

Ejercicio 1 El número de pacientes que llegan a la consulta de un médico sigue

una distribución de Poisson de media 3 pacientes por hora. Calcular la probabilidad de que

transcurra menos de una hora hasta la llegada del segundo paciente. Debe tenerse en cuenta que la variable aleatoria “tiempo que

transcurre hasta la llegada del segundo paciente” sigue una distribución Gamma (6, 2).

Solución: Cálculo de probabilidades. Distribuciones continuas Gamma (a p)

a : Escala 60000 p : Forma 20000 Punto X 10000es 0,98.

Page 24: Normal

Suponiendo que el tiempo de supervivencia, en años, de pacientes que son sometidos a una cierta intervención quirúrgica en un hospital sigue una distribución Gamma con parámetros a=0,81 y p=7,81, calcúlese:

1. El tiempo medio de supervivencia. 2. Los años a partir de los cuales la probabilidad de supervivencia

es menor que 0,1. Cálculo de probabilidades. Distribuciones continuas

Gamma (a,p) a : Escala 0,8100 p : Forma 7,8100 Cola Izquierda Pr [X<=k] 0,9000 Cola Derecha Pr [X>=k] 0,1000 Punto X 14,2429 Media 9,6420 Varianza 11,9037 Moda 8,4074 El tiempo medio de supervivencia es de, aproximadamente, 10

años.

Page 25: Normal

En teoría de probabilidad y estadística, la distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad que ocurra un determinado número de eventos durante cierto periodo de tiempo.

Fue descubierta por Siméon-Denis Poisson, que la dio a conocer en 1838 en su trabajo Recherches sur la probabilité des jugements en matières criminelles et matière civile (Investigación sobre la probabilidad de los juicios en materias criminales y civiles).

Page 26: Normal

Aquí se muestran las formulas para determinar la media, la varianza y la desviación.

Media μ= λ

Varianza σ2 =λ

Desviación típica σ = λ

Page 27: Normal

La duración de un ventilador, en horas , que se usa en un sistema computacional tiene una distribución de Weibull con

¿Cuáles la probabilidad de que un ventilador dure mas de 10 000 horas?

P(T>10 000 ) =1 –(1-=0.3679

¿Cuál es la probabilidad de que un ventilador dure menos de 5000 horas?

P(t<5000) =P(T

Page 28: Normal

En el articulo “Parameter Estimation with OnlyOne Complete Failure Observation”se modela la duración en horas, de cierto tipo de cojinete con la distribución de Weibull con parámetros

Determine la probabilidad de que un cojinete dure mas de 1000 horas

Page 29: Normal

Determine la probabilidad de que un cojinete dure menos de 2000 horas

P(T<2000)= P(T

La función de riesgo se definio en el ejercicio 4 ¿Cuál es el riesgo en T=2000 horas?

h(t) =

Page 30: Normal

Sea T­ ~ t(4,0.5) Determinar

b) Determinar

c) Determinar P(T P(T = 1- e –(0.5)(1) - e –(0.5)(1) - e –(0.5)(1) - e (0.5)(1) =1- 0.60653 -0.30327 -0.075816 -0.012636 =0.000175

Page 31: Normal

d) Determinar P(T

P(T

= e –(0.5)(3) - e –(0.5)(3) - e –(0.5)(3) - e (0.5)(3)

=0.22313 + 0.33470+0.25102 +0.12551

=0.9344

Page 32: Normal

En el articulo “Parameter Estimation with Only OneComplete Failure Observation”se modela la duracionen horas, de cierto tipo de cojinete con la distribucionde Weibull con parámetros

Determine la probabilidad de que un cojinete dure mas de 1000 horas

Determine la probabilidad de que un cojinete dure menos de 2000 horas

P(T<2000)= P(T La función de riesgo se definio en el ejercicio 4 ¿Cuál es

el riesgo en T=2000 horas? h(t) =

Page 33: Normal

Gracias por su atención.