No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60...

25
No Photon Left Behind: Challenges in OLED Outcoupling Stephen Forrest Departments of Electrical Engineering and Computer Science, Physics, and Materials Science and Engineering University of Michigan Ann Arbor, MI 48109

Transcript of No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60...

Page 1: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

No Photon Left Behind:Challenges in OLED

Outcoupling

Stephen Forrest

Departments of Electrical Engineering and Computer Science, Physics, and Materials Science and Engineering

University of Michigan

Ann Arbor, MI 48109

Page 2: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

80% of Light is Trapped in the OLED

❑ ηEQE = ηIQE (~100%) × ηExt ≈ 20%

2

• OLED Loss Channels➢ Substrate mode

➢Waveguide mode

➢ Surface plasmon polariton (SPP)

➢Metal absorption

Page 3: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

• Good solutions▪ Inexpensive

▪ Viewing angle & wavelength independent

▪ Independent of OLED structure

• Examples▪ Optical gratings or photonic crystals1

▪ Corrugations or grids embedded in OLED2

▪ Nano-scale scattering centers3

▪ Molecular dipole orientation management

3

1Y .R. Do, et al, Adv. Mater. 15, 1214 (2003).2Y. Sun and S.R. Forrest, Nat Phot. 2, 483 (2008).3Chang, H.-W. et al. J. Appl. Phys. 113, - (2013).

Getting all the light out, or “no photon left behind”

Page 4: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Three solutions explored in SSL

• Sub electrode grids and microlens arrays• Harvests most available photons

• Dielectric diffuser• Efficient and simple

• Ultrathin, roughened substrates• Good for flexible, too.

Page 5: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Substrate Au Ag Mirror on Grid Surface

SiO2IZOOrganicAnti-reflectionlayer

Getting Rid of SPPs Using Sub-Anode Grid + Mirror

Top Emitting OLED

3 Lift-off

Substrate FabricationQu

, et

al. A

CS

Ph

oto

nic

s, 2

01

7

Page 6: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

a.Ag

IZO/MoO3 80nm

ETL 60 nm

Substrate

EML 20 nm

HTL 40 nm

IZO/MoO3 80nm

SiO2 65 nm

Ag

IZO/MoO3 80nm

ETL 60 nm

Substrate

EML 20 nm

HTL 40 nm

IZO/MoO3 80nm

SiO2 245 nm

a.Ag

ETL 35 nm

Substrate

EML 15 nm

HTL 30 nm

Ag 15nm

Sub-electrode grid modeling

Variable Waveguide Widths Prevent Mode Propagation

Page 7: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Al OrganicITO

SEMLA

High IndexSpacer layer

Getting All the Light Out: Sub-Electrode Microlens Array (SEMLA)

• Micron-scale lens array between the bottom electrode and the glass substrate

• Flat spacer layer

• High refractive index

• Microlens array imbedded into glass

Page 8: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

SEMLA Fabrication

8

HF: surfactant

Photoresist 0.8 μm openings with a 10 μm pitch

10 μm

Page 9: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

As nsub/norg goes up, more waveguided light is squeezed out

Structure: 70nm ITO/ 40nm TAPC/ 20nm CBP/ 65nm Bphen/Al

Refractive Index of SEMLA

9

n=1.6 n=1.7 n=1.8nsub/norg nsub/norg

Page 10: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

0 20 40 60 80 100 120 1400

20

40

60

80

100

Fra

ction o

f P

ow

er

(%)

ETL thickness (nm)

SPPLoss

WV

SEMLA

0 20 40 60 80 100 120 1400

20

40

60

80

100

Fra

ction

of P

ow

er

(%)

ETL thickness (nm)

SPP

WV

SubAir

Loss

SEMLAs Change the Outcoupling Landscape

Page 11: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

0 5 1010

-7

10-3

101

Con

SEMLA

J (

mA

/cm

2)

Voltage (V)

102

103

104

0

20

40

60

80 Con_air Con_IMF

SEMLA_air SEMLA_MLA

SEMLA_IMF Sap_IMF

E

QE (

%)

Brightness (cd/m2)

-90

-60

-300

30

60

90 Lamb. Con

SEMLA MLA SEMLA HS

SEM

LA

SEM

LA+M

LA

SEM

LA+I

MF

Sap

1.0

1.5

2.0

2.5

3.0

3.5

41±3%45±4%

27±3%

20±2% 60±4%65±5%

47±4%

E F

30±3%

SEMLA Performance

Page 12: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Diffuse Reflectors: Low Cost & Simple• Dielectric diffusive reflector

✓ No SPP✓ Small absorption (Reflectance ~98%)✓ No angle dependence✓ Reduced w/g mode

Page 13: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Device Structure

Planarization

Layer

0.0 0.5 1.0 1.5-20

-10

0

10

20

Heig

ht (

m)

Distance (mm)

Surface Roughness of Diffuse Reflector

OLED grown on the substrate

PHOLED

Top contact

(ITO)

Bottom

contact (ITO)

Page 14: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Fabrication Sequence

Page 15: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Device Performance – Efficiency

• External Quantum Efficiency (EQE)➢ Mirror 15 ± 2%

➢ Diffuser 37 ± 4% (×2.5)

• Comparable J-V➢ No influence on device structure

Diffuse (Green)

Mirror (Green)

Diffuse (White)

Mirror (White)

0.01 0.1 1 100

10

20

30

40

50

E

QE

(%

)

Current Density (mA/cm2)

Diffuse

Mirror

0 4 8 12 16 2010

-4

10-3

10-2

10-1

100

101

102

Curr

ent D

ensity

(m

A/c

m2)

Voltage (V)

Page 16: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Device Performance – White Spectrum

• White OLED➢ No spectrum shift

✓ Weak optical micro-cavity by high-index planarization layer

➢ Lambertian light source

✓ Scattering via diffuse reflection

0.5

1.0

1.5

400 500 600 700 8000.0

0.5

1.0

1.5Diffuse

0 Degree

30 Degree

60 Degree

No

rma

lize

d I

nte

nsity

Wavelength (nm)

Mirror

90

60

300

30

60

90 Diffuse

Mirror

Lambertian

Device Area

Page 17: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Device Analysis(I) – Peripheral Emission

Page 18: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Device Analysis– Peripheral Emission

• Light emitted outside the defined active area : Peripheral Emission

• Device area ↑ → peripheral emission ↓

• Planar. layer thickness ↓ → peripheral emission ↓, EQE ↑ (68%, ×3.4 @50um)

Page 19: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Device Analysis– Number of Reflections

• Diffuse reflection➢ Redirect light uniformly➢ RS = 30% → air mode

➢ 5 scattering → ~80% escape

0 1 2 3 4 50

1

2

3

Inte

nsity (

a.u

.)

Number of Reflections

Air mode

Substrate Mode

x10-4

Air Mode

out TA D S = + ηTA : Light power fraction to top surface

ηD : Planarization layer efficiency

ηS : Light power fraction into planarization layer

Page 20: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Ultrathin, Ultra-flexible OLEDs With High Outcoupling

Page 21: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Corrugations by Deposition on Rough Sapphire

Page 22: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

450 500 550 600 650 7000.0

0.2

0.4

0.6

0.8

1.0

No

rmalized

In

ten

sit

y

Wavelength (nm)

0o

30o

60o

Ultrathin, Ultra-Flexible OLED Performance

Page 23: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Conclusions

• Substrates can be modified to extract almost all trapped modes in OLED✓Waveguide

✓SPP

✓Substrate

• Best solutions do not interfere with OLED structure✓Wavelength and viewing angle independent

✓Low cost

✓Adaptable to both top and bottom emission

• Practical limit for outcoupling: 70 - 80%

Page 24: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Acknowledgements• Optoelectronic Components and Materials Group @ UM

• Jonchang Kim• Yue Qu• Xiaheng Huang

Page 25: No Photon Left Behind: Challenges in OLED Outcoupling · SEMLA 0 20 40 60 80 100 120 140 0 20 40 60 80 100 Power (%) ETL thickness (nm) SPP WV Sub Air Loss SEMLAs Change the Outcoupling

Acknowledgements• Optoelectronic Components and Materials Group @ UM

• Jonchang Kim• Yue Qu• Xiaheng Huang