MURI Teleconference 5/28/04

30
MURI Teleconference 5/28/04 Electrical Engineering Department University of California, Los Angeles Professor Tatsuo Itoh

description

MURI Teleconference 5/28/04. Professor Tatsuo Itoh. Electrical Engineering Department University of California, Los Angeles. Agenda. Voltage scanned Leaky Wave Antenna Near Field Focusing using Non-uniform Leaky Wave Antenna 2D Mushroom Structure Planar Lens Surface Plasmon - PowerPoint PPT Presentation

Transcript of MURI Teleconference 5/28/04

Page 1: MURI Teleconference 5/28/04

MURI Teleconference 5/28/04

Electrical Engineering Department

University of California, Los Angeles

Professor Tatsuo Itoh

Page 2: MURI Teleconference 5/28/04

Agenda

• Voltage scanned Leaky Wave Antenna

• Near Field Focusing using Non-uniform Leaky Wave

Antenna

• 2D Mushroom Structure

• Planar Lens

• Surface Plasmon

• Leaky Wave Antenna

• Generalized Transmission Matrix Method

Page 3: MURI Teleconference 5/28/04

Composite Right / Left-Handed (CRLH) TL

0, Z

d

RL

RC LL

LC

H m

F m

H m

F m

0z

Infinitesimal Circuit Model Transmission Line Representation

22

, where

1 1,

1

R RL L

R RR R

L L L L

j Z Y

Z j L Y j Cj C j L

L Cs L C

L C L C

22

12

1

R RL L

R R

L L

RH LH

L CL C

L CL C

Balanced CasePropagation Constant

Definition: R L L RL C L C L C

1 2

1 1 1 11if min , and 1 if max ,

R L L R R L L R

sL C L C L C L C

RL

RCLL

LC

Page 4: MURI Teleconference 5/28/04

Motivation of Electronically-Scanned LW AntennaMotivation of Electronically-Scanned LW Antenna

Conventional LWA Frequency dependent scanning

Conventional Electrically-Scanned LWA Frequency independent scanning Only two discrete states are possible Waveguide configuration with PIN diode

Novel Electronically Scanned LWAFrequency independent scanning Efficient ChannelizationContinuous scanning capabilityMicrostrip technology Low profile

Conventional Magnetically-Scanned LWA Frequency independent scanning Biasing DC magnetic field NOT practical Waveguide configuration

R. E. Horn, et. al, “Electronic modulated beam steerable silicon waveguide array antenna,” IEEE Tran. Microwave Theory Tech.H. Maheri, et. al, “Experimental studies of magnetically scannable leaky-wave antennas having a corrugated ferrite slab/dielectric layer structure,” IEEE Trans. AP.L. Huang, et. al, “An electronically switchable leaky wave antenna,” IEEE Trans. AP.

Page 5: MURI Teleconference 5/28/04

The Principle of the Proposed Idea : Radiation Angle ControlThe Principle of the Proposed Idea : Radiation Angle Control

Scanning angle is dependent on inductances and capacitances Introducing varactor diodes

Capacitive parameters are controlled by voltages Dispersion curves are shifted vertically as bias voltages are varied Radiating angle becomes a function of the varactor diode’s voltages

Scanning angle is dependent on inductances and capacitances Introducing varactor diodes

Capacitive parameters are controlled by voltages Dispersion curves are shifted vertically as bias voltages are varied Radiating angle becomes a function of the varactor diode’s voltages

0

0RH 0LH 0

0( )

c

k

1V

1V2V

2V

3V

3V

0k

1

0

( )( ) sin

VV

k

1

0

( ) sinVk

Page 6: MURI Teleconference 5/28/04

Series and Shunt Varactors Fairly constant characteristic impedance Additional degree of freedom for wider scanning range

Reverse biasing to Varactors Anodes of varactors : GND Cathodes of varactors: Biasing

Series and Shunt Varactors Fairly constant characteristic impedance Additional degree of freedom for wider scanning range

Reverse biasing to Varactors Anodes of varactors : GND Cathodes of varactors: Biasing

stub (via) shorted :B

capacitor alinterdigit :A

`

Z Z

L2CL2CRL 2RL 2

LLRC

Y

A B

var,RLvar,LC var,LC var,RL

1,RL 1,LC 1,LC 1,RL

1,LL

var,RC 1,RC 2,LLDCL

DCV

Z Z

Y

A B

A

B

varactor

GND

GND inductor

Modified Layout of a Microstirp CRLH TL Unit cellsModified Layout of a Microstirp CRLH TL Unit cells

Page 7: MURI Teleconference 5/28/04

Dispersion diagramDispersion diagram

1( ) cos (1 '( ) '( )) /V Z V Y V d

dCj

LjVCj

LjVZL

RL

R

1,1,

var,var,

1||

)(

1)('

dLLVCC

VCLCLVCLCLj

RRLL

LRLRLRLR

)()(

1)()(

var,1,2

var,1,

2var,var,1,1,2

var,var,1,1,

dLj

CjVCjLj

VYL

RRL

2,1,var,

1,

1)(||

1)('

dLj

CjVCL

j

LR

RL

2,1,

var,1,2

1

)(/1

0/ k

Voltages

Parameters0 V 5 V 10 V

LR,var [nH] 1.840 2.029 1.768

C R, var (=C L,var) [pF] 2.544 0.916 0.765

LL1 [nH] 5.168 6.165 6.524

CR1 [pF] 1.230 1.018 0.900

LL2 [nH] 4.597

CL1 [pF] 0.485

LR1 [nH] 2.027

Page 8: MURI Teleconference 5/28/04

Prototype of 30 Cell Proposed TLPrototype of 30 Cell Proposed TL

The cathodes of three varactors in the same direction Efficient biasing: Only one bias circuitry in unit cell

Back to back configuration of two series varactors Fundamental signals : in phase and add up Harmonic signals: out of phase and cancel

Port 1 : Excitation Port 2: Terminated with 50 ohms Suppress undesired spurious beams

Shunt varactor

Series varactors3.02 (0.46 )strip

effcm

DC

Bias Configuration

Shunt varactor

varactorsSeries

-+

Via

Feed) (DCInductor

)(V GND, b

Via

- ++

)(V bias DC b

LZinP

38.34 (5.87 )stripeffcm

3.02 (0.46 )stripeffcm

1.2 (0.18 )stripeffd cm

1Port 2Port

Page 9: MURI Teleconference 5/28/04

Continuous Scanning Capability at 3.33 GHzContinuous Scanning Capability at 3.33 GHz

01020100

0

30

6060

30

01020100

030

6060

30

01020100

0

30

6060

30

V = 18 VLH ( β < 0)

V = 3.5 VBroadside ( β = 0 )

V = 1.5 VRH ( β > 0)

Scanning Range Δθ = 99º (-49º to +50º) Backward, forward, and broadside

Biasing Range ΔV = 21 V ( 0 to 21 V)

Fixed operating frequency : 3.33 GHz

Good agreement with theoretical and experimental results

Scanning Range Δθ = 99º (-49º to +50º) Backward, forward, and broadside

Biasing Range ΔV = 21 V ( 0 to 21 V)

Fixed operating frequency : 3.33 GHz

Good agreement with theoretical and experimental results

Page 10: MURI Teleconference 5/28/04

Performance as a LW AntennaPerformance as a LW Antenna

High directivity : One of attractive characteristic of LW antennas Achieved by increasing the number of cells Large radiation aperture

Antenna dimension : Maximum Gain : 18 dBi at broadside ( V = 3.5 V )

High directivity : One of attractive characteristic of LW antennas Achieved by increasing the number of cells Large radiation aperture

Antenna dimension : Maximum Gain : 18 dBi at broadside ( V = 3.5 V )

38.34 (5.87 )stripeffcm

Page 11: MURI Teleconference 5/28/04

Focusing by a Planar Non-Uniform LW InterfacePrinciple Dipole array model for the TX antenna

x

z

focus

d0

TXˆ

iRi

yL

ˆFFr x

iFR

iz

ˆ ˆiF z iFR x z

01

( ) exp( ) ( )N

z i i zii

E I j E

F iFr R

E-Field Maximization

d0 = 0/2 F = 6

0

0

0 20 0

0 2

0

1 1 ˆ( ) 1 sin

1 ˆ2 cos

ˆ ˆ ˆ( ) ( ) ( )

jk

i

jk

i

xi yi zi

eE j

jk k

j eE

k

E E E

iF

iF

R

i iF i

iF iFiF

R

i

iF iFiF

iF iF iF

E R θR RR

RR RR

x R y R z R

E-Field of a Dipole

F

z

Fx

RX

TX

source

focus

0 θ i

F

z

Fx

RX

TX

source

focus

0 θ i

zi(RiF+Ez(rF) ~ k0|RiF|+constant~

Page 12: MURI Teleconference 5/28/04

0 2 4 6 8 10 12-18

-16

-14

-12

-10

-8

-6

-4

-2

0

x(z

No

rmal

ized

Ele

ctri

c F

ield

(d

B)

Effects of Different Array Length.

z(

z(z

z(

No

rmal

ized

Ele

ctri

c F

ield

(d

B)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

L=12L=30

L=12L=30

4 -2 0 2 4

F = 60

dB

L = 300L = 120

Page 13: MURI Teleconference 5/28/04

Piece-Wise Linear Approximation

0 2 4 6 8 10 12-18

-16

-14

-12

-10

-8

-6

-4

-2

0

x (0) (z=0)

Nor

ma

lized

Ele

ctri

c F

ield

(d

B)

2 Groups6 GroupsContinuous

2 Groups6 GroupsContinuous

-4 -2 0 2 4-30

-25

-20

-15

-10

-5

0

z (0) (x=F=60)

Nor

mal

ized

Ele

ctric

Fie

ld (

dB)

2 Groups6 GroupsContinuous

-4 -2 0 2 4-30

-25

-20

-15

-10

-5

0

z (0) (x=F=60)

Nor

mal

ized

Ele

ctric

Fie

ld (

dB)

2 Groups6 GroupsContinuous

z(0)

-15 -10 -5 0 5 10 152000

3000

4000

5000

6000

2000

3000

4000

5000

z (0)

phas

e of

exc

itatio

n (d

eg) 2 Groups

6 GroupsContinuous

F = 60

~

k 0|RiF|+

cons

tant

~

dB

L = 300

Page 14: MURI Teleconference 5/28/04

Effects of Leakage Factor

Willkinson power dividerNon-uniform LW antennax x

Prototype

0 2 4 6 8 10 12-18

-16

-14

-12

-10

-8

-6

-4

-2

0

x (0) (z=0)

Nor

mal

ized

Ele

ctric

Fie

ld (

dB)

=0 (1/m)=1 (1/m)=4 (1/m)

0 2 4 6 8 10 12-18

-16

-14

-12

-10

-8

-6

-4

-2

0

x (0) (z=0)

Nor

mal

ized

Ele

ctric

Fie

ld (

dB)

=0 (1/m)=1 (1/m)=4 (1/m)

-4 -2 0 2 4-40

-35

-30

-25

-20

-15

-10

-5

0

z (0) (x=F=60)

Nor

ma

lized

Ele

ctri

c F

ield

(d

B)

=0 (1/m)=1 (1/m)=4 (1/m)

-4 -2 0 2 4-40

-35

-30

-25

-20

-15

-10

-5

0

z (0) (x=F=60)

Nor

ma

lized

Ele

ctri

c F

ield

(d

B)

=0 (1/m)=1 (1/m)=4 (1/m)

F = 60 L = 300

Page 15: MURI Teleconference 5/28/04

•Passive, planar and non-uniform LW focusing interface

•Simplified phased-array model of the non-uniform LW structure

•Optimized phase distribution for focusing•Focusing by a thin planar passive interface instead of a bulk of LH material or active components

Page 16: MURI Teleconference 5/28/04

Realization of 2D Metamaterials

2.5D Textured Structure: Meta-Surface (“open”)

2D Lumped Element Structure: Meta-Circuit (“closed”) RH

yz

x

RC

2RL

2RL2RL

2RL

LH

LL

2 LC

2 LC

2 LC2 LC

yz

x

2D interconnection

y

x

Chip Implementation

Enhanced Mushroom Structure Uniplanar Interdigital Structure

top patch

ground plane

capspost

Unit cell

top patch

sub-patches

ground plane

via

Page 17: MURI Teleconference 5/28/04

Analysis of the Periodic 2D TL

Unit cell representation and parameters

ixA

ixBi

xCixD

iyA

iyB

iyC

iyD

zA zB

zC zD

oxA

oxBo

xCoxD

oyA

oyB

oyC

oyD

ix xI I

ix xV V

iy yI I

iy yV V

xjk aox xI I e

xjk aox xV V e

yjk aoy yI I e

yjk aoy yV V e

0V

izI

x

yz

0ixV

0iyV 0o

xV

0oyV

1I

2I3I

4I

5I

Transmissionor [ABCD]Matrixes:

relate In/out I/V

Ingredients:

Kirchoff’sVoltage/Currents

Laws:Linear HomogeneousSystem in , , ,x x y yV I V I

NB: can be solved numerically (fast) or analytically (insight)

Bloch-FloquetTheorem:

relates in/out phases,Brillouin zone resolution

→ dispersion diagram:, BZx yk k

det , 0x yM k k

Page 18: MURI Teleconference 5/28/04

Negative Refractive Index of Mushroom Structure

source

refocus

focus

Electric field distribution, | E |

Positive / negative refractive index

Ab

solu

te r

efra

ctiv

e in

dex

0

5

10

–1.0 –0.5 0 0.5 1.0

M

n= c0

/

Fre

qu

ency

(G

Hz)

– X

–5

–10

–15

a

MX

strong C (MIM) mixed RH / LH

air linedielectric line

quasi-TEM

quasi-TE

Open

ground plane

top

caps

vias

dispersion diagramTM0

TEM

if h/<<1

Page 19: MURI Teleconference 5/28/04

Parameter Extraction Method

L

LL C

LZ

X M

RH

LH

CRLH1

2

0

1X

2X

2M

cM 1

HIGH-PASS GAP

10

(GHz) f

2

8

M

X xk

yk

0

a

a

a

a

How to determine: LR, CR, LL, CL

- Full-wave analysis: ωΓ1, ωX1, ωM1

- Compute ωse, ωL, ωR, ωsh, ωLωR = ωsh ωse

- Compute Bloch impedance ZB= fct(ωX1)

- Insert ZB(ωX1) to determine

- Finally, using ,

1L B XZ Z

222

1,

1,

1,

RRR

seLR

LLL

L

LL L

CC

LL

CZ

L

L L LZ L C

2 2 2 21 1 1 12

2 2 2 21 1 1 12 2 2 2

1 1 1 1

24

1 1 1 1

M X

L

M XX M

2 2

2 1 1

22 2

1 1

1 14

XR

LX

R L se sh

1se

Page 20: MURI Teleconference 5/28/04

Paraboloidal “Refractor”

Plane Wave to Cylindrical WavePrinciple

Mushroom ImplementationEffective Medium Full-Wave Demonstration

nI > nII: HyperbolanI < nII: EllipsenI = -nII: Parabola

III

III

IIIIII

nn

nnfr

frABDC

fnDCnrnABn

cos

)(

...

)cos(

Page 21: MURI Teleconference 5/28/04

Full-Wave Demonstration of Microwave Surface Plasmon

Constitutive Parameters and Dispersion

ATR-Type Setup (PPWG)

Effective Medium Demonstration

2D CRLH Metamaterial

2

20

1R L

r

C L

p

2

20

1R L

r

L C

p

Page 22: MURI Teleconference 5/28/04

2D Mushroom-Structure Leaky-Wave

Unit cell

a

Equivalent CRLH circuit

2RL2 LC

RLLC

Dispersion Diagram

Γ ΓX M

LH

RH

fΓ1

ΓX

M

fΓ2

Page 23: MURI Teleconference 5/28/04

2D Mushroom-Structure Leaky-Wave cont’d

Γ ΓX M

LH

RH

fΓ1

ΓX

M

β = 0.1π/a

fΓ2

2D Dispersion Diagram

xkyk

,n x yk k

0LH

RH

radiationcone

Brillouin Zone

XX

M

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

kx (/a)

k y ( /

a)

11.7448

14.175816.606919.0379

21.469

21.469

21.469

21.4

69

Γ

LH-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

kx (/a)

k y ( /

a)

14.169417.338920.5083

23.6777

26.8472

26.8472

26.8472

26.8472

Γ

RH

Isotropy

Page 24: MURI Teleconference 5/28/04

Conical Beam OperationPrototype (top view)

β β

vp

vp

vp

vp

LH

RHθ θ

θ

β β

θ

Radiation Principle

center excitation

RH

0

45

90

135

180

225

270

315

-35

-35

-40

-40

-45

-45

-50

-50

-55

-55-60

11.0 GHz13.0 GHz15.0 GHz

0

45

90

135

180

225

270

315

-30

-30

-35

-35

-40

-40

-45

-45

-50

-50

-55

-55-60

9.0 GHz9.6 GHz10.1 GHz

LH

Measured Radiation Patterns

Radiation Angle vs Frequency

Page 25: MURI Teleconference 5/28/04

Full-Scanning Edge-Excited 2D-LW Antenna

E.g. Hexagonal 3-ports antenna surface

each port scans

from backfire-to-endfire

N-ports = N-edges/2

P1=90

P2=45

P3=0

P3=135

Page 26: MURI Teleconference 5/28/04

Array Factor Approach of LW Structures

Phased Array Leaky-Wave Structure

1 sin0

1

Nj n kp

n

AF I e

• linear phase:

• constant magnitude:

• excitation: feed at each element

• array factor:

0n n

0 ,nI I n

DISCRETE EFFECTIVELY HOMOGENEOUS

1 sin

1

Nj n kp

nn

AF I e

• linear phase : uniform structure

• exponentially decaying magnitude:

• excitation: induced by propagation

• array factor:

10with n p

nI I e

directivity N

x

z

p

1 1,I

2 3 40

0I 0I 0I 0I 0I

2 2,I 3 3,I 4 4,I 5 5,I

0I 01 sinn n kp

x

z

p 2 3 40

0I

0nxI e

0I

01 sinn n kp

Page 27: MURI Teleconference 5/28/04

Generalized Transmission Matrix Method (GTMM)

• 2D network decomposed into N columns of M unit cells

• each column column transmission matrix [T]; [T]tot = [T]N

• unit cell parameters known from extraction

CRLH

[T]

[T]tot

Page 28: MURI Teleconference 5/28/04

GTMM – Global S-Parameters: Examples

CRLH unit cell

PortP4Num=4

PortP3Num=3

PortP2Num=2

PortP1Num=1

PLCPLC1

C=CR FL=LL H

SLCSLC4

C=CL2 FL=LR2 H

SLCSLC3

C=CL2 FL=LR2 H

SLCSLC2

C=CL2 FL=LR2 H

SLCSLC1

C=CL2 FL=LR2 H

CRLH_ucX1

4

2

3

1

Test parameters

0

2.5 nH

1.0 pF

Z 50

50 ,

R L

R L

R L

R L

th tv

L L

C C

L L

C C

Z Z

RR24R=Ztv Ohm

RR23R=Ztv Ohm

RR22R=Ztv Ohm

RR21R=Ztv Ohm

RR20R=Ztv Ohm

RR19R=Ztv Ohm

RR18R=Ztv Ohm

RR17R=Ztv Ohm

RR16R=Ztv Ohm

RR15R=Ztv Ohm

RR14R=Ztv Ohm

RR13R=Ztv Ohm

RR12R=Ztv Ohm

RR11R=Ztv Ohm

RR10R=Ztv Ohm

RR9R=Ztv Ohm

RR8R=Ztv Ohm

RR7R=Ztv Ohm

RR6R=Ztv Ohm

RR5R=Ztv Ohm

RR4R=Ztv Ohm

RR3R=Ztv Ohm

RR2R=Ztv Ohm

RR1R=Ztv Ohm

TermTerm1Num=1

CRLH_ucX1

4

2

3

1

CRLH_ucX2

4

2

3

1

CRLH_ucX6

4

2

3

1

CRLH_ucX5

4

2

3

1

CRLH_ucX4

4

2

3

1

CRLH_ucX3

4

2

3

1

CRLH_ucX7

4

2

3

1

CRLH_ucX8

4

2

3

1

CRLH_ucX9

4

2

3

1

CRLH_ucX10

4

2

3

1

CRLH_ucX11

4

2

3

1

CRLH_ucX12

4

2

3

1

CRLH_ucX24

4

2

3

1

CRLH_ucX23

4

2

3

1

CRLH_ucX22

4

2

3

1

CRLH_ucX21

4

2

3

1

CRLH_ucX20

4

2

3

1

CRLH_ucX19

4

2

3

1

CRLH_ucX18

4

2

3

1

CRLH_ucX17

4

2

3

1

CRLH_ucX16

4

2

3

1

CRLH_ucX15

4

2

3

1

CRLH_ucX14

4

2

3

1

CRLH_ucX13

4

2

3

1

CRLH_ucX36

4

2

3

1

CRLH_ucX35

4

2

3

1

CRLH_ucX34

4

2

3

1

CRLH_ucX33

4

2

3

1

CRLH_ucX32

4

2

3

1

CRLH_ucX31

4

2

3

1

CRLH_ucX30

4

2

3

1

CRLH_ucX29

4

2

3

1

CRLH_ucX28

4

2

3

1

CRLH_ucX27

4

2

3

1

CRLH_ucX26

4

2

3

1

CRLH_ucX25

4

2

3

1

CRLH_ucX48

4

2

3

1

CRLH_ucX47

4

2

3

1

CRLH_ucX46

4

2

3

1

CRLH_ucX45

4

2

3

1

CRLH_ucX44

4

2

3

1

CRLH_ucX43

4

2

3

1

CRLH_ucX42

4

2

3

1

CRLH_ucX41

4

2

3

1

CRLH_ucX40

4

2

3

1

CRLH_ucX39

4

2

3

1

CRLH_ucX38

4

2

3

1

CRLH_ucX37

4

2

3

1

CRLH_ucX60

4

2

3

1

CRLH_ucX59

4

2

3

1

CRLH_ucX58

4

2

3

1

CRLH_ucX57

4

2

3

1

CRLH_ucX56

4

2

3

1

CRLH_ucX55

4

2

3

1

CRLH_ucX54

4

2

3

1

CRLH_ucX53

4

2

3

1

CRLH_ucX52

4

2

3

1

CRLH_ucX51

4

2

3

1

CRLH_ucX50

4

2

3

1

CRLH_ucX49

4

2

3

1

CRLH_ucX72

4

2

3

1

CRLH_ucX71

4

2

3

1

CRLH_ucX70

4

2

3

1

CRLH_ucX69

4

2

3

1

CRLH_ucX68

4

2

3

1

CRLH_ucX67

4

2

3

1

CRLH_ucX66

4

2

3

1

CRLH_ucX65

4

2

3

1

CRLH_ucX64

4

2

3

1

CRLH_ucX63

4

2

3

1

CRLH_ucX62

4

2

3

1

CRLH_ucX61

4

2

3

1

CRLH_ucX73

4

2

3

1

CRLH_ucX74

4

2

3

1

CRLH_ucX75

4

2

3

1

CRLH_ucX76

4

2

3

1

CRLH_ucX77

4

2

3

1

CRLH_ucX78

4

2

3

1

CRLH_ucX79

4

2

3

1

CRLH_ucX80

4

2

3

1

CRLH_ucX81

4

2

3

1

CRLH_ucX82

4

2

3

1

CRLH_ucX83

4

2

3

1

CRLH_ucX84

4

2

3

1

CRLH_ucX96

4

2

3

1

CRLH_ucX95

4

2

3

1

CRLH_ucX94

4

2

3

1

CRLH_ucX93

4

2

3

1

CRLH_ucX92

4

2

3

1

CRLH_ucX91

4

2

3

1

CRLH_ucX90

4

2

3

1

CRLH_ucX89

4

2

3

1

CRLH_ucX88

4

2

3

1

CRLH_ucX87

4

2

3

1

CRLH_ucX86

4

2

3

1

CRLH_ucX85

4

2

3

1

CRLH_ucX108

4

2

3

1

CRLH_ucX107

4

2

3

1

CRLH_ucX106

4

2

3

1

CRLH_ucX105

4

2

3

1

CRLH_ucX104

4

2

3

1

CRLH_ucX103

4

2

3

1

CRLH_ucX102

4

2

3

1

CRLH_ucX101

4

2

3

1

CRLH_ucX100

4

2

3

1

CRLH_ucX99

4

2

3

1

CRLH_ucX98

4

2

3

1

CRLH_ucX97

4

2

3

1

CRLH_ucX120

4

2

3

1

CRLH_ucX119

4

2

3

1

CRLH_ucX118

4

2

3

1

CRLH_ucX117

4

2

3

1

CRLH_ucX116

4

2

3

1

CRLH_ucX115

4

2

3

1

CRLH_ucX114

4

2

3

1

CRLH_ucX113

4

2

3

1

CRLH_ucX112

4

2

3

1

CRLH_ucX111

4

2

3

1

CRLH_ucX110

4

2

3

1

CRLH_ucX121

4

2

3

1

CRLH_ucX122

4

2

3

1

CRLH_ucX123

4

2

3

1

CRLH_ucX124

4

2

3

1

CRLH_ucX125

4

2

3

1

CRLH_ucX126

4

2

3

1

CRLH_ucX127

4

2

3

1

CRLH_ucX128

4

2

3

1

CRLH_ucX129

4

2

3

1

CRLH_ucX130

4

2

3

1

CRLH_ucX131

4

2

3

1

CRLH_ucX132

4

2

3

1

CRLH_ucX109

4

2

3

1

CRLH_ucX133

4

2

3

1

CRLH_ucX134

4

2

3

1

CRLH_ucX135

4

2

3

1

CRLH_ucX136

4

2

3

1

CRLH_ucX137

4

2

3

1

CRLH_ucX138

4

2

3

1

CRLH_ucX139

4

2

3

1

CRLH_ucX140

4

2

3

1

CRLH_ucX141

4

2

3

1

CRLH_ucX142

4

2

3

1

CRLH_ucX143

4

2

3

1

CRLH_ucX144

4

2

3

1

TermTerm24Num=24

TermTerm23Num=23

TermTerm22Num=22

TermTerm21Num=21

TermTerm20Num=20

TermTerm19Num=19

TermTerm18Num=18

TermTerm17Num=17

TermTerm16Num=16

TermTerm15Num=15

TermTerm14Num=14

TermTerm13Num=13

TermTerm12Num=12

TermTerm11Num=11

TermTerm10Num=10

TermTerm9Num=9

TermTerm8Num=8

TermTerm7Num=7

TermTerm6Num=6

TermTerm5Num=5

TermTerm4Num=4

TermTerm3Num=3

TermTerm2Num=2

12 12 network

1

2

12

13

14

24

6

3

4

5

7

8

9

10

11

15

16

17

18

19

20

21

22

23

Page 29: MURI Teleconference 5/28/04

GTMM – Global S-Parameters: Example cont’d

1,1S

3,9S

6,6S

6,24S

GTMMADS

Page 30: MURI Teleconference 5/28/04

GTMM – Fields Distributions, Example, 2D, g

1.0 GHzf 1.5 GHzf 2.0 GHzf

2.5 GHzf

Dispersion Diagram

Fre

qu

en

cy

(G

Hz)

3.0 GHzf 3.13 GHzf

4.0 GHzf 5.0 GHzf 6.0 GHzf 7.0 GHzf

8.0 GHzf 9.0 GHzf 10.0 GHzf 12.0 GHzf

Cu

rren

ts d

istr

ibu

tio

ns

21

21

net

wo

rk

2.5 GHzf