Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects

7
FoundationItem : Item SponsoredbyNationalNaturalScienceFoundationofChina ( 61050006 ) Biography : MaoGxiangCHU , DoctorCandidate ; EGmail : chu52 _ 2004@163com ; ReceivedDate : September11 , 2012 JOURNALOFIRON ANDSTEELRESEARCH , INTERNATIONAL2014 , 21 ( ): 174G180 MultiGclassClassification MethodsofEnhancedLSGTWSVMfor Stri p SteelSurfaceDefects MaoGxiangCHU 1,2 , AnGnaWANG , RongGfenGONG 1,2 , MoSHA ( 1.CollegeofInformationScienceandEngineering , NortheasternUniversity , Shenyang110819 , Liaoning , China ; 2.SchoolofElectronicandInformationEngineering , UniversityofScienceandTechnologyLiaoning , Anshan 114051 , Liaoning , China ) Abstract : Consideringstripsteelsurfacedefectsamples , amultiGclassclassificationmethodwasproposedbasedon enhancedleastsquarestwinsupportvectormachines ( ELSGTWSVMs ) andbinarytree.Firstly , pruningregionsamples centermethodwithadjustablepruningscalewasusedtoprunedatasamples.This methodcouldreduceclassifier′s trainingtimeandtestingtime.Secondly , ELSGTWSVM wasproposedtoclassifythedatasamples.Byintroducing errorvariablecontributionparameterandweightparameter , ELSGTWSVMcouldrestraintheimpactofnoisesamG plesandhavebetterclassificationaccuracy.Finally , multiGclassclassificationalgorithmsofELSGTWSVMwereproG posedbycombiningELSGTWSVMandcompletebinarytree.SomeexperimentsweremadeontwoGdimensionaldataG setsandstripsteelsurfacedefectdatasets.TheexperimentsshowedthatthemultiGclassclassification methodsof ELSGTWSVM hadhigherclassificationspeedandaccuracyforthedatasetswithlargeGscale , unbalancedandnoisesamples. Keywords : multiGclassclassification ; leastsquarestwinsupportvectormachine ; errorvariablecontribution ; weight ; binarytree ; stripsteelsurface Inrecentyears , withfurtherdemandforhigher qualityofstripsteelsurface , theresearch ofstrip steelsurfacedefectsdetectionandrecognitionisbeG comingwideanddeep [1-3] .TheproducedsurfaceofG tenhasvarioustypesofdefectssuch asscarring , crack , hole , scratch , wrinkle , scale , andsoon.Itis difficulttoclassifythestripsteelsurfacedefectsamG ples.However , beinganewkindofpatternrecogniG tionmethod , supportvectormachines ( SVMs ) have beenusedeffectively [4-6] .Wangetal [4] usedthe improvedversionoftheprogressivelyimmediateinG ferenceSVM instripsteelsurfacedefectsrecogniG tion.ThismethodcanimprovetheabilityofadaptaG bilityandaccuracy.Yangetal [5] improvedtheclasG sificationaccuracyforthose defects with similar shapesandsmallsamplesizes by meansofthe weightedhierarchicalSVM usedinthesamefield. Amidetal [6] performedthe multiGclassclassificaG tionbasedontheoneGagainstGonemethodandadoptG edvariouskernelsintheclassificationofthe menG tioneddefects.TheproposedmultiGclassclassificaG tionschemewasmoreaccuratethantheconventionG almethods. Inthisstudy , a methodwasputforwardto solvethemultiGclassclassificationforstripsteelsurG facedefectsandtoimproveclassificationspeedand accuracy.Firstly , leastsquarestwinsupportvector machines ( LSGTWSVMs ) wereusedtoclassifythe stripsteelsurfacedefectsamples.Compared with standardSVM , LSGTWSVMismoresuitableforthe datasets withlargeGscaleand unbalancedsamples. Secondly , pruningregion samplescenter ( PRSC ) methodwasusedtoprunestripsteelsurfacedefect samples.Thismethodcanreducetheamountofthe datasamplesbyreplacingtheregion datasamples withthecenterpointoftheregiondatasamplesand improvetheclassificationspeed.Inthemeantime , in ordertoensuretheclassificationaccuracyandreduce influenceofpruned datasampleson classification hyperGplanes , errorvariablecontributionparameter wasaddedtotheLSGTWSVM.Also , inordertoreG straintheimpactofnoisesamples , weightparameG

Transcript of Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects

Page 1: Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects

FoundationItemItemSponsoredbyNationalNaturalScienceFoundationofChina(61050006)BiographyMaoGxiangCHUDoctorCandidate EGmailchu52_20041631049008com ReceivedDateSeptember112012

1051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271

JOURNALOFIRONANDSTEELRESEARCHINTERNATIONAL1049008201421(2)174G18010512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273

MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects

MaoGxiangCHU12 AnGnaWANG1 RongGfenGONG12 MoSHA1

(1CollegeofInformationScienceandEngineeringNortheasternUniversityShenyang110819LiaoningChina2SchoolofElectronicandInformationEngineeringUniversityofScienceandTechnologyLiaoningAnshan114051LiaoningChina)

AbstractConsideringstripsteelsurfacedefectsamplesamultiGclassclassificationmethodwasproposedbasedonenhancedleastsquarestwinsupportvectormachines(ELSGTWSVMs)andbinarytreeFirstlypruningregionsamplescentermethodwithadjustablepruningscalewasusedtoprunedatasamplesThismethodcouldreduceclassifierprimestrainingtimeandtestingtimeSecondlyELSGTWSVM wasproposedtoclassifythedatasamplesByintroducingerrorvariablecontributionparameterandweightparameterELSGTWSVMcouldrestraintheimpactofnoisesamGplesandhavebetterclassificationaccuracyFinallymultiGclassclassificationalgorithmsofELSGTWSVM wereproGposedbycombiningELSGTWSVMandcompletebinarytreeSomeexperimentsweremadeontwoGdimensionaldataGsetsandstripsteelsurfacedefectdatasetsTheexperimentsshowedthatthemultiGclassclassificationmethodsofELSGTWSVMhadhigherclassificationspeedandaccuracyforthedatasetswithlargeGscaleunbalancedandnoisesamplesKeywordsmultiGclassclassificationleastsquarestwinsupportvectormachineerrorvariablecontributionweightbinarytreestripsteelsurface

  InrecentyearswithfurtherdemandforhigherqualityofstripsteelsurfacetheresearchofstripsteelsurfacedefectsdetectionandrecognitionisbeGcomingwideanddeep[1-3]TheproducedsurfaceofGtenhasvarioustypesofdefectssuchasscarringcrackholescratchwrinklescaleandsoonItisdifficulttoclassifythestripsteelsurfacedefectsamGplesHoweverbeinganewkindofpatternrecogniGtionmethodsupportvectormachines(SVMs)havebeenusedeffectively[4-6]Wangetal1049008[4]usedtheimprovedversionoftheprogressivelyimmediateinGferenceSVMinstripsteelsurfacedefectsrecogniGtionThismethodcanimprovetheabilityofadaptaGbilityandaccuracyYangetal1049008[5]improvedtheclasGsificationaccuracyforthosedefects with similarshapesandsmallsamplesizesby meansoftheweightedhierarchicalSVM usedinthesamefieldAmidetal1049008[6]performedthemultiGclassclassificaGtionbasedontheoneGagainstGonemethodandadoptGedvariouskernelsintheclassificationofthemenGtioneddefectsTheproposed multiGclassclassificaG

tionschemewasmoreaccuratethantheconventionGalmethods  Inthisstudya method wasputforwardtosolvethemultiGclassclassificationforstripsteelsurGfacedefectsandtoimproveclassificationspeedandaccuracyFirstlyleastsquarestwinsupportvectormachines(LSGTWSVMs)wereusedtoclassifythestripsteelsurfacedefectsamplesCompared withstandardSVMLSGTWSVMismoresuitableforthedatasetswithlargeGscaleandunbalancedsamplesSecondlypruningregionsamplescenter (PRSC)methodwasusedtoprunestripsteelsurfacedefectsamplesThismethodcanreducetheamountofthedatasamplesbyreplacingtheregiondatasampleswiththecenterpointoftheregiondatasamplesandimprovetheclassificationspeedInthemeantimeinordertoensuretheclassificationaccuracyandreduceinfluenceofpruneddatasamplesonclassificationhyperGplaneserrorvariablecontributionparameterwasaddedtotheLSGTWSVMAlsoinordertoreGstraintheimpactofnoisesamplesweightparameG

terwasaddedtoerrorvariablesComparingwiththeweightmethodinRef1049008[7]theweightedversionofLSGTWSVMinthisstudyismoreeffectiveonreGstrainingtheimpactofnoisesamplesandhasbetterclassificationaccuracyFinallythemultiGclassclasGsificationforstripsteelsurfacedefectswasrealizedbycombining the enhanced LSGTWSVM (ELSGTWSVM)andthebinarytree

1 LSGTWSVM

  LSGTWSVM[8]isbasedonregularizationtheorytoimprovetwinsupportvectormachines (TWSVM)[9]ComparedwithTWSVMLSGTWSVM definestheprimalquadraticprogramming problems (QPPs)withequalityconstraintsinsteadofinequalityconGstraintsCompared with standard SVM[10]LSGTWSVM solvestwosmallersized QPPsratherthanonelargeQPPwhichmakesLSGTSVM workfasterthanstandardSVMAllthesepropertiesmakesurethattheLSGTWSVMcannotonlybeusedinlargeGscalesamplesbutalsoreducetrainingtime  LSGTWSVMisdescribedasthefollowingtwoprimalQPPs

  minu1γ1

12ξ1primeξ1+

c1

2ξ2primeξ2

s1049008t1049008K(XZprime)u1+e1γ1=ξ1

-[K(YZprime)u1+e2γ1]=e2-ξ2

(1)

  minu2γ2

12η2primeη2+

c2

2η1primeη1

s1049008t1049008K(YZprime)u2+e2γ2=η2

K(XZprime)u2+e1γ2=e1-η1

(2)

whereX isinRn1timesd denotesdatasamples matrixinclass+1andX=[X1 X21049018 Xn1 ]primeYisinRn2timesd deGnotesdatasamplesmatrixinclass-1andY=[Y1Y2

1049018Yn2]primeZprime=[XprimeYprime]Kisanydiscretionarykernele1ande2 arevectorsofonesofappropriatedimenGsionsc1andc2arethetradeGoffparametersEqs1049008(1)and(2)aretwosmallersized QPPswithequalityconstraintswhicharedifferentfromthoseinstandGardSVMandTWSVMAfteraseriesofderivationthesolutionsofEqs1049008(1)and(2)canbeobtained

  u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=-TprimeT+

1c1

SprimeSaelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Tprimee2 (3)

  u2

γ2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=SprimeS+

1c2

TprimeTaelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Sprimee1 (4)

whereS=[K (XZprime)e1]T=[K (YZprime)e2]Eqs1049008(3)and(4)determinetwononparallelkernelGgenGeratedsurfacesK(xprimeZprime)u1+γ1=0andK(xprimeZprime)u2+γ2=0ThetwosurfacesrepresentclassificationhyperGplanesofthenonlinearLSGTWSVMInfactthelinearclassificationhyperGplanesxprimew1+γ1=0andxprimew2+γ2=

0canbeobtainedbyusinglinearkernelK(xprimeZprime)=xprimeZprimeanddefiningtwoequationsw1=Zprimeu1andw2=Zprimeu2Anewdatasamplexisassignedtoaclass+1or-1dependingonwhichofthetwohyperGplanesliesclosertoxintermsofperpendiculardistance

2 ELSGTWSVM210490081 PRSCmethod  SVMisveryappropriateforsmallGscaledatasamplesSVMrequireslargeRAMandlongtrainingtimewhenittacklesthelargeGscaledatasamples[11]TheLSGTWSVM cansatisfysomelargeGscaledatasamplesandreducetrainingtimeButitisnotsuitGableforlargerGscaledatasamplesInordertosolvethisproblemPRSCmethodisproposedinthepresGentstudyThescaleofdatasamplescanbedeGcreasedandtrainingspeedcanbeimprovedbyprunGingthedatasamplesInthemeantimethepruningextentcanbeadjustedfreelywhichcanmakeabalGancebetweenthescaleoftrainingsamplesandclasGsificationaccuracy  ThePRSCmethodsetsapruningregionwitharadiusrAllthedatasamplesinthisregionwillbeprunedandreplacedbythecentralpointofthesedaGtasamplesSupposingthatsamplesmatrixXrepreGsentsalargerGscaledatasetandn=n1thenPRSCmethodstepsareasfollows  Step1SelectadatasampleXcfromthedatasetXandcalculateallEuclideandistancesdk=Xc-Xk|k=121049018nwhere1048944denotestheL2norm  Step2Definethepruningregiondk<randcalGculatethenumberliofdatasamplesinthisregion  Step3CalculatethecenterpointofalldatasamG

plesinthepruningregionAi=1li

sumdk<r

XkThenalldaG

tasamplesinthepruningregionaredeletedfromthedatasetXandnisupdatedThecenterpointisusedastheonlydatasampleinthepruningregion  Step4Repeatthesteps12and3tillalldaGtasamplesareprunedFinallythedatasetX willbereplacedbythecenterpointsdatasetA=[A1A21049018Am1]primewherem1len1  SimilarlythecenterpointsdatasetB=[B1B2

1049018Bm2]primecanbeobtainedfromthedatasetYaccordGingtothePRSCmethodwherem2len2  TheradiusrinPRSCisanadjustablescaleThelargertheradiusristhesmallerthetrainingsampleswillbeafterbeingprunedOfcoursethetrainingspeedwillbefasterButtheclassificationaccuracywillbereducedbecausetoomanydatasamGplesareprunedThesmallertheradiusristhelarG

571Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

gerthetrainingsamplewillbeafterbeingprunedSpeciallytheradiusriszerothatistosaythetrainingsamplewillnotbechangedastrainingtimeandclassificationaccuracywillbethesameasbeGforeSoareasonabler willgetagoodbalancebeGtweentrainingtimeandclassificationaccuracySohowtodetermineitisprovidedinthispaperFirstGlyalldikaresortedintoarraydbysizeSecondlytheradiusrisrepresentedbyIthpercentileofarraydTheIthwillbeselectedaccordingtothedistribuGtionofrealdatasamplesForexampletheIthcanbeset25thbyapplyingtheinterquartilerange(IQR)  LeastsquaremethodisusedtogetthehyperGplanesinLSGTWSVMSotheLSGTWSVMisverysensitivetoallerrorvariablesPRSCmethodisusedtoprunedatasamplesAndtheerrorvariablesofpruneddatasampleswillbelessthanthoseoforigiGnaldatasampleswhichwillaffectclassificationacGcuracyInordertosolvethisproblemerrorvariablecontributiontisaddedontheerrorvariablesξandηinEqs1049008(1)and(2)ofLSGTWSVMtisadiagonalmatrixtheelementtiiisrepresentedbyliTheerGrorvariableofthedatasampleAiisimprovedaboutlitimesThematrixformoftisgiven

    t=

l1 0 1049018 00 l2 1049018 00 0 1049018 00 0 1049018 lm1

eacute

euml

ecircecircecircecircecircecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacuteuacuteuacuteuacuteuacuteuacute

(5)

  TheerrorvariablecontributiontensuresthatthepruneddatasamplesalsocontributeerrortotheLSGTWSVM andreduceinfluenceofpruneddatasamplesonclassificationhyperGplanesHowtousetintheformulasofLSGTWSVM willbefullydeGscribedinthefollowingsection

210490082 Weight  NoisesampleshavemanyeffectsonclassificaGtionabilityinSVM[12]ThatistosaytheclassificaGtionaccuracywillbereducediftherearesomenoisesamplesindatasamplesSotheproblemalsoexistswhenLSGTWSVMisusedtoclassifystripsteelsurGfacedefectsamplesThusweightparametervisaddedintheformulaofLSGTWSVMtorestraintheimpactofnoisesamplesAweightversionedLSGTWSGVM (WLSGTWSVM)wasproposedinRef1049008[7]InWLSGTWSVMweightparametersareaddedontheξ2andη1Butthe WLSGTWSVMislesseffectiveforintercrossingnoisesamplesSotheweightpaGrametervisaddedontheξ1andη2ThischangeismoreeffectiveonrestrainingtheimpactofinterGcrossingnoisesamplesThiswillbeprovedinthe

followingexperimentalsection  ThebettertheweightalgorithmisthemoreeffectivetheimpactofnoisesamplescanberestrainGedInRef1049008[13]theweightparameterisobtainedbytrainingleastsquarevectormachinesandgettingerrordisturbanceinformationTheweightalgorithmformulasaredetermined

  vii=

1       if|dis|leE1

E2-|dis|E2-E1

ifE1le|dis|leE2

10-4 otherwise

igrave

icirc

iacute

iumliumliumliumliuml

iumliumliumliuml

(6)

  s=IQR

2times010490086745ors=11049008483MAD(xi) (7)

whereviiisdiagonalelementofmatrixvdiisanerrorvariablegettingfromtheclassifierwhichisnotaddedwithweightparametersisarobustestimateofthestandarddeviationoftheclassifiererrorvariaGbleE1andE2canbeset210490085and3respectivelybeGcausetherewillbeveryfewresidualslargerthan210490085s fora Gaussian distribution[13]IQR isthedifferencebetweenthe75thpercentileand25thperGcentileandMADisthemedianabsolutedeviationEq1049008(7)providesamethodtoestimatesInthispaGpertheweightalgorithmwillbeapplied

210490083 EnhancedLSGTWSVM  InordertogetbetterclassificationforstripsteelsurfacedefectstheLSGTWSVMisimprovedasELSGTWSVMinthispaperFirstlythePRSCmethodisusedtoprunedatasamplesThenerrorcontributionparametertandweightparametervareintroducedintotheLSGTWSVM formulaswhichcanimprovetheclassificationspeedandaccuracyItissupposedthattwoclassesofsamplesX andYhavebecomeAandBbyusingPRSCmethodt1andv1 representerrorvariablecontributionparameterandweightparameterforArespectivelyt2andv2

representerrorvariablecontributionparameterandweightparameterforBrespectivelyELSGTWSVMclassifierisobtainedbysolvingthefollowingpairofquadraticprogrammingproblems

 

minu1γ1

12sum

m1

i=1v1iit1iiξ2

1i+c1

2summ2

j=1t2jjξ2

2j

s1049008t1049008K(AiprimeCprime)u1+γ1=ξ1ii=121049018m1

K(BjprimeCprime)u1+γ1+1=ξ2j              j=121049018m2

(8)

 

minu2γ2

c2

2summ1

j=1t1iiη2

1i+12sum

m2

j=1v2jjt2jjη2

2j

s1049008t1049008K(BjprimeCprime)u2+γ2=η2jj=121049018m2

-[K(AiprimeCprime)u2+γ2]+1=η1i              i=121049018m1

(9)

671     JournalofIronandSteelResearchInternational              Vol104900821 

whereCprime=[AprimeBprime]SubstitutingtheequalityconGstraintsintotheobjectivefunctionofEq1049008(8)andsettingthegradientofEq1049008(8)withrespecttou1andγ1tozerothematrixformofresultisobtained

 K(ACprime)primev1t1K(ACprime)K(ACprime)primev1t1e1

  e1primev1t1K(ACprime)   e1primev1t1e1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute+

 c1K(BCprime)primet2K(BCprime)K(BCprime)primet2e2

  e2primet2K(BCprime)   e2primet2e2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=

 -c1K(BCprime)primet2e2

e2primet2e2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

(10)

  DefineE=[p1K(ACprime)p1e1]andF=[p2K(BCprime)p2e2]wherev1t1=p1primep1andt2=p2primep2SpeGciallyp1 andp2 arerequiredasdiagonalmatrixThenthesolutionofu1andγ1canbegiven

 u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=- 1

c1EprimeE+FprimeF

aelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Fprimep2e2 (11)

  SimilarlyafteraseriesofderivationthesoluGtionofEq1049008(9)canbeobtained

 u2

γ2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=GprimeG+

1c2

HprimeHaelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Gprimep3e1 (12)

whereG=[p3K(ACprime)p3e1]H=[p4K(BCprime)p4e2]t1=p3primep3v2t2=p4primep4p3andp4arereGquiredasdiagonalmatrix  TwononparallelhyperGplanesaregottenfromEqs1049008(11)and(12) K(xprimeCprime)u1+γ1=0K(xprimeCprime)u2+γ2=0 (13)  Anewstripsteelsurfacedefectsamplebelongstoaclassdependingon whichofthetwohyperGplanesinEq1049008(13)isclosertothesampleintermsofperpendiculardistance

3 MultiGclassClassificationofELSGTWSVM  TherearemanykindsofsurfacedefectsduringtheproductionandmanufactureofstripsteelSotheclassificationofthestripsteelsurfacedefectsbeGlongstomultiGclassclassificationManymultiGclassclassificationmethodshavebeenused[1415]justlikeoneGagainstGoneoneGagainstGrestdecisiondirectedacyclicgraphandbinarytreeAmongthesemethGodsthebinarytreeistheoptimalclassificationmethodThebinarytreehastwotypesofcompletebinarytreeandpartialbinarytreeTheyareshowninFig10490081EverynodeonthepartialbinarytreeisabinarySVMclassifieroftheoneclassandtheothGersSoaclassisrecognizedoneverynodeThisstructureofpartialbinarytreeenableseverybinarySVMclassifiertoclassifyunbalanceddatasamplesHowevereverynodeonthecompletebinarytreecarriesequalsplitornearlyequalsplitonalldatasamplesThatistosaythenumberofdatasamplesintheleftclassisnearlythesameasthatinthe

rightclasswhichavoidstheunbalanceddatasamGplesclassificationInordertoavoidtheunbalancethecompletebinarytreeisselectedtoclassifystripsteelsurfacedefects

(a)Completebinarytree  (b)PartialbinarytreeFig10490081 Binarytree

  InFig10490081alldatasamplesofsixclasseswillbedividedintotwoclassesonnodeSVM1oneclassincludesclasses12and3andtheotherclassinGcludestheclasses45and6ItwillbeeasytoclasGsifyifthedivisiblefactorsareconsideredamongthesixclassesIngeneraltheseclasseswillbedividedintodifferentclassesifthedifferenceamongtheseclassesislargeSotheclasses12and3willfallintooneclassandtheclasses45and6willfallintotheotherclassTheeffectivemethodtotestthedifferGencesamongallclassescanbefoundinRef1049008[15]FirstlythecenterpointsofsixclassesarecalculatGedSecondlythedistancebetweeneverytwocenterpointsaretestedFinallythedifferencesaredeterGminedbythesedistances  SupposethattherearenclassesforstripsteelsurfacedefectsamplesThemultiGclassclassificationmethodsofELSGTWSVMcanbeobtainedbycomGbingtheELSGTWSVMandthecompletebinarytreeThealgorithmsstepsareasfollows  Step1Determinethepruningscaleraccordingtothemethodinsection210490081prunethedatasamGplesbyusingPRSCmethodandgetnclassesofallpruneddatasamplesThenparametertisdeterGminedforpruneddatasamplesaccordingtoEq1049008(5)  Step2SplitequallyornearlyequallynclassesofpruneddatasamplesaccordingtothedistancesforthecenterpointsofnclassesThenconstructtrainingsamplesforallthenodesofthecompletebiGnarytree  Step3TrainthepruneddatasamplesforanodeSVM ofthecompletebinarytreebytheLSGTWSVM withparametertAndgettheweightpaGrametervbycalculatingEqs1049008(6)and(7)

771Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

  Step4Calculatep1p2p3andp4basedontandv  Step5Selecttherationalparametersc1c2

andkernelfunctionK  Step6DefineEFGandH  Step7CalculateparametersofthetwononparGallelhyperGplanesbyEqs1049008(11)and (12)soastogettheclassifierforthenode  Step8Repeatstepsfrom3to7untilgetallclassifiersofthebinarytree  Step9Accordingtothecompletebinarytreecalculateeverynodeclassifieruntilanewdefectdatasamplefallsintoaclassofthenclasses

4 Experiments410490081 ErrorvariablecontributionandweightsimulaGtionexperiments  BasedontwoGdimensional(2GD)datasetssomesimulationexperimentsaredonetotesttheeffects

oftandvTheexperimentsareimplementedbyusingMATLAB7104900811onaPCwithanIntelP4processor(310490080GHz)and2GBRAM  FirstlysomeexperimentsareusedtotesttheeffectsofparametertConsideringa2GDdatasetwithtwoclassesofdatasamplesPRSC methodisusedtoprunethedatasampleswithscalerThentheELSGTWSVMclassifierwithlinearkernelfunctionisadoptedtoclassifythedatasamplesTheresultsareshowninFig10490082ItiseasytoseethattheclassifiGcationhyperGplanesoforiginaldatasamples(r=0)aresimilarwiththoseofELSGTWSVMusingtheerGrorvariablecontributiont(rne0)butaredifferentfromthoseofnotusingerrorvariablecontributiont(rne0)SotheerrorvariablecontributionparameterreducedthechangeoftheclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamples  Thensomeexperimentsareusedtotesttheability

(a)r=0  (b)rne0t  (c)rne0Fig10490082 ClassificationresultsofELSGTWSVMin2GDspace

ofrestrainingtheimpactofnoisesamplesbyusingparametervConsideringa2GDdatasetwithinterGcrossingnoisesamplesWLSGTWSVM and ELSGTWSVMareadoptedforclassificationexperimentsrespectivelyTheresultsareshowninFig10490083ItiseasytoseethattheclassificationhyperGplanesofWLSGTWSVM arenotasgoodasthoseofELSGTWSVMThisisbecauseweightparameterintheELSGTWSVMismorereasonablethanthatintheWLSGTWSVM

410490082 Surfacedefectsclassificationapplicationexperiments  BasedonthestripsteelsurfacedefectdatasetsofaChineselargesteelplantsomeapplicationexG

perimentsaremadetodemonstratetheperformanceofELSGTWSVMAlargenumberofimagesofthestrip

(a)WLSGTWSVM  (b)ELSGTWSVMFig10490083 Classificationresultsoftwoclassifiersin2GDspace

871     JournalofIronandSteelResearchInternational              Vol104900821 

steelsurfacedefectsarecollectedformthedatasetsSixkindsoftypicaldefectimagesareselectedTheyarescarringcrackholescratchwrinkle andscaleasshowninFig10490084  Itisimportanttoextractfeaturesfromthestripsteelsurface defectimages before classificationThesefeaturesvectorsmakeupofthedatasampleswhichwillbeclassifiedbySVMInthisstudy43featuresareextractedfromstripsteelsurfacedefect

imagesThesefeaturesreflectdefectinformationintermsofgreyfeaturesgeometricalfeaturestexturGalfeaturesand morphologicalfeatures[16]Inthemeantime43featuresarereducedbyusingprinciGpalcomponentanalysis(PCA)[17]and33featuresareobtainedFinallythese33featuresareputtoGgethertoforma33GdimensionalvectorwhichreGpresentsastripsteelsurfacedefectsample  Inthispaper2340imagesareselectedasexperG

(a)Scarring  (b)Crack  (c)Hole  (d)Scratch  (e)Wrinkle  (f)ScaleFig10490084 Imagesofsixsurfacedefects

imentalsamplesfromwhich33dimensionsfeaturesareextractedasthesixclassesofdatasamplesThenthedatasamplesarerandomlydividedintotrainingsetandtestingsetInthemeantimethecenterpointsofsixclassesarecalculatedandthedistancebetweeneverytwocenterpointsaretestedAccordingtothedistancetheserialnumberofsixclassesisdeterminedandisshowninTable1Thetrainingsamplesare90 ofthetotalandare2106Thetestingsamplesare10ofthetotalandare234  ThemultiGclassclassifiersofELSGTWSVMare

Table1 Differentsurfacedefectdatasamples

Defecttype

Classcode

Numberoftrainingsamples

Numberoftestingsamples

Scarring 1 405 45Crack 2 378 42Hole 3 324 36

Scratch 4 351 39Wrinkle 5 378 42Scale 6 270 30

usedtoclassifythestripsteelsurfacedefectsamplesinTable1Radialbasisfunctionisusedaskernelfunctionanditsparametersareobtainedfrom2-20

to24Parametersc1andc2arealsoobtainedfrom2-20to24   FirstlyaimingatdifferentpruningratiossometestingexperimentsaremadeandtheresultsareshowninTable2ThepruningratioistheratioofthenumberofpruneddatasamplestothatoftheoriginaldatasamplesForexampletheratiois0104900830thatistosay30 ofdatasamplesareprunedfromthe2106trainingsamplesItiseasytoseethatthehigherthepruningratioistheshorterthe

Table2 Testingresultswithdifferentpruningratios

Pruningratio Trainingtimes Testingtimes Accuracy

0 310490086143 010490083667 971049008010104900830 110490086555 010490082551 961049008150104900855 010490086713 010490081720 881049008460104900875 010490081340 010490080878 751049008640104900885 010490080618 010490080562 61104900897

971Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

trainingtimeandtestingtimeareButtheaverageclassificationaccuracyforsixclassesoftestingsamGplesislowerSoinrealclassificationproblemtheidealpruningratioshouldbeconsideredbasedontrainingtimeandclassificationaccuracy   Secondlyclassificationaccuracyistestedintermsofusingerrorvariablecontributionparameterandnotusingerrorvariablecontributionparameterwherepruningratiois010490084ThefinalresultsareshowninTable3FromtheresultsitcanbeseenthaterrorvariablecontributionparametertinELSGTWSVMhascontributedtoclassificationaccuracy

Table3 Classificationaccuracyofdifferentdefects

DefecttypeAccuracy

Notusingt Usingt

Scarring 86104900867 93104900833Crack 92104900886 97104900862Hole 86104900811 94104900844

Scratch 82104900805 94104900887Wrinkle 88104900810 95104900824Scale 86104900867 96104900827

  FinallymultiGclassclassifierofELSGTWSVMandmultiGclassclassifierofLSGTWSVMareusedtoclassifythesixclassesofstripsteelsurfacedefectsamplesbyusingarationalpruningratio (010490084)TrainingtimetestingtimeandclassificationaccuGracyareshowninTable4ItindicatesthattrainingtimeandtestingtimeofthemultiGclassclassifierofELSGTWSVMareshorterthanthoseofthemultiGclassclassifierofLSGTWSVMandclassificationacGcuraciesarebothhigh

Table4 Testingresultsoftwoclassifiers

ClassifierTrainingtimes

Testingtimes

Accuracy

LSGTWSVM 310490080172 010490083661 96104900815ELSGTWSVM 110490081201 010490082118 95104900830

5 Conclusions

  ThemultiGclassclassifierofELSGTWSVM hasbeenusedinthefieldofstripsteelsurfacedefectsrecognitionTheresearchhasbeenmadeonsixclasGsesofstripsteelsurfacedefectsincludingscarringcrackholescratchwrinkleandscaleThePRSCmethodhasbeenimplemented withanadjustable

scalerBothtrainingtimeandtestingtimehavebeenreducedErrorvariablecontributionparametertreducesthechangeofclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamplesandensuresclassificationaccuracytothelargestextentTheweightparameterviseffectivetorestraintheimpactofnoisesamplesThemultiGclassclassifierbycombingtheELSGTWSVM andthecomplete binarytreeis effectiveto classifymultiGclassdatasamplesTheexperimentsshowthatmultiGclassclassifierofELSGTWSVMismoresuitabletoclassifystripsteelsurfacedefectsamplesintermsofclassificationspeedandaccuracyMoreoGverthemethodismoresuitableforlargerGscaleunbalancedandnoisesamples

References

[1] X1049008JDuanF1049008JDuanF1049008FHaninInternationalConferGenceonControlAutomationandSystemsEngineeringIEEESingapore2011pp1G4

[2] Y1049008HYanK1049008CSongZ1049008TXingX1049008HFenginThirdInGternationalConferenceon MeasuringTechnologyand MechaGtronicsAutomationIEEEShanghai2011pp958G961

[3] L1049008A1049008OMartinsF1049008L1049008CP1048929duaP1049008E1049008MAlmeidain36thAnnualConferenceonIEEEIndustrialElectronicsSocietyIEEEGlendaleAZ2010pp1081G1086

[4] C1049008MWangY1049008HYanS1049008LChenY1049008LHanJNortheastUnivNatSci28(2007)410G413

[5] Q1049008YYangQLiJJinTransNAMRISME37 (2009)371G378

[6] EAmidS1049008RAghdamHAmindavarProcWorldAcadSciEngTech(2012)No1049008671303G1307

[7] JChenG1049008RJiinThe2ndInternationalConferenceonComGputerandAutomationEngineeringIEEESingapore2010pp242G246

[8] M1049008AKumarMGopalExpertSysAppl36(2009)7535G7543

[9] JayadevaRKhemchandniSChandraIEEETransPatternAnalMachIntell29(2007)905G910

[10] CCortesVVapnikMachLearn20(1995)273G297[11] Y1049008MWenY1049008NWangB1049008LLuY1049008MChenComputSci36

(2009)No1049008720G2531[12] C1049008FLinS1049008DWangIEEETransNeuralNetw13(2002)

464G471[13] J1049008A1049008KSuykensJ1049008DBrabanterLLukasJVandewalle

Neurocomputing48(2002)85G105[14] B1049008CFanJ1049008YWangY1049008MBoComputEngDes31(2010)

2823G2825[15] L1049008MLiuA1049008NWangMShaF1049008YZhaoJIronSteel

ResInt18(2011)No10490081017G2333[16] YZhangW1049008WLiuZ1049008TXingY1049008HYanJNortheast

UnivNatSci33(2012)267G270[17] E1049008YHuHWangJ1049008HWangSLuLTianinIEEE

InternationalConferenceonComputerScienceandAutomationEngineeringIEEEShanghai2011pp388G390

081     JournalofIronandSteelResearchInternational              Vol104900821 

Page 2: Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects

terwasaddedtoerrorvariablesComparingwiththeweightmethodinRef1049008[7]theweightedversionofLSGTWSVMinthisstudyismoreeffectiveonreGstrainingtheimpactofnoisesamplesandhasbetterclassificationaccuracyFinallythemultiGclassclasGsificationforstripsteelsurfacedefectswasrealizedbycombining the enhanced LSGTWSVM (ELSGTWSVM)andthebinarytree

1 LSGTWSVM

  LSGTWSVM[8]isbasedonregularizationtheorytoimprovetwinsupportvectormachines (TWSVM)[9]ComparedwithTWSVMLSGTWSVM definestheprimalquadraticprogramming problems (QPPs)withequalityconstraintsinsteadofinequalityconGstraintsCompared with standard SVM[10]LSGTWSVM solvestwosmallersized QPPsratherthanonelargeQPPwhichmakesLSGTSVM workfasterthanstandardSVMAllthesepropertiesmakesurethattheLSGTWSVMcannotonlybeusedinlargeGscalesamplesbutalsoreducetrainingtime  LSGTWSVMisdescribedasthefollowingtwoprimalQPPs

  minu1γ1

12ξ1primeξ1+

c1

2ξ2primeξ2

s1049008t1049008K(XZprime)u1+e1γ1=ξ1

-[K(YZprime)u1+e2γ1]=e2-ξ2

(1)

  minu2γ2

12η2primeη2+

c2

2η1primeη1

s1049008t1049008K(YZprime)u2+e2γ2=η2

K(XZprime)u2+e1γ2=e1-η1

(2)

whereX isinRn1timesd denotesdatasamples matrixinclass+1andX=[X1 X21049018 Xn1 ]primeYisinRn2timesd deGnotesdatasamplesmatrixinclass-1andY=[Y1Y2

1049018Yn2]primeZprime=[XprimeYprime]Kisanydiscretionarykernele1ande2 arevectorsofonesofappropriatedimenGsionsc1andc2arethetradeGoffparametersEqs1049008(1)and(2)aretwosmallersized QPPswithequalityconstraintswhicharedifferentfromthoseinstandGardSVMandTWSVMAfteraseriesofderivationthesolutionsofEqs1049008(1)and(2)canbeobtained

  u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=-TprimeT+

1c1

SprimeSaelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Tprimee2 (3)

  u2

γ2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=SprimeS+

1c2

TprimeTaelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Sprimee1 (4)

whereS=[K (XZprime)e1]T=[K (YZprime)e2]Eqs1049008(3)and(4)determinetwononparallelkernelGgenGeratedsurfacesK(xprimeZprime)u1+γ1=0andK(xprimeZprime)u2+γ2=0ThetwosurfacesrepresentclassificationhyperGplanesofthenonlinearLSGTWSVMInfactthelinearclassificationhyperGplanesxprimew1+γ1=0andxprimew2+γ2=

0canbeobtainedbyusinglinearkernelK(xprimeZprime)=xprimeZprimeanddefiningtwoequationsw1=Zprimeu1andw2=Zprimeu2Anewdatasamplexisassignedtoaclass+1or-1dependingonwhichofthetwohyperGplanesliesclosertoxintermsofperpendiculardistance

2 ELSGTWSVM210490081 PRSCmethod  SVMisveryappropriateforsmallGscaledatasamplesSVMrequireslargeRAMandlongtrainingtimewhenittacklesthelargeGscaledatasamples[11]TheLSGTWSVM cansatisfysomelargeGscaledatasamplesandreducetrainingtimeButitisnotsuitGableforlargerGscaledatasamplesInordertosolvethisproblemPRSCmethodisproposedinthepresGentstudyThescaleofdatasamplescanbedeGcreasedandtrainingspeedcanbeimprovedbyprunGingthedatasamplesInthemeantimethepruningextentcanbeadjustedfreelywhichcanmakeabalGancebetweenthescaleoftrainingsamplesandclasGsificationaccuracy  ThePRSCmethodsetsapruningregionwitharadiusrAllthedatasamplesinthisregionwillbeprunedandreplacedbythecentralpointofthesedaGtasamplesSupposingthatsamplesmatrixXrepreGsentsalargerGscaledatasetandn=n1thenPRSCmethodstepsareasfollows  Step1SelectadatasampleXcfromthedatasetXandcalculateallEuclideandistancesdk=Xc-Xk|k=121049018nwhere1048944denotestheL2norm  Step2Definethepruningregiondk<randcalGculatethenumberliofdatasamplesinthisregion  Step3CalculatethecenterpointofalldatasamG

plesinthepruningregionAi=1li

sumdk<r

XkThenalldaG

tasamplesinthepruningregionaredeletedfromthedatasetXandnisupdatedThecenterpointisusedastheonlydatasampleinthepruningregion  Step4Repeatthesteps12and3tillalldaGtasamplesareprunedFinallythedatasetX willbereplacedbythecenterpointsdatasetA=[A1A21049018Am1]primewherem1len1  SimilarlythecenterpointsdatasetB=[B1B2

1049018Bm2]primecanbeobtainedfromthedatasetYaccordGingtothePRSCmethodwherem2len2  TheradiusrinPRSCisanadjustablescaleThelargertheradiusristhesmallerthetrainingsampleswillbeafterbeingprunedOfcoursethetrainingspeedwillbefasterButtheclassificationaccuracywillbereducedbecausetoomanydatasamGplesareprunedThesmallertheradiusristhelarG

571Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

gerthetrainingsamplewillbeafterbeingprunedSpeciallytheradiusriszerothatistosaythetrainingsamplewillnotbechangedastrainingtimeandclassificationaccuracywillbethesameasbeGforeSoareasonabler willgetagoodbalancebeGtweentrainingtimeandclassificationaccuracySohowtodetermineitisprovidedinthispaperFirstGlyalldikaresortedintoarraydbysizeSecondlytheradiusrisrepresentedbyIthpercentileofarraydTheIthwillbeselectedaccordingtothedistribuGtionofrealdatasamplesForexampletheIthcanbeset25thbyapplyingtheinterquartilerange(IQR)  LeastsquaremethodisusedtogetthehyperGplanesinLSGTWSVMSotheLSGTWSVMisverysensitivetoallerrorvariablesPRSCmethodisusedtoprunedatasamplesAndtheerrorvariablesofpruneddatasampleswillbelessthanthoseoforigiGnaldatasampleswhichwillaffectclassificationacGcuracyInordertosolvethisproblemerrorvariablecontributiontisaddedontheerrorvariablesξandηinEqs1049008(1)and(2)ofLSGTWSVMtisadiagonalmatrixtheelementtiiisrepresentedbyliTheerGrorvariableofthedatasampleAiisimprovedaboutlitimesThematrixformoftisgiven

    t=

l1 0 1049018 00 l2 1049018 00 0 1049018 00 0 1049018 lm1

eacute

euml

ecircecircecircecircecircecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacuteuacuteuacuteuacuteuacuteuacute

(5)

  TheerrorvariablecontributiontensuresthatthepruneddatasamplesalsocontributeerrortotheLSGTWSVM andreduceinfluenceofpruneddatasamplesonclassificationhyperGplanesHowtousetintheformulasofLSGTWSVM willbefullydeGscribedinthefollowingsection

210490082 Weight  NoisesampleshavemanyeffectsonclassificaGtionabilityinSVM[12]ThatistosaytheclassificaGtionaccuracywillbereducediftherearesomenoisesamplesindatasamplesSotheproblemalsoexistswhenLSGTWSVMisusedtoclassifystripsteelsurGfacedefectsamplesThusweightparametervisaddedintheformulaofLSGTWSVMtorestraintheimpactofnoisesamplesAweightversionedLSGTWSGVM (WLSGTWSVM)wasproposedinRef1049008[7]InWLSGTWSVMweightparametersareaddedontheξ2andη1Butthe WLSGTWSVMislesseffectiveforintercrossingnoisesamplesSotheweightpaGrametervisaddedontheξ1andη2ThischangeismoreeffectiveonrestrainingtheimpactofinterGcrossingnoisesamplesThiswillbeprovedinthe

followingexperimentalsection  ThebettertheweightalgorithmisthemoreeffectivetheimpactofnoisesamplescanberestrainGedInRef1049008[13]theweightparameterisobtainedbytrainingleastsquarevectormachinesandgettingerrordisturbanceinformationTheweightalgorithmformulasaredetermined

  vii=

1       if|dis|leE1

E2-|dis|E2-E1

ifE1le|dis|leE2

10-4 otherwise

igrave

icirc

iacute

iumliumliumliumliuml

iumliumliumliuml

(6)

  s=IQR

2times010490086745ors=11049008483MAD(xi) (7)

whereviiisdiagonalelementofmatrixvdiisanerrorvariablegettingfromtheclassifierwhichisnotaddedwithweightparametersisarobustestimateofthestandarddeviationoftheclassifiererrorvariaGbleE1andE2canbeset210490085and3respectivelybeGcausetherewillbeveryfewresidualslargerthan210490085s fora Gaussian distribution[13]IQR isthedifferencebetweenthe75thpercentileand25thperGcentileandMADisthemedianabsolutedeviationEq1049008(7)providesamethodtoestimatesInthispaGpertheweightalgorithmwillbeapplied

210490083 EnhancedLSGTWSVM  InordertogetbetterclassificationforstripsteelsurfacedefectstheLSGTWSVMisimprovedasELSGTWSVMinthispaperFirstlythePRSCmethodisusedtoprunedatasamplesThenerrorcontributionparametertandweightparametervareintroducedintotheLSGTWSVM formulaswhichcanimprovetheclassificationspeedandaccuracyItissupposedthattwoclassesofsamplesX andYhavebecomeAandBbyusingPRSCmethodt1andv1 representerrorvariablecontributionparameterandweightparameterforArespectivelyt2andv2

representerrorvariablecontributionparameterandweightparameterforBrespectivelyELSGTWSVMclassifierisobtainedbysolvingthefollowingpairofquadraticprogrammingproblems

 

minu1γ1

12sum

m1

i=1v1iit1iiξ2

1i+c1

2summ2

j=1t2jjξ2

2j

s1049008t1049008K(AiprimeCprime)u1+γ1=ξ1ii=121049018m1

K(BjprimeCprime)u1+γ1+1=ξ2j              j=121049018m2

(8)

 

minu2γ2

c2

2summ1

j=1t1iiη2

1i+12sum

m2

j=1v2jjt2jjη2

2j

s1049008t1049008K(BjprimeCprime)u2+γ2=η2jj=121049018m2

-[K(AiprimeCprime)u2+γ2]+1=η1i              i=121049018m1

(9)

671     JournalofIronandSteelResearchInternational              Vol104900821 

whereCprime=[AprimeBprime]SubstitutingtheequalityconGstraintsintotheobjectivefunctionofEq1049008(8)andsettingthegradientofEq1049008(8)withrespecttou1andγ1tozerothematrixformofresultisobtained

 K(ACprime)primev1t1K(ACprime)K(ACprime)primev1t1e1

  e1primev1t1K(ACprime)   e1primev1t1e1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute+

 c1K(BCprime)primet2K(BCprime)K(BCprime)primet2e2

  e2primet2K(BCprime)   e2primet2e2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=

 -c1K(BCprime)primet2e2

e2primet2e2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

(10)

  DefineE=[p1K(ACprime)p1e1]andF=[p2K(BCprime)p2e2]wherev1t1=p1primep1andt2=p2primep2SpeGciallyp1 andp2 arerequiredasdiagonalmatrixThenthesolutionofu1andγ1canbegiven

 u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=- 1

c1EprimeE+FprimeF

aelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Fprimep2e2 (11)

  SimilarlyafteraseriesofderivationthesoluGtionofEq1049008(9)canbeobtained

 u2

γ2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=GprimeG+

1c2

HprimeHaelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Gprimep3e1 (12)

whereG=[p3K(ACprime)p3e1]H=[p4K(BCprime)p4e2]t1=p3primep3v2t2=p4primep4p3andp4arereGquiredasdiagonalmatrix  TwononparallelhyperGplanesaregottenfromEqs1049008(11)and(12) K(xprimeCprime)u1+γ1=0K(xprimeCprime)u2+γ2=0 (13)  Anewstripsteelsurfacedefectsamplebelongstoaclassdependingon whichofthetwohyperGplanesinEq1049008(13)isclosertothesampleintermsofperpendiculardistance

3 MultiGclassClassificationofELSGTWSVM  TherearemanykindsofsurfacedefectsduringtheproductionandmanufactureofstripsteelSotheclassificationofthestripsteelsurfacedefectsbeGlongstomultiGclassclassificationManymultiGclassclassificationmethodshavebeenused[1415]justlikeoneGagainstGoneoneGagainstGrestdecisiondirectedacyclicgraphandbinarytreeAmongthesemethGodsthebinarytreeistheoptimalclassificationmethodThebinarytreehastwotypesofcompletebinarytreeandpartialbinarytreeTheyareshowninFig10490081EverynodeonthepartialbinarytreeisabinarySVMclassifieroftheoneclassandtheothGersSoaclassisrecognizedoneverynodeThisstructureofpartialbinarytreeenableseverybinarySVMclassifiertoclassifyunbalanceddatasamplesHowevereverynodeonthecompletebinarytreecarriesequalsplitornearlyequalsplitonalldatasamplesThatistosaythenumberofdatasamplesintheleftclassisnearlythesameasthatinthe

rightclasswhichavoidstheunbalanceddatasamGplesclassificationInordertoavoidtheunbalancethecompletebinarytreeisselectedtoclassifystripsteelsurfacedefects

(a)Completebinarytree  (b)PartialbinarytreeFig10490081 Binarytree

  InFig10490081alldatasamplesofsixclasseswillbedividedintotwoclassesonnodeSVM1oneclassincludesclasses12and3andtheotherclassinGcludestheclasses45and6ItwillbeeasytoclasGsifyifthedivisiblefactorsareconsideredamongthesixclassesIngeneraltheseclasseswillbedividedintodifferentclassesifthedifferenceamongtheseclassesislargeSotheclasses12and3willfallintooneclassandtheclasses45and6willfallintotheotherclassTheeffectivemethodtotestthedifferGencesamongallclassescanbefoundinRef1049008[15]FirstlythecenterpointsofsixclassesarecalculatGedSecondlythedistancebetweeneverytwocenterpointsaretestedFinallythedifferencesaredeterGminedbythesedistances  SupposethattherearenclassesforstripsteelsurfacedefectsamplesThemultiGclassclassificationmethodsofELSGTWSVMcanbeobtainedbycomGbingtheELSGTWSVMandthecompletebinarytreeThealgorithmsstepsareasfollows  Step1Determinethepruningscaleraccordingtothemethodinsection210490081prunethedatasamGplesbyusingPRSCmethodandgetnclassesofallpruneddatasamplesThenparametertisdeterGminedforpruneddatasamplesaccordingtoEq1049008(5)  Step2SplitequallyornearlyequallynclassesofpruneddatasamplesaccordingtothedistancesforthecenterpointsofnclassesThenconstructtrainingsamplesforallthenodesofthecompletebiGnarytree  Step3TrainthepruneddatasamplesforanodeSVM ofthecompletebinarytreebytheLSGTWSVM withparametertAndgettheweightpaGrametervbycalculatingEqs1049008(6)and(7)

771Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

  Step4Calculatep1p2p3andp4basedontandv  Step5Selecttherationalparametersc1c2

andkernelfunctionK  Step6DefineEFGandH  Step7CalculateparametersofthetwononparGallelhyperGplanesbyEqs1049008(11)and (12)soastogettheclassifierforthenode  Step8Repeatstepsfrom3to7untilgetallclassifiersofthebinarytree  Step9Accordingtothecompletebinarytreecalculateeverynodeclassifieruntilanewdefectdatasamplefallsintoaclassofthenclasses

4 Experiments410490081 ErrorvariablecontributionandweightsimulaGtionexperiments  BasedontwoGdimensional(2GD)datasetssomesimulationexperimentsaredonetotesttheeffects

oftandvTheexperimentsareimplementedbyusingMATLAB7104900811onaPCwithanIntelP4processor(310490080GHz)and2GBRAM  FirstlysomeexperimentsareusedtotesttheeffectsofparametertConsideringa2GDdatasetwithtwoclassesofdatasamplesPRSC methodisusedtoprunethedatasampleswithscalerThentheELSGTWSVMclassifierwithlinearkernelfunctionisadoptedtoclassifythedatasamplesTheresultsareshowninFig10490082ItiseasytoseethattheclassifiGcationhyperGplanesoforiginaldatasamples(r=0)aresimilarwiththoseofELSGTWSVMusingtheerGrorvariablecontributiont(rne0)butaredifferentfromthoseofnotusingerrorvariablecontributiont(rne0)SotheerrorvariablecontributionparameterreducedthechangeoftheclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamples  Thensomeexperimentsareusedtotesttheability

(a)r=0  (b)rne0t  (c)rne0Fig10490082 ClassificationresultsofELSGTWSVMin2GDspace

ofrestrainingtheimpactofnoisesamplesbyusingparametervConsideringa2GDdatasetwithinterGcrossingnoisesamplesWLSGTWSVM and ELSGTWSVMareadoptedforclassificationexperimentsrespectivelyTheresultsareshowninFig10490083ItiseasytoseethattheclassificationhyperGplanesofWLSGTWSVM arenotasgoodasthoseofELSGTWSVMThisisbecauseweightparameterintheELSGTWSVMismorereasonablethanthatintheWLSGTWSVM

410490082 Surfacedefectsclassificationapplicationexperiments  BasedonthestripsteelsurfacedefectdatasetsofaChineselargesteelplantsomeapplicationexG

perimentsaremadetodemonstratetheperformanceofELSGTWSVMAlargenumberofimagesofthestrip

(a)WLSGTWSVM  (b)ELSGTWSVMFig10490083 Classificationresultsoftwoclassifiersin2GDspace

871     JournalofIronandSteelResearchInternational              Vol104900821 

steelsurfacedefectsarecollectedformthedatasetsSixkindsoftypicaldefectimagesareselectedTheyarescarringcrackholescratchwrinkle andscaleasshowninFig10490084  Itisimportanttoextractfeaturesfromthestripsteelsurface defectimages before classificationThesefeaturesvectorsmakeupofthedatasampleswhichwillbeclassifiedbySVMInthisstudy43featuresareextractedfromstripsteelsurfacedefect

imagesThesefeaturesreflectdefectinformationintermsofgreyfeaturesgeometricalfeaturestexturGalfeaturesand morphologicalfeatures[16]Inthemeantime43featuresarereducedbyusingprinciGpalcomponentanalysis(PCA)[17]and33featuresareobtainedFinallythese33featuresareputtoGgethertoforma33GdimensionalvectorwhichreGpresentsastripsteelsurfacedefectsample  Inthispaper2340imagesareselectedasexperG

(a)Scarring  (b)Crack  (c)Hole  (d)Scratch  (e)Wrinkle  (f)ScaleFig10490084 Imagesofsixsurfacedefects

imentalsamplesfromwhich33dimensionsfeaturesareextractedasthesixclassesofdatasamplesThenthedatasamplesarerandomlydividedintotrainingsetandtestingsetInthemeantimethecenterpointsofsixclassesarecalculatedandthedistancebetweeneverytwocenterpointsaretestedAccordingtothedistancetheserialnumberofsixclassesisdeterminedandisshowninTable1Thetrainingsamplesare90 ofthetotalandare2106Thetestingsamplesare10ofthetotalandare234  ThemultiGclassclassifiersofELSGTWSVMare

Table1 Differentsurfacedefectdatasamples

Defecttype

Classcode

Numberoftrainingsamples

Numberoftestingsamples

Scarring 1 405 45Crack 2 378 42Hole 3 324 36

Scratch 4 351 39Wrinkle 5 378 42Scale 6 270 30

usedtoclassifythestripsteelsurfacedefectsamplesinTable1Radialbasisfunctionisusedaskernelfunctionanditsparametersareobtainedfrom2-20

to24Parametersc1andc2arealsoobtainedfrom2-20to24   FirstlyaimingatdifferentpruningratiossometestingexperimentsaremadeandtheresultsareshowninTable2ThepruningratioistheratioofthenumberofpruneddatasamplestothatoftheoriginaldatasamplesForexampletheratiois0104900830thatistosay30 ofdatasamplesareprunedfromthe2106trainingsamplesItiseasytoseethatthehigherthepruningratioistheshorterthe

Table2 Testingresultswithdifferentpruningratios

Pruningratio Trainingtimes Testingtimes Accuracy

0 310490086143 010490083667 971049008010104900830 110490086555 010490082551 961049008150104900855 010490086713 010490081720 881049008460104900875 010490081340 010490080878 751049008640104900885 010490080618 010490080562 61104900897

971Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

trainingtimeandtestingtimeareButtheaverageclassificationaccuracyforsixclassesoftestingsamGplesislowerSoinrealclassificationproblemtheidealpruningratioshouldbeconsideredbasedontrainingtimeandclassificationaccuracy   Secondlyclassificationaccuracyistestedintermsofusingerrorvariablecontributionparameterandnotusingerrorvariablecontributionparameterwherepruningratiois010490084ThefinalresultsareshowninTable3FromtheresultsitcanbeseenthaterrorvariablecontributionparametertinELSGTWSVMhascontributedtoclassificationaccuracy

Table3 Classificationaccuracyofdifferentdefects

DefecttypeAccuracy

Notusingt Usingt

Scarring 86104900867 93104900833Crack 92104900886 97104900862Hole 86104900811 94104900844

Scratch 82104900805 94104900887Wrinkle 88104900810 95104900824Scale 86104900867 96104900827

  FinallymultiGclassclassifierofELSGTWSVMandmultiGclassclassifierofLSGTWSVMareusedtoclassifythesixclassesofstripsteelsurfacedefectsamplesbyusingarationalpruningratio (010490084)TrainingtimetestingtimeandclassificationaccuGracyareshowninTable4ItindicatesthattrainingtimeandtestingtimeofthemultiGclassclassifierofELSGTWSVMareshorterthanthoseofthemultiGclassclassifierofLSGTWSVMandclassificationacGcuraciesarebothhigh

Table4 Testingresultsoftwoclassifiers

ClassifierTrainingtimes

Testingtimes

Accuracy

LSGTWSVM 310490080172 010490083661 96104900815ELSGTWSVM 110490081201 010490082118 95104900830

5 Conclusions

  ThemultiGclassclassifierofELSGTWSVM hasbeenusedinthefieldofstripsteelsurfacedefectsrecognitionTheresearchhasbeenmadeonsixclasGsesofstripsteelsurfacedefectsincludingscarringcrackholescratchwrinkleandscaleThePRSCmethodhasbeenimplemented withanadjustable

scalerBothtrainingtimeandtestingtimehavebeenreducedErrorvariablecontributionparametertreducesthechangeofclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamplesandensuresclassificationaccuracytothelargestextentTheweightparameterviseffectivetorestraintheimpactofnoisesamplesThemultiGclassclassifierbycombingtheELSGTWSVM andthecomplete binarytreeis effectiveto classifymultiGclassdatasamplesTheexperimentsshowthatmultiGclassclassifierofELSGTWSVMismoresuitabletoclassifystripsteelsurfacedefectsamplesintermsofclassificationspeedandaccuracyMoreoGverthemethodismoresuitableforlargerGscaleunbalancedandnoisesamples

References

[1] X1049008JDuanF1049008JDuanF1049008FHaninInternationalConferGenceonControlAutomationandSystemsEngineeringIEEESingapore2011pp1G4

[2] Y1049008HYanK1049008CSongZ1049008TXingX1049008HFenginThirdInGternationalConferenceon MeasuringTechnologyand MechaGtronicsAutomationIEEEShanghai2011pp958G961

[3] L1049008A1049008OMartinsF1049008L1049008CP1048929duaP1049008E1049008MAlmeidain36thAnnualConferenceonIEEEIndustrialElectronicsSocietyIEEEGlendaleAZ2010pp1081G1086

[4] C1049008MWangY1049008HYanS1049008LChenY1049008LHanJNortheastUnivNatSci28(2007)410G413

[5] Q1049008YYangQLiJJinTransNAMRISME37 (2009)371G378

[6] EAmidS1049008RAghdamHAmindavarProcWorldAcadSciEngTech(2012)No1049008671303G1307

[7] JChenG1049008RJiinThe2ndInternationalConferenceonComGputerandAutomationEngineeringIEEESingapore2010pp242G246

[8] M1049008AKumarMGopalExpertSysAppl36(2009)7535G7543

[9] JayadevaRKhemchandniSChandraIEEETransPatternAnalMachIntell29(2007)905G910

[10] CCortesVVapnikMachLearn20(1995)273G297[11] Y1049008MWenY1049008NWangB1049008LLuY1049008MChenComputSci36

(2009)No1049008720G2531[12] C1049008FLinS1049008DWangIEEETransNeuralNetw13(2002)

464G471[13] J1049008A1049008KSuykensJ1049008DBrabanterLLukasJVandewalle

Neurocomputing48(2002)85G105[14] B1049008CFanJ1049008YWangY1049008MBoComputEngDes31(2010)

2823G2825[15] L1049008MLiuA1049008NWangMShaF1049008YZhaoJIronSteel

ResInt18(2011)No10490081017G2333[16] YZhangW1049008WLiuZ1049008TXingY1049008HYanJNortheast

UnivNatSci33(2012)267G270[17] E1049008YHuHWangJ1049008HWangSLuLTianinIEEE

InternationalConferenceonComputerScienceandAutomationEngineeringIEEEShanghai2011pp388G390

081     JournalofIronandSteelResearchInternational              Vol104900821 

Page 3: Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects

gerthetrainingsamplewillbeafterbeingprunedSpeciallytheradiusriszerothatistosaythetrainingsamplewillnotbechangedastrainingtimeandclassificationaccuracywillbethesameasbeGforeSoareasonabler willgetagoodbalancebeGtweentrainingtimeandclassificationaccuracySohowtodetermineitisprovidedinthispaperFirstGlyalldikaresortedintoarraydbysizeSecondlytheradiusrisrepresentedbyIthpercentileofarraydTheIthwillbeselectedaccordingtothedistribuGtionofrealdatasamplesForexampletheIthcanbeset25thbyapplyingtheinterquartilerange(IQR)  LeastsquaremethodisusedtogetthehyperGplanesinLSGTWSVMSotheLSGTWSVMisverysensitivetoallerrorvariablesPRSCmethodisusedtoprunedatasamplesAndtheerrorvariablesofpruneddatasampleswillbelessthanthoseoforigiGnaldatasampleswhichwillaffectclassificationacGcuracyInordertosolvethisproblemerrorvariablecontributiontisaddedontheerrorvariablesξandηinEqs1049008(1)and(2)ofLSGTWSVMtisadiagonalmatrixtheelementtiiisrepresentedbyliTheerGrorvariableofthedatasampleAiisimprovedaboutlitimesThematrixformoftisgiven

    t=

l1 0 1049018 00 l2 1049018 00 0 1049018 00 0 1049018 lm1

eacute

euml

ecircecircecircecircecircecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacuteuacuteuacuteuacuteuacuteuacute

(5)

  TheerrorvariablecontributiontensuresthatthepruneddatasamplesalsocontributeerrortotheLSGTWSVM andreduceinfluenceofpruneddatasamplesonclassificationhyperGplanesHowtousetintheformulasofLSGTWSVM willbefullydeGscribedinthefollowingsection

210490082 Weight  NoisesampleshavemanyeffectsonclassificaGtionabilityinSVM[12]ThatistosaytheclassificaGtionaccuracywillbereducediftherearesomenoisesamplesindatasamplesSotheproblemalsoexistswhenLSGTWSVMisusedtoclassifystripsteelsurGfacedefectsamplesThusweightparametervisaddedintheformulaofLSGTWSVMtorestraintheimpactofnoisesamplesAweightversionedLSGTWSGVM (WLSGTWSVM)wasproposedinRef1049008[7]InWLSGTWSVMweightparametersareaddedontheξ2andη1Butthe WLSGTWSVMislesseffectiveforintercrossingnoisesamplesSotheweightpaGrametervisaddedontheξ1andη2ThischangeismoreeffectiveonrestrainingtheimpactofinterGcrossingnoisesamplesThiswillbeprovedinthe

followingexperimentalsection  ThebettertheweightalgorithmisthemoreeffectivetheimpactofnoisesamplescanberestrainGedInRef1049008[13]theweightparameterisobtainedbytrainingleastsquarevectormachinesandgettingerrordisturbanceinformationTheweightalgorithmformulasaredetermined

  vii=

1       if|dis|leE1

E2-|dis|E2-E1

ifE1le|dis|leE2

10-4 otherwise

igrave

icirc

iacute

iumliumliumliumliuml

iumliumliumliuml

(6)

  s=IQR

2times010490086745ors=11049008483MAD(xi) (7)

whereviiisdiagonalelementofmatrixvdiisanerrorvariablegettingfromtheclassifierwhichisnotaddedwithweightparametersisarobustestimateofthestandarddeviationoftheclassifiererrorvariaGbleE1andE2canbeset210490085and3respectivelybeGcausetherewillbeveryfewresidualslargerthan210490085s fora Gaussian distribution[13]IQR isthedifferencebetweenthe75thpercentileand25thperGcentileandMADisthemedianabsolutedeviationEq1049008(7)providesamethodtoestimatesInthispaGpertheweightalgorithmwillbeapplied

210490083 EnhancedLSGTWSVM  InordertogetbetterclassificationforstripsteelsurfacedefectstheLSGTWSVMisimprovedasELSGTWSVMinthispaperFirstlythePRSCmethodisusedtoprunedatasamplesThenerrorcontributionparametertandweightparametervareintroducedintotheLSGTWSVM formulaswhichcanimprovetheclassificationspeedandaccuracyItissupposedthattwoclassesofsamplesX andYhavebecomeAandBbyusingPRSCmethodt1andv1 representerrorvariablecontributionparameterandweightparameterforArespectivelyt2andv2

representerrorvariablecontributionparameterandweightparameterforBrespectivelyELSGTWSVMclassifierisobtainedbysolvingthefollowingpairofquadraticprogrammingproblems

 

minu1γ1

12sum

m1

i=1v1iit1iiξ2

1i+c1

2summ2

j=1t2jjξ2

2j

s1049008t1049008K(AiprimeCprime)u1+γ1=ξ1ii=121049018m1

K(BjprimeCprime)u1+γ1+1=ξ2j              j=121049018m2

(8)

 

minu2γ2

c2

2summ1

j=1t1iiη2

1i+12sum

m2

j=1v2jjt2jjη2

2j

s1049008t1049008K(BjprimeCprime)u2+γ2=η2jj=121049018m2

-[K(AiprimeCprime)u2+γ2]+1=η1i              i=121049018m1

(9)

671     JournalofIronandSteelResearchInternational              Vol104900821 

whereCprime=[AprimeBprime]SubstitutingtheequalityconGstraintsintotheobjectivefunctionofEq1049008(8)andsettingthegradientofEq1049008(8)withrespecttou1andγ1tozerothematrixformofresultisobtained

 K(ACprime)primev1t1K(ACprime)K(ACprime)primev1t1e1

  e1primev1t1K(ACprime)   e1primev1t1e1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute+

 c1K(BCprime)primet2K(BCprime)K(BCprime)primet2e2

  e2primet2K(BCprime)   e2primet2e2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=

 -c1K(BCprime)primet2e2

e2primet2e2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

(10)

  DefineE=[p1K(ACprime)p1e1]andF=[p2K(BCprime)p2e2]wherev1t1=p1primep1andt2=p2primep2SpeGciallyp1 andp2 arerequiredasdiagonalmatrixThenthesolutionofu1andγ1canbegiven

 u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=- 1

c1EprimeE+FprimeF

aelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Fprimep2e2 (11)

  SimilarlyafteraseriesofderivationthesoluGtionofEq1049008(9)canbeobtained

 u2

γ2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=GprimeG+

1c2

HprimeHaelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Gprimep3e1 (12)

whereG=[p3K(ACprime)p3e1]H=[p4K(BCprime)p4e2]t1=p3primep3v2t2=p4primep4p3andp4arereGquiredasdiagonalmatrix  TwononparallelhyperGplanesaregottenfromEqs1049008(11)and(12) K(xprimeCprime)u1+γ1=0K(xprimeCprime)u2+γ2=0 (13)  Anewstripsteelsurfacedefectsamplebelongstoaclassdependingon whichofthetwohyperGplanesinEq1049008(13)isclosertothesampleintermsofperpendiculardistance

3 MultiGclassClassificationofELSGTWSVM  TherearemanykindsofsurfacedefectsduringtheproductionandmanufactureofstripsteelSotheclassificationofthestripsteelsurfacedefectsbeGlongstomultiGclassclassificationManymultiGclassclassificationmethodshavebeenused[1415]justlikeoneGagainstGoneoneGagainstGrestdecisiondirectedacyclicgraphandbinarytreeAmongthesemethGodsthebinarytreeistheoptimalclassificationmethodThebinarytreehastwotypesofcompletebinarytreeandpartialbinarytreeTheyareshowninFig10490081EverynodeonthepartialbinarytreeisabinarySVMclassifieroftheoneclassandtheothGersSoaclassisrecognizedoneverynodeThisstructureofpartialbinarytreeenableseverybinarySVMclassifiertoclassifyunbalanceddatasamplesHowevereverynodeonthecompletebinarytreecarriesequalsplitornearlyequalsplitonalldatasamplesThatistosaythenumberofdatasamplesintheleftclassisnearlythesameasthatinthe

rightclasswhichavoidstheunbalanceddatasamGplesclassificationInordertoavoidtheunbalancethecompletebinarytreeisselectedtoclassifystripsteelsurfacedefects

(a)Completebinarytree  (b)PartialbinarytreeFig10490081 Binarytree

  InFig10490081alldatasamplesofsixclasseswillbedividedintotwoclassesonnodeSVM1oneclassincludesclasses12and3andtheotherclassinGcludestheclasses45and6ItwillbeeasytoclasGsifyifthedivisiblefactorsareconsideredamongthesixclassesIngeneraltheseclasseswillbedividedintodifferentclassesifthedifferenceamongtheseclassesislargeSotheclasses12and3willfallintooneclassandtheclasses45and6willfallintotheotherclassTheeffectivemethodtotestthedifferGencesamongallclassescanbefoundinRef1049008[15]FirstlythecenterpointsofsixclassesarecalculatGedSecondlythedistancebetweeneverytwocenterpointsaretestedFinallythedifferencesaredeterGminedbythesedistances  SupposethattherearenclassesforstripsteelsurfacedefectsamplesThemultiGclassclassificationmethodsofELSGTWSVMcanbeobtainedbycomGbingtheELSGTWSVMandthecompletebinarytreeThealgorithmsstepsareasfollows  Step1Determinethepruningscaleraccordingtothemethodinsection210490081prunethedatasamGplesbyusingPRSCmethodandgetnclassesofallpruneddatasamplesThenparametertisdeterGminedforpruneddatasamplesaccordingtoEq1049008(5)  Step2SplitequallyornearlyequallynclassesofpruneddatasamplesaccordingtothedistancesforthecenterpointsofnclassesThenconstructtrainingsamplesforallthenodesofthecompletebiGnarytree  Step3TrainthepruneddatasamplesforanodeSVM ofthecompletebinarytreebytheLSGTWSVM withparametertAndgettheweightpaGrametervbycalculatingEqs1049008(6)and(7)

771Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

  Step4Calculatep1p2p3andp4basedontandv  Step5Selecttherationalparametersc1c2

andkernelfunctionK  Step6DefineEFGandH  Step7CalculateparametersofthetwononparGallelhyperGplanesbyEqs1049008(11)and (12)soastogettheclassifierforthenode  Step8Repeatstepsfrom3to7untilgetallclassifiersofthebinarytree  Step9Accordingtothecompletebinarytreecalculateeverynodeclassifieruntilanewdefectdatasamplefallsintoaclassofthenclasses

4 Experiments410490081 ErrorvariablecontributionandweightsimulaGtionexperiments  BasedontwoGdimensional(2GD)datasetssomesimulationexperimentsaredonetotesttheeffects

oftandvTheexperimentsareimplementedbyusingMATLAB7104900811onaPCwithanIntelP4processor(310490080GHz)and2GBRAM  FirstlysomeexperimentsareusedtotesttheeffectsofparametertConsideringa2GDdatasetwithtwoclassesofdatasamplesPRSC methodisusedtoprunethedatasampleswithscalerThentheELSGTWSVMclassifierwithlinearkernelfunctionisadoptedtoclassifythedatasamplesTheresultsareshowninFig10490082ItiseasytoseethattheclassifiGcationhyperGplanesoforiginaldatasamples(r=0)aresimilarwiththoseofELSGTWSVMusingtheerGrorvariablecontributiont(rne0)butaredifferentfromthoseofnotusingerrorvariablecontributiont(rne0)SotheerrorvariablecontributionparameterreducedthechangeoftheclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamples  Thensomeexperimentsareusedtotesttheability

(a)r=0  (b)rne0t  (c)rne0Fig10490082 ClassificationresultsofELSGTWSVMin2GDspace

ofrestrainingtheimpactofnoisesamplesbyusingparametervConsideringa2GDdatasetwithinterGcrossingnoisesamplesWLSGTWSVM and ELSGTWSVMareadoptedforclassificationexperimentsrespectivelyTheresultsareshowninFig10490083ItiseasytoseethattheclassificationhyperGplanesofWLSGTWSVM arenotasgoodasthoseofELSGTWSVMThisisbecauseweightparameterintheELSGTWSVMismorereasonablethanthatintheWLSGTWSVM

410490082 Surfacedefectsclassificationapplicationexperiments  BasedonthestripsteelsurfacedefectdatasetsofaChineselargesteelplantsomeapplicationexG

perimentsaremadetodemonstratetheperformanceofELSGTWSVMAlargenumberofimagesofthestrip

(a)WLSGTWSVM  (b)ELSGTWSVMFig10490083 Classificationresultsoftwoclassifiersin2GDspace

871     JournalofIronandSteelResearchInternational              Vol104900821 

steelsurfacedefectsarecollectedformthedatasetsSixkindsoftypicaldefectimagesareselectedTheyarescarringcrackholescratchwrinkle andscaleasshowninFig10490084  Itisimportanttoextractfeaturesfromthestripsteelsurface defectimages before classificationThesefeaturesvectorsmakeupofthedatasampleswhichwillbeclassifiedbySVMInthisstudy43featuresareextractedfromstripsteelsurfacedefect

imagesThesefeaturesreflectdefectinformationintermsofgreyfeaturesgeometricalfeaturestexturGalfeaturesand morphologicalfeatures[16]Inthemeantime43featuresarereducedbyusingprinciGpalcomponentanalysis(PCA)[17]and33featuresareobtainedFinallythese33featuresareputtoGgethertoforma33GdimensionalvectorwhichreGpresentsastripsteelsurfacedefectsample  Inthispaper2340imagesareselectedasexperG

(a)Scarring  (b)Crack  (c)Hole  (d)Scratch  (e)Wrinkle  (f)ScaleFig10490084 Imagesofsixsurfacedefects

imentalsamplesfromwhich33dimensionsfeaturesareextractedasthesixclassesofdatasamplesThenthedatasamplesarerandomlydividedintotrainingsetandtestingsetInthemeantimethecenterpointsofsixclassesarecalculatedandthedistancebetweeneverytwocenterpointsaretestedAccordingtothedistancetheserialnumberofsixclassesisdeterminedandisshowninTable1Thetrainingsamplesare90 ofthetotalandare2106Thetestingsamplesare10ofthetotalandare234  ThemultiGclassclassifiersofELSGTWSVMare

Table1 Differentsurfacedefectdatasamples

Defecttype

Classcode

Numberoftrainingsamples

Numberoftestingsamples

Scarring 1 405 45Crack 2 378 42Hole 3 324 36

Scratch 4 351 39Wrinkle 5 378 42Scale 6 270 30

usedtoclassifythestripsteelsurfacedefectsamplesinTable1Radialbasisfunctionisusedaskernelfunctionanditsparametersareobtainedfrom2-20

to24Parametersc1andc2arealsoobtainedfrom2-20to24   FirstlyaimingatdifferentpruningratiossometestingexperimentsaremadeandtheresultsareshowninTable2ThepruningratioistheratioofthenumberofpruneddatasamplestothatoftheoriginaldatasamplesForexampletheratiois0104900830thatistosay30 ofdatasamplesareprunedfromthe2106trainingsamplesItiseasytoseethatthehigherthepruningratioistheshorterthe

Table2 Testingresultswithdifferentpruningratios

Pruningratio Trainingtimes Testingtimes Accuracy

0 310490086143 010490083667 971049008010104900830 110490086555 010490082551 961049008150104900855 010490086713 010490081720 881049008460104900875 010490081340 010490080878 751049008640104900885 010490080618 010490080562 61104900897

971Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

trainingtimeandtestingtimeareButtheaverageclassificationaccuracyforsixclassesoftestingsamGplesislowerSoinrealclassificationproblemtheidealpruningratioshouldbeconsideredbasedontrainingtimeandclassificationaccuracy   Secondlyclassificationaccuracyistestedintermsofusingerrorvariablecontributionparameterandnotusingerrorvariablecontributionparameterwherepruningratiois010490084ThefinalresultsareshowninTable3FromtheresultsitcanbeseenthaterrorvariablecontributionparametertinELSGTWSVMhascontributedtoclassificationaccuracy

Table3 Classificationaccuracyofdifferentdefects

DefecttypeAccuracy

Notusingt Usingt

Scarring 86104900867 93104900833Crack 92104900886 97104900862Hole 86104900811 94104900844

Scratch 82104900805 94104900887Wrinkle 88104900810 95104900824Scale 86104900867 96104900827

  FinallymultiGclassclassifierofELSGTWSVMandmultiGclassclassifierofLSGTWSVMareusedtoclassifythesixclassesofstripsteelsurfacedefectsamplesbyusingarationalpruningratio (010490084)TrainingtimetestingtimeandclassificationaccuGracyareshowninTable4ItindicatesthattrainingtimeandtestingtimeofthemultiGclassclassifierofELSGTWSVMareshorterthanthoseofthemultiGclassclassifierofLSGTWSVMandclassificationacGcuraciesarebothhigh

Table4 Testingresultsoftwoclassifiers

ClassifierTrainingtimes

Testingtimes

Accuracy

LSGTWSVM 310490080172 010490083661 96104900815ELSGTWSVM 110490081201 010490082118 95104900830

5 Conclusions

  ThemultiGclassclassifierofELSGTWSVM hasbeenusedinthefieldofstripsteelsurfacedefectsrecognitionTheresearchhasbeenmadeonsixclasGsesofstripsteelsurfacedefectsincludingscarringcrackholescratchwrinkleandscaleThePRSCmethodhasbeenimplemented withanadjustable

scalerBothtrainingtimeandtestingtimehavebeenreducedErrorvariablecontributionparametertreducesthechangeofclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamplesandensuresclassificationaccuracytothelargestextentTheweightparameterviseffectivetorestraintheimpactofnoisesamplesThemultiGclassclassifierbycombingtheELSGTWSVM andthecomplete binarytreeis effectiveto classifymultiGclassdatasamplesTheexperimentsshowthatmultiGclassclassifierofELSGTWSVMismoresuitabletoclassifystripsteelsurfacedefectsamplesintermsofclassificationspeedandaccuracyMoreoGverthemethodismoresuitableforlargerGscaleunbalancedandnoisesamples

References

[1] X1049008JDuanF1049008JDuanF1049008FHaninInternationalConferGenceonControlAutomationandSystemsEngineeringIEEESingapore2011pp1G4

[2] Y1049008HYanK1049008CSongZ1049008TXingX1049008HFenginThirdInGternationalConferenceon MeasuringTechnologyand MechaGtronicsAutomationIEEEShanghai2011pp958G961

[3] L1049008A1049008OMartinsF1049008L1049008CP1048929duaP1049008E1049008MAlmeidain36thAnnualConferenceonIEEEIndustrialElectronicsSocietyIEEEGlendaleAZ2010pp1081G1086

[4] C1049008MWangY1049008HYanS1049008LChenY1049008LHanJNortheastUnivNatSci28(2007)410G413

[5] Q1049008YYangQLiJJinTransNAMRISME37 (2009)371G378

[6] EAmidS1049008RAghdamHAmindavarProcWorldAcadSciEngTech(2012)No1049008671303G1307

[7] JChenG1049008RJiinThe2ndInternationalConferenceonComGputerandAutomationEngineeringIEEESingapore2010pp242G246

[8] M1049008AKumarMGopalExpertSysAppl36(2009)7535G7543

[9] JayadevaRKhemchandniSChandraIEEETransPatternAnalMachIntell29(2007)905G910

[10] CCortesVVapnikMachLearn20(1995)273G297[11] Y1049008MWenY1049008NWangB1049008LLuY1049008MChenComputSci36

(2009)No1049008720G2531[12] C1049008FLinS1049008DWangIEEETransNeuralNetw13(2002)

464G471[13] J1049008A1049008KSuykensJ1049008DBrabanterLLukasJVandewalle

Neurocomputing48(2002)85G105[14] B1049008CFanJ1049008YWangY1049008MBoComputEngDes31(2010)

2823G2825[15] L1049008MLiuA1049008NWangMShaF1049008YZhaoJIronSteel

ResInt18(2011)No10490081017G2333[16] YZhangW1049008WLiuZ1049008TXingY1049008HYanJNortheast

UnivNatSci33(2012)267G270[17] E1049008YHuHWangJ1049008HWangSLuLTianinIEEE

InternationalConferenceonComputerScienceandAutomationEngineeringIEEEShanghai2011pp388G390

081     JournalofIronandSteelResearchInternational              Vol104900821 

Page 4: Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects

whereCprime=[AprimeBprime]SubstitutingtheequalityconGstraintsintotheobjectivefunctionofEq1049008(8)andsettingthegradientofEq1049008(8)withrespecttou1andγ1tozerothematrixformofresultisobtained

 K(ACprime)primev1t1K(ACprime)K(ACprime)primev1t1e1

  e1primev1t1K(ACprime)   e1primev1t1e1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute+

 c1K(BCprime)primet2K(BCprime)K(BCprime)primet2e2

  e2primet2K(BCprime)   e2primet2e2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=

 -c1K(BCprime)primet2e2

e2primet2e2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute

(10)

  DefineE=[p1K(ACprime)p1e1]andF=[p2K(BCprime)p2e2]wherev1t1=p1primep1andt2=p2primep2SpeGciallyp1 andp2 arerequiredasdiagonalmatrixThenthesolutionofu1andγ1canbegiven

 u1

γ1

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=- 1

c1EprimeE+FprimeF

aelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Fprimep2e2 (11)

  SimilarlyafteraseriesofderivationthesoluGtionofEq1049008(9)canbeobtained

 u2

γ2

eacute

euml

ecircecircecircecirc

ugrave

ucirc

uacuteuacuteuacuteuacute=GprimeG+

1c2

HprimeHaelig

egrave

ccedilccedilccedil

ouml

oslash

dividedividedivide

-1

Gprimep3e1 (12)

whereG=[p3K(ACprime)p3e1]H=[p4K(BCprime)p4e2]t1=p3primep3v2t2=p4primep4p3andp4arereGquiredasdiagonalmatrix  TwononparallelhyperGplanesaregottenfromEqs1049008(11)and(12) K(xprimeCprime)u1+γ1=0K(xprimeCprime)u2+γ2=0 (13)  Anewstripsteelsurfacedefectsamplebelongstoaclassdependingon whichofthetwohyperGplanesinEq1049008(13)isclosertothesampleintermsofperpendiculardistance

3 MultiGclassClassificationofELSGTWSVM  TherearemanykindsofsurfacedefectsduringtheproductionandmanufactureofstripsteelSotheclassificationofthestripsteelsurfacedefectsbeGlongstomultiGclassclassificationManymultiGclassclassificationmethodshavebeenused[1415]justlikeoneGagainstGoneoneGagainstGrestdecisiondirectedacyclicgraphandbinarytreeAmongthesemethGodsthebinarytreeistheoptimalclassificationmethodThebinarytreehastwotypesofcompletebinarytreeandpartialbinarytreeTheyareshowninFig10490081EverynodeonthepartialbinarytreeisabinarySVMclassifieroftheoneclassandtheothGersSoaclassisrecognizedoneverynodeThisstructureofpartialbinarytreeenableseverybinarySVMclassifiertoclassifyunbalanceddatasamplesHowevereverynodeonthecompletebinarytreecarriesequalsplitornearlyequalsplitonalldatasamplesThatistosaythenumberofdatasamplesintheleftclassisnearlythesameasthatinthe

rightclasswhichavoidstheunbalanceddatasamGplesclassificationInordertoavoidtheunbalancethecompletebinarytreeisselectedtoclassifystripsteelsurfacedefects

(a)Completebinarytree  (b)PartialbinarytreeFig10490081 Binarytree

  InFig10490081alldatasamplesofsixclasseswillbedividedintotwoclassesonnodeSVM1oneclassincludesclasses12and3andtheotherclassinGcludestheclasses45and6ItwillbeeasytoclasGsifyifthedivisiblefactorsareconsideredamongthesixclassesIngeneraltheseclasseswillbedividedintodifferentclassesifthedifferenceamongtheseclassesislargeSotheclasses12and3willfallintooneclassandtheclasses45and6willfallintotheotherclassTheeffectivemethodtotestthedifferGencesamongallclassescanbefoundinRef1049008[15]FirstlythecenterpointsofsixclassesarecalculatGedSecondlythedistancebetweeneverytwocenterpointsaretestedFinallythedifferencesaredeterGminedbythesedistances  SupposethattherearenclassesforstripsteelsurfacedefectsamplesThemultiGclassclassificationmethodsofELSGTWSVMcanbeobtainedbycomGbingtheELSGTWSVMandthecompletebinarytreeThealgorithmsstepsareasfollows  Step1Determinethepruningscaleraccordingtothemethodinsection210490081prunethedatasamGplesbyusingPRSCmethodandgetnclassesofallpruneddatasamplesThenparametertisdeterGminedforpruneddatasamplesaccordingtoEq1049008(5)  Step2SplitequallyornearlyequallynclassesofpruneddatasamplesaccordingtothedistancesforthecenterpointsofnclassesThenconstructtrainingsamplesforallthenodesofthecompletebiGnarytree  Step3TrainthepruneddatasamplesforanodeSVM ofthecompletebinarytreebytheLSGTWSVM withparametertAndgettheweightpaGrametervbycalculatingEqs1049008(6)and(7)

771Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

  Step4Calculatep1p2p3andp4basedontandv  Step5Selecttherationalparametersc1c2

andkernelfunctionK  Step6DefineEFGandH  Step7CalculateparametersofthetwononparGallelhyperGplanesbyEqs1049008(11)and (12)soastogettheclassifierforthenode  Step8Repeatstepsfrom3to7untilgetallclassifiersofthebinarytree  Step9Accordingtothecompletebinarytreecalculateeverynodeclassifieruntilanewdefectdatasamplefallsintoaclassofthenclasses

4 Experiments410490081 ErrorvariablecontributionandweightsimulaGtionexperiments  BasedontwoGdimensional(2GD)datasetssomesimulationexperimentsaredonetotesttheeffects

oftandvTheexperimentsareimplementedbyusingMATLAB7104900811onaPCwithanIntelP4processor(310490080GHz)and2GBRAM  FirstlysomeexperimentsareusedtotesttheeffectsofparametertConsideringa2GDdatasetwithtwoclassesofdatasamplesPRSC methodisusedtoprunethedatasampleswithscalerThentheELSGTWSVMclassifierwithlinearkernelfunctionisadoptedtoclassifythedatasamplesTheresultsareshowninFig10490082ItiseasytoseethattheclassifiGcationhyperGplanesoforiginaldatasamples(r=0)aresimilarwiththoseofELSGTWSVMusingtheerGrorvariablecontributiont(rne0)butaredifferentfromthoseofnotusingerrorvariablecontributiont(rne0)SotheerrorvariablecontributionparameterreducedthechangeoftheclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamples  Thensomeexperimentsareusedtotesttheability

(a)r=0  (b)rne0t  (c)rne0Fig10490082 ClassificationresultsofELSGTWSVMin2GDspace

ofrestrainingtheimpactofnoisesamplesbyusingparametervConsideringa2GDdatasetwithinterGcrossingnoisesamplesWLSGTWSVM and ELSGTWSVMareadoptedforclassificationexperimentsrespectivelyTheresultsareshowninFig10490083ItiseasytoseethattheclassificationhyperGplanesofWLSGTWSVM arenotasgoodasthoseofELSGTWSVMThisisbecauseweightparameterintheELSGTWSVMismorereasonablethanthatintheWLSGTWSVM

410490082 Surfacedefectsclassificationapplicationexperiments  BasedonthestripsteelsurfacedefectdatasetsofaChineselargesteelplantsomeapplicationexG

perimentsaremadetodemonstratetheperformanceofELSGTWSVMAlargenumberofimagesofthestrip

(a)WLSGTWSVM  (b)ELSGTWSVMFig10490083 Classificationresultsoftwoclassifiersin2GDspace

871     JournalofIronandSteelResearchInternational              Vol104900821 

steelsurfacedefectsarecollectedformthedatasetsSixkindsoftypicaldefectimagesareselectedTheyarescarringcrackholescratchwrinkle andscaleasshowninFig10490084  Itisimportanttoextractfeaturesfromthestripsteelsurface defectimages before classificationThesefeaturesvectorsmakeupofthedatasampleswhichwillbeclassifiedbySVMInthisstudy43featuresareextractedfromstripsteelsurfacedefect

imagesThesefeaturesreflectdefectinformationintermsofgreyfeaturesgeometricalfeaturestexturGalfeaturesand morphologicalfeatures[16]Inthemeantime43featuresarereducedbyusingprinciGpalcomponentanalysis(PCA)[17]and33featuresareobtainedFinallythese33featuresareputtoGgethertoforma33GdimensionalvectorwhichreGpresentsastripsteelsurfacedefectsample  Inthispaper2340imagesareselectedasexperG

(a)Scarring  (b)Crack  (c)Hole  (d)Scratch  (e)Wrinkle  (f)ScaleFig10490084 Imagesofsixsurfacedefects

imentalsamplesfromwhich33dimensionsfeaturesareextractedasthesixclassesofdatasamplesThenthedatasamplesarerandomlydividedintotrainingsetandtestingsetInthemeantimethecenterpointsofsixclassesarecalculatedandthedistancebetweeneverytwocenterpointsaretestedAccordingtothedistancetheserialnumberofsixclassesisdeterminedandisshowninTable1Thetrainingsamplesare90 ofthetotalandare2106Thetestingsamplesare10ofthetotalandare234  ThemultiGclassclassifiersofELSGTWSVMare

Table1 Differentsurfacedefectdatasamples

Defecttype

Classcode

Numberoftrainingsamples

Numberoftestingsamples

Scarring 1 405 45Crack 2 378 42Hole 3 324 36

Scratch 4 351 39Wrinkle 5 378 42Scale 6 270 30

usedtoclassifythestripsteelsurfacedefectsamplesinTable1Radialbasisfunctionisusedaskernelfunctionanditsparametersareobtainedfrom2-20

to24Parametersc1andc2arealsoobtainedfrom2-20to24   FirstlyaimingatdifferentpruningratiossometestingexperimentsaremadeandtheresultsareshowninTable2ThepruningratioistheratioofthenumberofpruneddatasamplestothatoftheoriginaldatasamplesForexampletheratiois0104900830thatistosay30 ofdatasamplesareprunedfromthe2106trainingsamplesItiseasytoseethatthehigherthepruningratioistheshorterthe

Table2 Testingresultswithdifferentpruningratios

Pruningratio Trainingtimes Testingtimes Accuracy

0 310490086143 010490083667 971049008010104900830 110490086555 010490082551 961049008150104900855 010490086713 010490081720 881049008460104900875 010490081340 010490080878 751049008640104900885 010490080618 010490080562 61104900897

971Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

trainingtimeandtestingtimeareButtheaverageclassificationaccuracyforsixclassesoftestingsamGplesislowerSoinrealclassificationproblemtheidealpruningratioshouldbeconsideredbasedontrainingtimeandclassificationaccuracy   Secondlyclassificationaccuracyistestedintermsofusingerrorvariablecontributionparameterandnotusingerrorvariablecontributionparameterwherepruningratiois010490084ThefinalresultsareshowninTable3FromtheresultsitcanbeseenthaterrorvariablecontributionparametertinELSGTWSVMhascontributedtoclassificationaccuracy

Table3 Classificationaccuracyofdifferentdefects

DefecttypeAccuracy

Notusingt Usingt

Scarring 86104900867 93104900833Crack 92104900886 97104900862Hole 86104900811 94104900844

Scratch 82104900805 94104900887Wrinkle 88104900810 95104900824Scale 86104900867 96104900827

  FinallymultiGclassclassifierofELSGTWSVMandmultiGclassclassifierofLSGTWSVMareusedtoclassifythesixclassesofstripsteelsurfacedefectsamplesbyusingarationalpruningratio (010490084)TrainingtimetestingtimeandclassificationaccuGracyareshowninTable4ItindicatesthattrainingtimeandtestingtimeofthemultiGclassclassifierofELSGTWSVMareshorterthanthoseofthemultiGclassclassifierofLSGTWSVMandclassificationacGcuraciesarebothhigh

Table4 Testingresultsoftwoclassifiers

ClassifierTrainingtimes

Testingtimes

Accuracy

LSGTWSVM 310490080172 010490083661 96104900815ELSGTWSVM 110490081201 010490082118 95104900830

5 Conclusions

  ThemultiGclassclassifierofELSGTWSVM hasbeenusedinthefieldofstripsteelsurfacedefectsrecognitionTheresearchhasbeenmadeonsixclasGsesofstripsteelsurfacedefectsincludingscarringcrackholescratchwrinkleandscaleThePRSCmethodhasbeenimplemented withanadjustable

scalerBothtrainingtimeandtestingtimehavebeenreducedErrorvariablecontributionparametertreducesthechangeofclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamplesandensuresclassificationaccuracytothelargestextentTheweightparameterviseffectivetorestraintheimpactofnoisesamplesThemultiGclassclassifierbycombingtheELSGTWSVM andthecomplete binarytreeis effectiveto classifymultiGclassdatasamplesTheexperimentsshowthatmultiGclassclassifierofELSGTWSVMismoresuitabletoclassifystripsteelsurfacedefectsamplesintermsofclassificationspeedandaccuracyMoreoGverthemethodismoresuitableforlargerGscaleunbalancedandnoisesamples

References

[1] X1049008JDuanF1049008JDuanF1049008FHaninInternationalConferGenceonControlAutomationandSystemsEngineeringIEEESingapore2011pp1G4

[2] Y1049008HYanK1049008CSongZ1049008TXingX1049008HFenginThirdInGternationalConferenceon MeasuringTechnologyand MechaGtronicsAutomationIEEEShanghai2011pp958G961

[3] L1049008A1049008OMartinsF1049008L1049008CP1048929duaP1049008E1049008MAlmeidain36thAnnualConferenceonIEEEIndustrialElectronicsSocietyIEEEGlendaleAZ2010pp1081G1086

[4] C1049008MWangY1049008HYanS1049008LChenY1049008LHanJNortheastUnivNatSci28(2007)410G413

[5] Q1049008YYangQLiJJinTransNAMRISME37 (2009)371G378

[6] EAmidS1049008RAghdamHAmindavarProcWorldAcadSciEngTech(2012)No1049008671303G1307

[7] JChenG1049008RJiinThe2ndInternationalConferenceonComGputerandAutomationEngineeringIEEESingapore2010pp242G246

[8] M1049008AKumarMGopalExpertSysAppl36(2009)7535G7543

[9] JayadevaRKhemchandniSChandraIEEETransPatternAnalMachIntell29(2007)905G910

[10] CCortesVVapnikMachLearn20(1995)273G297[11] Y1049008MWenY1049008NWangB1049008LLuY1049008MChenComputSci36

(2009)No1049008720G2531[12] C1049008FLinS1049008DWangIEEETransNeuralNetw13(2002)

464G471[13] J1049008A1049008KSuykensJ1049008DBrabanterLLukasJVandewalle

Neurocomputing48(2002)85G105[14] B1049008CFanJ1049008YWangY1049008MBoComputEngDes31(2010)

2823G2825[15] L1049008MLiuA1049008NWangMShaF1049008YZhaoJIronSteel

ResInt18(2011)No10490081017G2333[16] YZhangW1049008WLiuZ1049008TXingY1049008HYanJNortheast

UnivNatSci33(2012)267G270[17] E1049008YHuHWangJ1049008HWangSLuLTianinIEEE

InternationalConferenceonComputerScienceandAutomationEngineeringIEEEShanghai2011pp388G390

081     JournalofIronandSteelResearchInternational              Vol104900821 

Page 5: Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects

  Step4Calculatep1p2p3andp4basedontandv  Step5Selecttherationalparametersc1c2

andkernelfunctionK  Step6DefineEFGandH  Step7CalculateparametersofthetwononparGallelhyperGplanesbyEqs1049008(11)and (12)soastogettheclassifierforthenode  Step8Repeatstepsfrom3to7untilgetallclassifiersofthebinarytree  Step9Accordingtothecompletebinarytreecalculateeverynodeclassifieruntilanewdefectdatasamplefallsintoaclassofthenclasses

4 Experiments410490081 ErrorvariablecontributionandweightsimulaGtionexperiments  BasedontwoGdimensional(2GD)datasetssomesimulationexperimentsaredonetotesttheeffects

oftandvTheexperimentsareimplementedbyusingMATLAB7104900811onaPCwithanIntelP4processor(310490080GHz)and2GBRAM  FirstlysomeexperimentsareusedtotesttheeffectsofparametertConsideringa2GDdatasetwithtwoclassesofdatasamplesPRSC methodisusedtoprunethedatasampleswithscalerThentheELSGTWSVMclassifierwithlinearkernelfunctionisadoptedtoclassifythedatasamplesTheresultsareshowninFig10490082ItiseasytoseethattheclassifiGcationhyperGplanesoforiginaldatasamples(r=0)aresimilarwiththoseofELSGTWSVMusingtheerGrorvariablecontributiont(rne0)butaredifferentfromthoseofnotusingerrorvariablecontributiont(rne0)SotheerrorvariablecontributionparameterreducedthechangeoftheclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamples  Thensomeexperimentsareusedtotesttheability

(a)r=0  (b)rne0t  (c)rne0Fig10490082 ClassificationresultsofELSGTWSVMin2GDspace

ofrestrainingtheimpactofnoisesamplesbyusingparametervConsideringa2GDdatasetwithinterGcrossingnoisesamplesWLSGTWSVM and ELSGTWSVMareadoptedforclassificationexperimentsrespectivelyTheresultsareshowninFig10490083ItiseasytoseethattheclassificationhyperGplanesofWLSGTWSVM arenotasgoodasthoseofELSGTWSVMThisisbecauseweightparameterintheELSGTWSVMismorereasonablethanthatintheWLSGTWSVM

410490082 Surfacedefectsclassificationapplicationexperiments  BasedonthestripsteelsurfacedefectdatasetsofaChineselargesteelplantsomeapplicationexG

perimentsaremadetodemonstratetheperformanceofELSGTWSVMAlargenumberofimagesofthestrip

(a)WLSGTWSVM  (b)ELSGTWSVMFig10490083 Classificationresultsoftwoclassifiersin2GDspace

871     JournalofIronandSteelResearchInternational              Vol104900821 

steelsurfacedefectsarecollectedformthedatasetsSixkindsoftypicaldefectimagesareselectedTheyarescarringcrackholescratchwrinkle andscaleasshowninFig10490084  Itisimportanttoextractfeaturesfromthestripsteelsurface defectimages before classificationThesefeaturesvectorsmakeupofthedatasampleswhichwillbeclassifiedbySVMInthisstudy43featuresareextractedfromstripsteelsurfacedefect

imagesThesefeaturesreflectdefectinformationintermsofgreyfeaturesgeometricalfeaturestexturGalfeaturesand morphologicalfeatures[16]Inthemeantime43featuresarereducedbyusingprinciGpalcomponentanalysis(PCA)[17]and33featuresareobtainedFinallythese33featuresareputtoGgethertoforma33GdimensionalvectorwhichreGpresentsastripsteelsurfacedefectsample  Inthispaper2340imagesareselectedasexperG

(a)Scarring  (b)Crack  (c)Hole  (d)Scratch  (e)Wrinkle  (f)ScaleFig10490084 Imagesofsixsurfacedefects

imentalsamplesfromwhich33dimensionsfeaturesareextractedasthesixclassesofdatasamplesThenthedatasamplesarerandomlydividedintotrainingsetandtestingsetInthemeantimethecenterpointsofsixclassesarecalculatedandthedistancebetweeneverytwocenterpointsaretestedAccordingtothedistancetheserialnumberofsixclassesisdeterminedandisshowninTable1Thetrainingsamplesare90 ofthetotalandare2106Thetestingsamplesare10ofthetotalandare234  ThemultiGclassclassifiersofELSGTWSVMare

Table1 Differentsurfacedefectdatasamples

Defecttype

Classcode

Numberoftrainingsamples

Numberoftestingsamples

Scarring 1 405 45Crack 2 378 42Hole 3 324 36

Scratch 4 351 39Wrinkle 5 378 42Scale 6 270 30

usedtoclassifythestripsteelsurfacedefectsamplesinTable1Radialbasisfunctionisusedaskernelfunctionanditsparametersareobtainedfrom2-20

to24Parametersc1andc2arealsoobtainedfrom2-20to24   FirstlyaimingatdifferentpruningratiossometestingexperimentsaremadeandtheresultsareshowninTable2ThepruningratioistheratioofthenumberofpruneddatasamplestothatoftheoriginaldatasamplesForexampletheratiois0104900830thatistosay30 ofdatasamplesareprunedfromthe2106trainingsamplesItiseasytoseethatthehigherthepruningratioistheshorterthe

Table2 Testingresultswithdifferentpruningratios

Pruningratio Trainingtimes Testingtimes Accuracy

0 310490086143 010490083667 971049008010104900830 110490086555 010490082551 961049008150104900855 010490086713 010490081720 881049008460104900875 010490081340 010490080878 751049008640104900885 010490080618 010490080562 61104900897

971Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

trainingtimeandtestingtimeareButtheaverageclassificationaccuracyforsixclassesoftestingsamGplesislowerSoinrealclassificationproblemtheidealpruningratioshouldbeconsideredbasedontrainingtimeandclassificationaccuracy   Secondlyclassificationaccuracyistestedintermsofusingerrorvariablecontributionparameterandnotusingerrorvariablecontributionparameterwherepruningratiois010490084ThefinalresultsareshowninTable3FromtheresultsitcanbeseenthaterrorvariablecontributionparametertinELSGTWSVMhascontributedtoclassificationaccuracy

Table3 Classificationaccuracyofdifferentdefects

DefecttypeAccuracy

Notusingt Usingt

Scarring 86104900867 93104900833Crack 92104900886 97104900862Hole 86104900811 94104900844

Scratch 82104900805 94104900887Wrinkle 88104900810 95104900824Scale 86104900867 96104900827

  FinallymultiGclassclassifierofELSGTWSVMandmultiGclassclassifierofLSGTWSVMareusedtoclassifythesixclassesofstripsteelsurfacedefectsamplesbyusingarationalpruningratio (010490084)TrainingtimetestingtimeandclassificationaccuGracyareshowninTable4ItindicatesthattrainingtimeandtestingtimeofthemultiGclassclassifierofELSGTWSVMareshorterthanthoseofthemultiGclassclassifierofLSGTWSVMandclassificationacGcuraciesarebothhigh

Table4 Testingresultsoftwoclassifiers

ClassifierTrainingtimes

Testingtimes

Accuracy

LSGTWSVM 310490080172 010490083661 96104900815ELSGTWSVM 110490081201 010490082118 95104900830

5 Conclusions

  ThemultiGclassclassifierofELSGTWSVM hasbeenusedinthefieldofstripsteelsurfacedefectsrecognitionTheresearchhasbeenmadeonsixclasGsesofstripsteelsurfacedefectsincludingscarringcrackholescratchwrinkleandscaleThePRSCmethodhasbeenimplemented withanadjustable

scalerBothtrainingtimeandtestingtimehavebeenreducedErrorvariablecontributionparametertreducesthechangeofclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamplesandensuresclassificationaccuracytothelargestextentTheweightparameterviseffectivetorestraintheimpactofnoisesamplesThemultiGclassclassifierbycombingtheELSGTWSVM andthecomplete binarytreeis effectiveto classifymultiGclassdatasamplesTheexperimentsshowthatmultiGclassclassifierofELSGTWSVMismoresuitabletoclassifystripsteelsurfacedefectsamplesintermsofclassificationspeedandaccuracyMoreoGverthemethodismoresuitableforlargerGscaleunbalancedandnoisesamples

References

[1] X1049008JDuanF1049008JDuanF1049008FHaninInternationalConferGenceonControlAutomationandSystemsEngineeringIEEESingapore2011pp1G4

[2] Y1049008HYanK1049008CSongZ1049008TXingX1049008HFenginThirdInGternationalConferenceon MeasuringTechnologyand MechaGtronicsAutomationIEEEShanghai2011pp958G961

[3] L1049008A1049008OMartinsF1049008L1049008CP1048929duaP1049008E1049008MAlmeidain36thAnnualConferenceonIEEEIndustrialElectronicsSocietyIEEEGlendaleAZ2010pp1081G1086

[4] C1049008MWangY1049008HYanS1049008LChenY1049008LHanJNortheastUnivNatSci28(2007)410G413

[5] Q1049008YYangQLiJJinTransNAMRISME37 (2009)371G378

[6] EAmidS1049008RAghdamHAmindavarProcWorldAcadSciEngTech(2012)No1049008671303G1307

[7] JChenG1049008RJiinThe2ndInternationalConferenceonComGputerandAutomationEngineeringIEEESingapore2010pp242G246

[8] M1049008AKumarMGopalExpertSysAppl36(2009)7535G7543

[9] JayadevaRKhemchandniSChandraIEEETransPatternAnalMachIntell29(2007)905G910

[10] CCortesVVapnikMachLearn20(1995)273G297[11] Y1049008MWenY1049008NWangB1049008LLuY1049008MChenComputSci36

(2009)No1049008720G2531[12] C1049008FLinS1049008DWangIEEETransNeuralNetw13(2002)

464G471[13] J1049008A1049008KSuykensJ1049008DBrabanterLLukasJVandewalle

Neurocomputing48(2002)85G105[14] B1049008CFanJ1049008YWangY1049008MBoComputEngDes31(2010)

2823G2825[15] L1049008MLiuA1049008NWangMShaF1049008YZhaoJIronSteel

ResInt18(2011)No10490081017G2333[16] YZhangW1049008WLiuZ1049008TXingY1049008HYanJNortheast

UnivNatSci33(2012)267G270[17] E1049008YHuHWangJ1049008HWangSLuLTianinIEEE

InternationalConferenceonComputerScienceandAutomationEngineeringIEEEShanghai2011pp388G390

081     JournalofIronandSteelResearchInternational              Vol104900821 

Page 6: Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects

steelsurfacedefectsarecollectedformthedatasetsSixkindsoftypicaldefectimagesareselectedTheyarescarringcrackholescratchwrinkle andscaleasshowninFig10490084  Itisimportanttoextractfeaturesfromthestripsteelsurface defectimages before classificationThesefeaturesvectorsmakeupofthedatasampleswhichwillbeclassifiedbySVMInthisstudy43featuresareextractedfromstripsteelsurfacedefect

imagesThesefeaturesreflectdefectinformationintermsofgreyfeaturesgeometricalfeaturestexturGalfeaturesand morphologicalfeatures[16]Inthemeantime43featuresarereducedbyusingprinciGpalcomponentanalysis(PCA)[17]and33featuresareobtainedFinallythese33featuresareputtoGgethertoforma33GdimensionalvectorwhichreGpresentsastripsteelsurfacedefectsample  Inthispaper2340imagesareselectedasexperG

(a)Scarring  (b)Crack  (c)Hole  (d)Scratch  (e)Wrinkle  (f)ScaleFig10490084 Imagesofsixsurfacedefects

imentalsamplesfromwhich33dimensionsfeaturesareextractedasthesixclassesofdatasamplesThenthedatasamplesarerandomlydividedintotrainingsetandtestingsetInthemeantimethecenterpointsofsixclassesarecalculatedandthedistancebetweeneverytwocenterpointsaretestedAccordingtothedistancetheserialnumberofsixclassesisdeterminedandisshowninTable1Thetrainingsamplesare90 ofthetotalandare2106Thetestingsamplesare10ofthetotalandare234  ThemultiGclassclassifiersofELSGTWSVMare

Table1 Differentsurfacedefectdatasamples

Defecttype

Classcode

Numberoftrainingsamples

Numberoftestingsamples

Scarring 1 405 45Crack 2 378 42Hole 3 324 36

Scratch 4 351 39Wrinkle 5 378 42Scale 6 270 30

usedtoclassifythestripsteelsurfacedefectsamplesinTable1Radialbasisfunctionisusedaskernelfunctionanditsparametersareobtainedfrom2-20

to24Parametersc1andc2arealsoobtainedfrom2-20to24   FirstlyaimingatdifferentpruningratiossometestingexperimentsaremadeandtheresultsareshowninTable2ThepruningratioistheratioofthenumberofpruneddatasamplestothatoftheoriginaldatasamplesForexampletheratiois0104900830thatistosay30 ofdatasamplesareprunedfromthe2106trainingsamplesItiseasytoseethatthehigherthepruningratioistheshorterthe

Table2 Testingresultswithdifferentpruningratios

Pruningratio Trainingtimes Testingtimes Accuracy

0 310490086143 010490083667 971049008010104900830 110490086555 010490082551 961049008150104900855 010490086713 010490081720 881049008460104900875 010490081340 010490080878 751049008640104900885 010490080618 010490080562 61104900897

971Issue2    MultiGclassClassificationMethodsofEnhancedLSGTWSVMforStripSteelSurfaceDefects 

trainingtimeandtestingtimeareButtheaverageclassificationaccuracyforsixclassesoftestingsamGplesislowerSoinrealclassificationproblemtheidealpruningratioshouldbeconsideredbasedontrainingtimeandclassificationaccuracy   Secondlyclassificationaccuracyistestedintermsofusingerrorvariablecontributionparameterandnotusingerrorvariablecontributionparameterwherepruningratiois010490084ThefinalresultsareshowninTable3FromtheresultsitcanbeseenthaterrorvariablecontributionparametertinELSGTWSVMhascontributedtoclassificationaccuracy

Table3 Classificationaccuracyofdifferentdefects

DefecttypeAccuracy

Notusingt Usingt

Scarring 86104900867 93104900833Crack 92104900886 97104900862Hole 86104900811 94104900844

Scratch 82104900805 94104900887Wrinkle 88104900810 95104900824Scale 86104900867 96104900827

  FinallymultiGclassclassifierofELSGTWSVMandmultiGclassclassifierofLSGTWSVMareusedtoclassifythesixclassesofstripsteelsurfacedefectsamplesbyusingarationalpruningratio (010490084)TrainingtimetestingtimeandclassificationaccuGracyareshowninTable4ItindicatesthattrainingtimeandtestingtimeofthemultiGclassclassifierofELSGTWSVMareshorterthanthoseofthemultiGclassclassifierofLSGTWSVMandclassificationacGcuraciesarebothhigh

Table4 Testingresultsoftwoclassifiers

ClassifierTrainingtimes

Testingtimes

Accuracy

LSGTWSVM 310490080172 010490083661 96104900815ELSGTWSVM 110490081201 010490082118 95104900830

5 Conclusions

  ThemultiGclassclassifierofELSGTWSVM hasbeenusedinthefieldofstripsteelsurfacedefectsrecognitionTheresearchhasbeenmadeonsixclasGsesofstripsteelsurfacedefectsincludingscarringcrackholescratchwrinkleandscaleThePRSCmethodhasbeenimplemented withanadjustable

scalerBothtrainingtimeandtestingtimehavebeenreducedErrorvariablecontributionparametertreducesthechangeofclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamplesandensuresclassificationaccuracytothelargestextentTheweightparameterviseffectivetorestraintheimpactofnoisesamplesThemultiGclassclassifierbycombingtheELSGTWSVM andthecomplete binarytreeis effectiveto classifymultiGclassdatasamplesTheexperimentsshowthatmultiGclassclassifierofELSGTWSVMismoresuitabletoclassifystripsteelsurfacedefectsamplesintermsofclassificationspeedandaccuracyMoreoGverthemethodismoresuitableforlargerGscaleunbalancedandnoisesamples

References

[1] X1049008JDuanF1049008JDuanF1049008FHaninInternationalConferGenceonControlAutomationandSystemsEngineeringIEEESingapore2011pp1G4

[2] Y1049008HYanK1049008CSongZ1049008TXingX1049008HFenginThirdInGternationalConferenceon MeasuringTechnologyand MechaGtronicsAutomationIEEEShanghai2011pp958G961

[3] L1049008A1049008OMartinsF1049008L1049008CP1048929duaP1049008E1049008MAlmeidain36thAnnualConferenceonIEEEIndustrialElectronicsSocietyIEEEGlendaleAZ2010pp1081G1086

[4] C1049008MWangY1049008HYanS1049008LChenY1049008LHanJNortheastUnivNatSci28(2007)410G413

[5] Q1049008YYangQLiJJinTransNAMRISME37 (2009)371G378

[6] EAmidS1049008RAghdamHAmindavarProcWorldAcadSciEngTech(2012)No1049008671303G1307

[7] JChenG1049008RJiinThe2ndInternationalConferenceonComGputerandAutomationEngineeringIEEESingapore2010pp242G246

[8] M1049008AKumarMGopalExpertSysAppl36(2009)7535G7543

[9] JayadevaRKhemchandniSChandraIEEETransPatternAnalMachIntell29(2007)905G910

[10] CCortesVVapnikMachLearn20(1995)273G297[11] Y1049008MWenY1049008NWangB1049008LLuY1049008MChenComputSci36

(2009)No1049008720G2531[12] C1049008FLinS1049008DWangIEEETransNeuralNetw13(2002)

464G471[13] J1049008A1049008KSuykensJ1049008DBrabanterLLukasJVandewalle

Neurocomputing48(2002)85G105[14] B1049008CFanJ1049008YWangY1049008MBoComputEngDes31(2010)

2823G2825[15] L1049008MLiuA1049008NWangMShaF1049008YZhaoJIronSteel

ResInt18(2011)No10490081017G2333[16] YZhangW1049008WLiuZ1049008TXingY1049008HYanJNortheast

UnivNatSci33(2012)267G270[17] E1049008YHuHWangJ1049008HWangSLuLTianinIEEE

InternationalConferenceonComputerScienceandAutomationEngineeringIEEEShanghai2011pp388G390

081     JournalofIronandSteelResearchInternational              Vol104900821 

Page 7: Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects

trainingtimeandtestingtimeareButtheaverageclassificationaccuracyforsixclassesoftestingsamGplesislowerSoinrealclassificationproblemtheidealpruningratioshouldbeconsideredbasedontrainingtimeandclassificationaccuracy   Secondlyclassificationaccuracyistestedintermsofusingerrorvariablecontributionparameterandnotusingerrorvariablecontributionparameterwherepruningratiois010490084ThefinalresultsareshowninTable3FromtheresultsitcanbeseenthaterrorvariablecontributionparametertinELSGTWSVMhascontributedtoclassificationaccuracy

Table3 Classificationaccuracyofdifferentdefects

DefecttypeAccuracy

Notusingt Usingt

Scarring 86104900867 93104900833Crack 92104900886 97104900862Hole 86104900811 94104900844

Scratch 82104900805 94104900887Wrinkle 88104900810 95104900824Scale 86104900867 96104900827

  FinallymultiGclassclassifierofELSGTWSVMandmultiGclassclassifierofLSGTWSVMareusedtoclassifythesixclassesofstripsteelsurfacedefectsamplesbyusingarationalpruningratio (010490084)TrainingtimetestingtimeandclassificationaccuGracyareshowninTable4ItindicatesthattrainingtimeandtestingtimeofthemultiGclassclassifierofELSGTWSVMareshorterthanthoseofthemultiGclassclassifierofLSGTWSVMandclassificationacGcuraciesarebothhigh

Table4 Testingresultsoftwoclassifiers

ClassifierTrainingtimes

Testingtimes

Accuracy

LSGTWSVM 310490080172 010490083661 96104900815ELSGTWSVM 110490081201 010490082118 95104900830

5 Conclusions

  ThemultiGclassclassifierofELSGTWSVM hasbeenusedinthefieldofstripsteelsurfacedefectsrecognitionTheresearchhasbeenmadeonsixclasGsesofstripsteelsurfacedefectsincludingscarringcrackholescratchwrinkleandscaleThePRSCmethodhasbeenimplemented withanadjustable

scalerBothtrainingtimeandtestingtimehavebeenreducedErrorvariablecontributionparametertreducesthechangeofclassificationhyperGplaneswhichiscausedbyerrorvariablesofpruneddatasamplesandensuresclassificationaccuracytothelargestextentTheweightparameterviseffectivetorestraintheimpactofnoisesamplesThemultiGclassclassifierbycombingtheELSGTWSVM andthecomplete binarytreeis effectiveto classifymultiGclassdatasamplesTheexperimentsshowthatmultiGclassclassifierofELSGTWSVMismoresuitabletoclassifystripsteelsurfacedefectsamplesintermsofclassificationspeedandaccuracyMoreoGverthemethodismoresuitableforlargerGscaleunbalancedandnoisesamples

References

[1] X1049008JDuanF1049008JDuanF1049008FHaninInternationalConferGenceonControlAutomationandSystemsEngineeringIEEESingapore2011pp1G4

[2] Y1049008HYanK1049008CSongZ1049008TXingX1049008HFenginThirdInGternationalConferenceon MeasuringTechnologyand MechaGtronicsAutomationIEEEShanghai2011pp958G961

[3] L1049008A1049008OMartinsF1049008L1049008CP1048929duaP1049008E1049008MAlmeidain36thAnnualConferenceonIEEEIndustrialElectronicsSocietyIEEEGlendaleAZ2010pp1081G1086

[4] C1049008MWangY1049008HYanS1049008LChenY1049008LHanJNortheastUnivNatSci28(2007)410G413

[5] Q1049008YYangQLiJJinTransNAMRISME37 (2009)371G378

[6] EAmidS1049008RAghdamHAmindavarProcWorldAcadSciEngTech(2012)No1049008671303G1307

[7] JChenG1049008RJiinThe2ndInternationalConferenceonComGputerandAutomationEngineeringIEEESingapore2010pp242G246

[8] M1049008AKumarMGopalExpertSysAppl36(2009)7535G7543

[9] JayadevaRKhemchandniSChandraIEEETransPatternAnalMachIntell29(2007)905G910

[10] CCortesVVapnikMachLearn20(1995)273G297[11] Y1049008MWenY1049008NWangB1049008LLuY1049008MChenComputSci36

(2009)No1049008720G2531[12] C1049008FLinS1049008DWangIEEETransNeuralNetw13(2002)

464G471[13] J1049008A1049008KSuykensJ1049008DBrabanterLLukasJVandewalle

Neurocomputing48(2002)85G105[14] B1049008CFanJ1049008YWangY1049008MBoComputEngDes31(2010)

2823G2825[15] L1049008MLiuA1049008NWangMShaF1049008YZhaoJIronSteel

ResInt18(2011)No10490081017G2333[16] YZhangW1049008WLiuZ1049008TXingY1049008HYanJNortheast

UnivNatSci33(2012)267G270[17] E1049008YHuHWangJ1049008HWangSLuLTianinIEEE

InternationalConferenceonComputerScienceandAutomationEngineeringIEEEShanghai2011pp388G390

081     JournalofIronandSteelResearchInternational              Vol104900821