Modulo dinamica

93
Ing. Gustavo Jiménez - Dinámica Página 1 Dinámica Introducción En este módulo se hace una valoración del empleo del sistema de Leyes de Newton en el estudio, el cual constituye, en primer lugar, un recurso didáctico de carácter motivacional y real para los estudiantes. Se denomina dinámica la parte de la mecánica que estudia conjuntamente el movimiento y las fuerzas que lo originan. En su sentido amplio la dinámica, la dinámica abarca casi toda la mecánica. La estática trata de los casos especiales en los cuales la aceleración es nula y la cinemática es la que se ocupa únicamente del movimiento. Dinámica Es la parte de la Física que estudia el movimiento de los cuerpos y las fuerzas que producen dicho movimiento. Fuerza. En física, la fuerza es una magnitud física que mide la intensidad del intercambio de momento lineal entre dos partículas o sistemas de partículas (en lenguaje de la física de partículas se habla de interacción). Según una definición clásica, fuerza es toda causa agente capaz de modificar la cantidad de movimiento o la forma de los cuerpos materiales. No debe confundirse con los conceptos de esfuerzo o de energía. ¿Cómo se originan las fuerzas?: Una interacción entre dos objetos produce dos fuerzas iguales y opuestas, aplicadas una en cada objeto. Las interacciones pueden ser como la electromagnética o por contacto, como las originadas en un choque o cuando alguien empuja una caja o tira de una cuerda. Características de una fuerza: Una fuerza se caracteriza por tener cuatro elementos: Punto de aplicación Dirección Sentido Intensidad Tipos de fuerzas Fuerzas fundamentales La gravitatoria es la fuerza de atracción que una masa ejerce sobre otra, y afecta a todos los cuerpos. La gravedad es una fuerza muy débil y de un sólo sentido, pero de alcance infinito. La fuerza electromagnética afecta a los cuerpos eléctricamente cargados, y es la fuerza involucrada en las transformaciones físicas y químicas de átomos y moléculas. Es mucho más intensa que la fuerza gravitatoria, puede tener dos sentidos (atractivo y repulsivo) y su alcance es infinito. Una fuerza nuclear es aquella fuerza que tiene origen exclusívamente en el interior de los núcleos atómicos La fuerza o interacción nuclear fuerte es la que mantiene unidos los componentes de los núcleos atómicos, y actúa indistintamente entre dos nucleones cualesquiera, protones o neutrones. Su alcance es del orden de las dimensiones nucleares, pero es más intensa que la fuerza electromagnética. La fuerza o interacción nuclear débil es la responsable de la desintegración beta de los neutrones; los neutrinos son sensibles únicamente a este tipo de interacción (aparte de la gravitatoria, electromagnética y su alcance es aún menor que el de la interacción nuclear fuerte. Fuerza a distancia: es la que se produce sin contacto entre los cuerpos que accionan uno sobre otro. Ejemplos: a) La fuerza magnética que ejerce un imán, a distancia sobre un clavo colocado cerca; b) La fuerza eléctrica que existe entre dos cuerpos cargados de electricidad contraria; c) La fuerza de gravedad que ejerce la Tierra sobre cualquier objeto o cuerpo. Ejemplos: un pájaro, un globo, un avión, etc., que se levantan del suelo no escapan a la gravedad; la Tierra continúa ejerciendo sobre ellos, a distancia, una fuerza de atracción, tanto más débil cuanto más se eleva el objeto. Fuerza por contacto: es la fuerza que un cuerpo aplica a otro en contacto con él. Ejemplos: a) la fuerza muscular desarrollada por un hombre o un animal para poner un cuerpo en movimiento, impedirlo o modificarlo. b) la fuerza elástica resultante de la deformación de un cuerpo elástico, por ejemplo, las gomas de una honda. c)la fuerza por empuje, ejercida por un gas comprimido, el aire o el agua en movimiento (sobre las velas de

Transcript of Modulo dinamica

Page 1: Modulo dinamica

Ing. Gustavo Jiménez - Dinámica Página 1

Dinámica

Introducción

En este módulo se hace una valoración del empleo del sistema de Leyes de Newton en el estudio, el cual

constituye, en primer lugar, un recurso didáctico de carácter motivacional y real para los estudiantes.

Se denomina dinámica la parte de la mecánica que estudia conjuntamente el movimiento y las fuerzas que

lo originan. En su sentido amplio la dinámica, la dinámica abarca casi toda la mecánica.

La estática trata de los casos especiales en los cuales la aceleración es nula y la cinemática es la que se

ocupa únicamente del movimiento.

Dinámica Es la parte de la Física que estudia el movimiento de los cuerpos y las fuerzas que producen dicho

movimiento.

Fuerza.

En física, la fuerza es una magnitud física que mide la intensidad del intercambio de momento lineal entre

dos partículas o sistemas de partículas (en lenguaje de la física de partículas se habla de interacción).

Según una definición clásica, fuerza es toda causa agente capaz de modificar la cantidad de movimiento o

la forma de los cuerpos materiales. No debe confundirse con los conceptos de esfuerzo o de energía.

¿Cómo se originan las fuerzas?:

Una interacción entre dos objetos produce dos fuerzas iguales y opuestas, aplicadas una en cada objeto.

Las interacciones pueden ser como la electromagnética o por contacto, como las originadas en un choque

o cuando alguien empuja una caja o tira de una cuerda.

Características de una fuerza:

Una fuerza se caracteriza por tener cuatro elementos:

Punto de aplicación

Dirección

Sentido

Intensidad

Tipos de fuerzas

Fuerzas fundamentales

La gravitatoria es la fuerza de atracción que una masa ejerce sobre otra, y afecta a todos los cuerpos. La

gravedad es una fuerza muy débil y de un sólo sentido, pero de alcance infinito.

La fuerza electromagnética afecta a los cuerpos eléctricamente cargados, y es la fuerza involucrada en las

transformaciones físicas y químicas de átomos y moléculas. Es mucho más intensa que la fuerza

gravitatoria, puede tener dos sentidos (atractivo y repulsivo) y su alcance es infinito.

Una fuerza nuclear es aquella fuerza que tiene origen exclusívamente en el interior de los núcleos atómicos

La fuerza o interacción nuclear fuerte es la que mantiene unidos los componentes de los núcleos atómicos,

y actúa indistintamente entre dos nucleones cualesquiera, protones o neutrones. Su alcance es del orden de

las dimensiones nucleares, pero es más intensa que la fuerza electromagnética.

La fuerza o interacción nuclear débil es la responsable de la desintegración beta de los neutrones; los

neutrinos son sensibles únicamente a este tipo de interacción (aparte de la gravitatoria, electromagnética y

su alcance es aún menor que el de la interacción nuclear fuerte.

Fuerza a distancia: es la que se produce sin contacto entre los cuerpos que accionan uno sobre otro.

Ejemplos:

a) La fuerza magnética que ejerce un imán, a distancia sobre un clavo colocado cerca;

b) La fuerza eléctrica que existe entre dos cuerpos cargados de electricidad contraria;

c) La fuerza de gravedad que ejerce la Tierra sobre cualquier objeto o cuerpo. Ejemplos: un pájaro, un

globo, un avión, etc., que se levantan del suelo no escapan a la gravedad; la Tierra continúa ejerciendo

sobre ellos, a distancia, una fuerza de atracción, tanto más débil cuanto más se eleva el objeto.

Fuerza por contacto: es la fuerza que un cuerpo aplica a otro en contacto con él. Ejemplos:

a) la fuerza muscular desarrollada por un hombre o un animal para poner un cuerpo en movimiento,

impedirlo o modificarlo.

b) la fuerza elástica resultante de la deformación de un cuerpo elástico, por ejemplo, las gomas de una

honda.

c)la fuerza por empuje, ejercida por un gas comprimido, el aire o el agua en movimiento (sobre las velas de

Page 2: Modulo dinamica

Ing. Gustavo Jiménez - Dinámica Página 2

un bote, sobre los álabes de una turbina hidráulica, etc.).

d) la fuerza por frotamiento que se produce al oprimir un cuerpo sobre otro en movimiento, por ejemplo, al

accionar el freno sobre las ruedas de un vehículo en marcha.

fuerzas colineales: son fuerzas que actúan sobre la misma línea recta (recta de acción), ya sea en el

mismo sentido o en sentido contrario.

Fuerzas de sentidos contrarios:

F1 = 5 N F2 = 8 N

R = F2 - F1 = 8 N - 5 N = 3 N

R = 3 N

Fuerzas del mismo sentido:

F1 = 15 N F2 = 15 N

R = F1 + F2 = 15 N + 15 N

R = 30 N

Cuando dos personas empujan un mueble se dice que aplican un sistema de fuerzas; siempre es posible

hallar una fuerza que, aplicada al cuerpo, produzca exactamente el mismo efecto que todo el sistema. Si las

fuerzas de esas dos personas son remplazadas por otra persona que por sí sola emplee exactamente la

misma fuerza que las dos anteriores, se obtiene una resultante del sistema.

FUERZA DE ROZAMIENTO

La fuerza de rozamiento surge entre dos cuerpos puestos en contacto cuando uno se mueve respecto al

otro. Sobre cada uno de ellos aparece una fuerza de rozamiento que se opone al movimiento.

El valor de la fuerza de rozamiento depende de: a) tipo de superficies en contacto (ej. madera, metal,

plástico/granito, etc), b) del estado de la superficies, que pueden ser pulidas, rugosas, etc. (ej. madera

compacta finamente lijada, acero inoxidable) y c) de la fuerza de contacto entre ellas.

FUERZAS CONCURRENTES

Un sistema de fuerzas concurrentes es aquel para el cual existe un punto en común para todas las rectas de

acción de las fuerzas componentes. La resultante es el elemento más simple al cual puede reducirse un

sistema de fuerzas. Como simplificación diremos que es una fuerza que reemplaza a un sistema de fuerzas.

Se trata de un problema de equivalencia por composición, ya que los dos sistemas (las fuerzas

componentes por un lado, y la fuerza resultante,

por el otro) producen el mismo efecto sobre un cuerpo. En el ejemplo que veremos a continuación vamos a

hallar la resultante en forma gráfica y en forma analítica.

FUERZAS PARALELAS

Si sobre un cuerpo rígido actúan dos o más fuerzas cuyas líneas de acción son paralelas, la resultante

tendrá un valor igual a la suma de ellas con su línea de acción también paralela a las fuerzas, pero su punto

de aplicación debe ser determinado con exactitud para que produzca el mismo efecto que las componentes.

FUERZA NORMAL (O N)

Se define como la fuerza que ejerce una superficie sobre un cuerpo apoyado sobre la misma. Ésta es de

igual magnitud y dirección, pero de sentido opuesto, a la fuerza ejercida por el cuerpo sobre la superficie.

FUERZA ELÁSTICA

La fuerza elástica es la ejercida por objetos tales como resortes, que tienen una posición normal, fuera de la

cual almacenan energía potencial y ejercen fuerzas. La fuerza elástica se calcula como: F = - k ΔX ΔX =

Desplazamiento desde la posición normal k = Constante de elasticidad del resorte F = Fuerza elástica

FUERZA GRAVITATORIA

Entre dos cuerpos aparece una fuerza de atracción denominada gravitatoria, que depende de sus masas y

de la separación entre ambos. La fuerza gravitatoria disminuye con el cuadrado de la distancia, es decir que

ante un aumento de la separación, el valor de la fuerza disminuye al cuadrado. La fuerza gravitatoria se

calcula como: G = Constante de gravitación universal. Es un valor que no depende de los cuerpos ni de la

masa de los mismos.

FUERZA EQUILIBRANTE

Se llama fuerza equilibrante a una fuerza con mismo módulo y dirección que la resultante (en caso de que

sea distinta de cero) pero de sentido contrario. Es la fuerza que equilibra el sistema. Sumando

vectorialmente a todas las fuerzas (es decir a la resultante) con la equilibrante se obtiene cero, lo que

significa que no hay fuerza neta aplicada.

FUERZA CENTRÍFUGA

En la Mecánica Clásica, la fuerza centrífuga es una fuerza ficticia que aparece cuando se describe el

movimiento de un cuerpo en un sistema de referencia en rotación.

El calificativo de "centrífuga" significa que "huye del centro". En efecto, un observador situado sobre la

plataforma de una silla voladora que gira con velocidad angular ω (observador no-inercial) siente que existe

Page 3: Modulo dinamica

Ing. Gustavo Jiménez - Dinámica Página 3

una «fuerza» que actúa sobre él, que le impide permanecer en reposo sobre la plataforma a menos que él

mismo realice otra fuerza dirigida hacia el eje de rotación, fuerza que debe tener de módulo , siendo la

distancia a la que se encuentra del eje de rotación. Así, aparentemente, la fuerza centrífuga tiende a alejar

los objetos del eje de rotación.

FUERZA CENTRÍPETA

Fuerza centrípeta es toda fuerza o componente de fuerza dirigida hacia el centro de curvatura de la

trayectoria de una partícula. Así, en el caso del movimiento circular uniforme, la fuerza centrípeta está

dirigida hacia el centro de la trayectoria circular y es necesaria para producir el cambio de dirección de la

velocidad de la partícula. Si sobre la partícula no actuase ninguna fuerza, se movería en línea recta con

velocidad constante.

FUERZA RESULTANTE

Se define así a aquella fuerza capaz de reemplazar a las fuerzas componentes para producir el mismo

efecto.

Las fuerzas, en un sistema en el que actúen todas en la misma dirección, tendrán una intensidad de sus

componentes e igual sentido. Por ejemplo, un caballo tira de un carro con una fuerza de 100 , mientras que

el carrero lo empuja con una fuerza de 50 . La resultante es de 150 , y tiene la misma dirección y sentido

(fuerzas colineales del mismo sentido).

También puede darse el caso de un sistema de fuerza con la misma dirección, pero en sentido opuesto. La

resultante tiene el mismo sentido que el de la mayor de las dos fuerzas, y su intensidad es la diferencia

entre ambas. Un ejemplo es el juego conocido como cinchada, en el que intervienen dos personas o más

que tiran con distintas fuerzas, una hacia la derecha y la otra hacia la izquierda; la resultante tendrá el

sentido de la mayor fuerza (fuerzas colineales de diferentes sentidos).

Cuando la resultante de las fuerzas aplicadas es igual a cero, se dice que el cuerpo está en equilibrio

EFECTOS DE LA FUERZA

1)Cambio de movimiento: Se producen de 3 maneras:

a) Un cuerpo q esta en reposo al aplicarle fuerza se mueve

b) Un cuerpo q esta en movimiento, al aplicar fuerza se detiene

c) Un cuerpo q esta en movimiento con una sierta velocidad al aplicarle fuerza puede aumentar o disminuir

velocidad

2)Cambio en la forma o deformacion:

b) Despues de ejercer la fuerza el cuerpo no recupera su forma original EJ: Arrugar un papel

Efectos de una fuerza

Cuando las fuerzas actúan producen movimiento sobre algún cuerpo o sino lo contrario. Sobre cada cuerpo

actúan muchas fuerzas a la vez, las cuales si las sumamos recibe el nombre de fuerza neta y estas equivale

a la fuerza de todas las demás. Si la fuerza neta fuese cero, quiere decir que el cuerpo esta sin movimiento

o a una velocidad constante. Y si no esta en cero , no esta en equilibrio y adquiere M.U.A.

Como se miden las fuerzas

Las fuerzas se miden por los efectos que producen, es decir, a partir de las deformaciones o cambios de

movimiento que producen sobre los objetos. En el Sistema Internacional de unidades, la fuerza se mide en

newtons: 1 newton (N) es la fuerza que proporciona a un objeto de 1 kg de masa una aceleración de 1

metro por segundo al cuadrado.

UNIDADES DE FUERZA

Newton (unidad)

En física, un newton o neutonio o neutón (símbolo: N) es la unidad de fuerza en el Sistema Internacional de

Unidades, nombrada así en reconocimiento a Isaac Newton por su trabajo y su extraordinaria aportación a

la Física, especialmente a la mecánica clásica.

El newton se define como la fuerza necesaria para proporcionar una aceleración de 1 m/s2 a un objeto de 1

kg de masa. Es una unidad derivada del SI que se compone de las unidades básicas:

En la tabla que sigue se relacionan los múltiplos y submúltiplos del newton en el Sistema Internacional de

Unidades.

Múltiplos del Sistema Internacional para newton (N)

Page 4: Modulo dinamica

Ing. Gustavo Jiménez - Dinámica Página 4

En física, una dina (de símbolo dyn) es la unidad de fuerza en el Sistema CGS. Equivale a 10 μN, o lo que

es lo mismo,la fuerza que, aplicada a una masa de un gramo, le comunica una aceleración de un centímetro

por segundo por segundo o gal. Es decir:

Tradicionalmente, los dina/centímetro se ha usado para medir tensiones superficiales.

Un kilopondio o kilogramo-fuerza, es la fuerza ejercida sobre una masa de 1 kg (kilogramo masa según se

define en el Sistema Internacional) por la gravedad estándar en la superficie terrestre, esto es 9,80665

m/s2.

En definitiva, el kilogramo-fuerza (o kilopondio) es el peso de un kilogramo de masa en la superficie

terrestre, expresión poco utilizada en la práctica cotidiana. Nunca oiremos decir: "yo peso 70 kilopondios o

kilogramos-fuerza" (que sería lo correcto si utilizamos el Sistema Técnico de Unidades) o: "yo peso 686

newtons" (si utilizamos el Sistema Internacional), sino que lo común es decir: "yo peso 70 kilogramos o

kilos" (unidad de masa del SI), a pesar de que, en realidad, nos estamos refiriendo a kilogramos-fuerza, y no

a kilogramos de masa. En lo anterior, debemos interpretar a la expresión "kilos" como acortamiento

coloquial de kilogramos-fuerza o kilopondios, ya que estamos hablando de un peso; es decir, de una fuerza

y no de una masa.

Equivalencias

El valor estándar de la gravedad (g) terrestre es de 9,80665 m/s² Entonces (y de acuerdo con la Segunda

Ley de Newton: fuerza = masa × aceleración) se dice que:

de modo que 1 kilogramo-fuerza o kilopondio equivale a 9,80665 newtons.

Ejemplos

El kilogramo-fuerza o kilopondio (Sistema Técnico) representa el peso de una masa de 1 kg (Sistema

Internacional) en la superficie terrestre. Esta circunstancia ha dado lugar a cierto desconcierto que parte de

la confusión inicial entre los conceptos de peso y masa.

Destaquemos un ejemplo: en la Luna ese mismo kg de masa va a pesar solamente 0,1666 kilopondios o

kilogramos-fuerza (ó 1,634 newtons si usamos el SI), ya que la gravedad lunar es la sexta parte de la

gravedad terrestre.

Resumiendo

1 kg masa (S.I.) es igual a 0,102 u.t.m. (S.T.U.).

Además, el kg de masa pesa:

en la Tierra: 1 kilopondio o kilogramo-fuerza (S.T.U.), y 9,80665 newtons (SI).

en la Luna: 0,1666 kilopondios o kilogramos-fuerza (S.T.U.), y 1,634 newtons (SI).

Sin embargo, su masa permanecerá invariable: 1 kg masa (SI) ó 0,102 u.t.m. (S.T.U.), tanto en la Tierra

como en la Luna u otro lugar.

Libra (unidad de fuerza)

Page 5: Modulo dinamica

Ing. Gustavo Jiménez - Dinámica Página 5

Libra

en física es una unidad de fuerza. Una libra es aproximadamente igual a la fuerza gravitacional ejercida

sobre una masa de un libra avoirdupois sobre una idealizada superficie de la Tierra.

La constante aceleración de la fuerza de gravedad de la Tierra es usualmente aproximada a 9,80665 m/s²

hoy en día, aunque se han utilizado otros valores, incluyendo 32,16 ft/s² (aproximadamente 9,80237 m/s²).

La aceleración de gravedad que ejerce la Tierra varía de lugar en lugar, en general incrementándose desde

el Ecuador (9,78 m/s²) a los polos (9,83 m/s²).

Equivalencias con otras unidades de fuerza

CONVERSIÓN DE UNIDADES DE FUERZA

Page 6: Modulo dinamica

Ing. Gustavo Jiménez - Dinámica Página 6

Leyes de Newton

Se denomina Leyes de Newton a tres leyes concernientes al movimiento de los cuerpos. La formulación

matemática fue publicada por Isaac Newton en 1687, en su obra Philosophiae Naturalis Principia

Mathematica. Las leyes de Newton constituyen, junto con la transformación de Galileo, la base de la

mecánica clásica. En el tercer volumen de los Principia Newton mostró que, combinando estas leyes con su

Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento

planetario.

Debe aclararse que las leyes de Newton tal como comúnmente se exponen, sólo valen para sistemas de

referencia inerciales. En sistemas de referencia no-inerciales junto con las fuerzas reales deben incluirse las

llamadas fuerzas fictícias o fuerzas de inercia que añaden términos suplementarios capaces de explicar el

movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí.

Primera ley de Newton o Ley de Inercia

Todo cuerpo permanece en su estado de reposo o de movimiento rectilíneo uniforme a menos que otros

cuerpos actúen sobre él.

Esta es una de las tres leyes de Newton y, a continuación, vamos a comentarla.

En ocasiones, esta ley se nombra también Principio de Galileo. Las leyes del movimiento tienen un interés

especial aquí; tanto el movimiento orbital como la ley del movimiento de los cohetes se basan en ellas.

Newton planteó que todos los movimientos se atienen a tres leyes principales formuladas en términos

matemáticos y que implican conceptos que es necesario primero definir con rigor. Un concepto es la fuerza,

causa del movimiento; otro es la masa, la medición de la cantidad de materia puesta en movimiento; los dos

son denominados habitualmente por las letras F y m.

Fuerza

Causa del movimiento (F).

Masa

Medición de la cantidad de materia puesta en movimiento (m).

se podria decir tambien, que la masa es la cuantificacion de la materia es decir un cuerpo mas masivo

posee mayor inercia que uno menos masivo.

LA PRIMERA LEY DE NEWTON, CONOCIDA TAMBIÉN COMO LEY DE INERCIA

La primera Ley de Newton, conocida también como Ley de Inercia, indica que todo cuerpo permanece en su

estado de reposo o de movimiento rectilíneo uniforme a menos que otros cuerpos actúen sobre él.

Dice que si sobre un cuerpo no actúa ningún otro, este permanecerá indefinidamente moviéndose en línea

recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).

Como sabemos, el movimiento es relativo, es decir, depende de cual sea el observador que describa el

movimiento. Así, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del

tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está

moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el

movimiento.

La primera Ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como

Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que

un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.

En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de

fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que

el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En

muchos casos, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.

EJEMPLOS:

El salto de una rana sobre una hoja de nenutar ilustra las leyes del movimiento.la pimera ley

establece que si ninguna fuerza empuja o tira de un objeto,este se mantiene en reposo o se mueve

Page 7: Modulo dinamica

Ing. Gustavo Jiménez - Dinámica Página 7

en linea recta con reposo constante

Un excelente ejemplo en el que se ejerce esta fuerza, es cuando un auto choca o frena con rapidez,

si las personas en el auto no llevan puesto un cinturón de seguridad seguirán su movimiento

rectilíneo, es decir, se estrellaran con la primera cosa que se interponga en su camino. otro ejemplo

seria el movimiento de los meteoritos y asteroides que vagan por el espacio en linea recta a

velocidad constante siempre que no se encuentren frente a un cuerpo celeste que los desvie de su

trayectoria.

Ya que la primera ley de Newton dice

Todo cuerpo permanece en su estado de reposo o de movimiento rectilíneo uniforme a menos que

otros cuerpos actúen sobre él.

Si esa persona no porta cinturón de seguridad se estrellará contra algo.

SEGUNDA LEY DE NEWTON O LEY DE LA FUERZA

La variación del momento lineal de un cuerpo es proporcional a la resultante total de las fuerzas actuando

sobre dicho cuerpo y se produce en la dirección en que actúan las fuerzas.

La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista

algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la

acción de unos cuerpos sobre otros.

La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta

aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de

proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente

manera:

F = m a

La segunda ley nos explica qué ocurre si sobre un cuerpo en movimiento actúa una fuerza. En ese caso, la

fuerza modificará el movimiento, cambiando la velocidad en módulo o dirección. Los cambios

experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se

desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los

cuerpos.

Segunda Ley de Newton o Ley de la Fuerza Es el cambio de movimiento es proporcional a la fuerza motriz

impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.

Cuando una fuerza actúa sobre un objeto este se pone en movimiento acelera, desacelera o varia su

trayectoria cuanto mayor es la fuerza, tanto mayor es la variación de movimiento.

TERCERA LEY DE NEWTON O LEY DE ACCIÓN Y REACCIÓN

Por cada fuerza que actúa sobre un cuerpo, éste realiza una fuerza igual pero de sentido opuesto sobre el

cuerpo que la produjo. Dicho de otra forma: Las fuerzas siempre se presentan en pares de igual magnitud y

sentido opuesto.

Esta ley, junto con las anteriores, permite enunciar los principios de conservación del momento lineal y del

momento angular.

Ley de acción y reacción débil

En la ley de acción y reacción débil no se exige que las fuerzas de acción y reacción sean colineales, tan

sólo de la misma magnitud y sentido opuesto, sin actuar necesariamente en la misma línea. Ciertos

sistemas magnéticos no cumplen el enunciado fuerte de esta ley, y tampoco lo hacen las fuerzas eléctricas

ejercidas entre una carga puntual y un dipolo. La forma débil de la ley de acción-reacción se cumple

siempre.

Esta ley explica que con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones

mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto. Por ejemplo: Al empujar un

objeto o tirar de el, este empuja o tira con igual fuerza contraria

Page 8: Modulo dinamica

Ing. Gustavo Jiménez - Dinámica Página 8

APLICACIONES DE LAS LEYES DE NEWTON

Cuando aplicamos las leyes de Newton a un cuerpo, sólo estamos interesados en aquellas fuerzas externas

que actúan sobre el cuerpo.

• Aplicación de la primera Ley de Newton

Si desde un sistema de referencia inercial, un cuerpo está en reposo o en movimiento rectilíneo uniforme,

permanecerá en ese estado, hasta que una fuerza actúe sobre él.

El cinturón de seguridad justamente evita, cuando un vehículo choca o frena de golpe, que nuestro cuerpo

al querer mantener el movimiento que traía, sea despedido hacia delante. Un ejemplo contrario es cuando el

cuerpo tiende a quedarse quieto cuando un vehículo arranca bruscamente.

• Aplicación de la segunda Ley de Newton

Si se aplica la misma fuerza a dos cuerpos, uno de gran masa y otro de masa menor, el primero adquirirá

una pequeña aceleración y el segundo, una aceleración mayor. (la aceleración es inversamente

proporcional a la masa). La fuerza y la aceleración tienen la misma dirección y sentido

Para que nos quede más claro lo que es la segunda ley y que es lo que tiende a lograr daremos un

ejemplo: Se patea una pelota con una fuerza de 1,2 N y adquiere una aceleración de 3 m/s2, ¿cuál es la

masa de la pelota?

• Datos:

Page 9: Modulo dinamica

Ing. Gustavo Jiménez - Dinámica Página 9

• Aplicación de la tercera Ley de Newton

Un caballo tira de un carro que está detenido y lo, pone en movimiento: Los cuerpos involucrados en las

interacciones son: El carro, el caballo y el suelo. La fuerzas que representan estas interacciones son:

• T: Fuerza con que el caballo tira del carro y con la que el carro tira del caballo.

• R: Fuerza con la que el caballo empuja al suelo hacia atrás, y por lo tanto, con la que el suelo

empuja al caballo hacia delante.

• F: Fuerza análoga a R, que ejerce el carro con el suelo y viceversa

Cuando a un cuerpo se le aplica una fuerza (acción o reacción), este devuelve una fuerza de igual

magnitud, igual dirección y de sentido contrario (reacción o acción).

En una pista de patinaje sobre hielo, si un adulto empuja suavemente a un niño,no sólo existe la fuerza que

el adulto ejerce sobre el niño, sino que el niño ejerce una fuerza igual pero de sentido opuesto sobre el

adulto. Sin embargo, como la masa del adulto es mayor, su aceleración será menor.

Page 10: Modulo dinamica

SISTEMAS DE UNIDADES Y ECUACIONES DE DIMENSIÓN

1- CONCEPTOS GENERALES

Los sistemas de unidades utilizados son cuatro, divididos en dos grupos, los que se basan en las propiedades: Masa (M), Longitud (L) y Tiempo (T) el primero y Fuerza (F), Longitud (L) y Tiempo (T) el segundo.

En el primer grupo encontramos los sistemas cgs (cm, gm, s), MKS (m, Km, s) y el

SIMELA (Sistema métrico legal argentino con idénticas unidades para nuestras aplicaciones que las del sistema MKS). En el segundo grupo se encuentra el Sistema Técnico o Gravitacional.

Mientras el sistema cgs se usa para determinaciones de laboratorio, los restantes son los que usa la tecnología en general y la Hidráulica en particular.

Dado que el concepto de masa es independiente de la gravedad, los sistemas que la

involucran son más rigurosos, por ello modernamente se han adoptado universalmente. En cambio, el sistema técnico, no contemplado en las normas actualmente, es todavía usado a pesar de que la vigencia del SIMELA, data en nuestro país desde 1974.

La razón por la que es tan difícil desprenderse de él se explica en la sensación

mucho más objetiva que tiene el ser humano, al percibir la fuerza (o peso) como un esfuerzo muscular proporcional a realizar en función de su magnitud. En cambio, la Masa, no tiene su correlato de sensación física, por lo que se hace más abstracta su evaluación.

Ello no obstante, se hace fácil pasar de un sistema al otro, si se tienen en cuenta las

siguientes definiciones: 1 Kgf = 1 Kgm. 9,81 m/s2

En la que, en el segundo término, la constante numérica es “g”, “aceleración normal

de la gravedad”.

SISTEMAS DE UNIDADES

Másicos Gravitacional (Fuerza peso)

CGS MKS SIMELA Técnico

Pagina 1Ing. Gustavo Jiménez - Ecuaciones de dimensión

Page 11: Modulo dinamica

Cap.1 -

2

Por otra parte, la condición de un sistema de unidades, es que las propiedades

físicas, representadas por una o más variables, impliquen valores unitarios de las mismas. En particular para la famosa ecuación de Newton:

F = m . a

Se debe cumplir que la Unidad de fuerza resulte igual a la unidad de masa por la unidad de aceleración. Esa unidad se define en los sistemas MKS y SIMELA como “Newton”, por lo tanto:

1 N = 1 Kgm . 1 m/s2

Si se dividen miembro a miembro las dos ecuaciones anteriores, se obtiene:

2s/m81,9N1

Kgf1=

Es decir que: Kgf1,0Kgf102,0N1N10N81,9Kgf1 ≅=∴≅=

Se define como “Ecuación de dimensión”, la que resulta de expresar en las

dimensiones básicas de un determinado sistema, la propiedad física en análisis. La dimensión de una dada propiedad se especifica con el símbolo que la identifica

entre corchetes, así, por ejemplo, las constitutivas de los sistemas de unidades son: Masa, [m] = M; Fuerza [f] = F; Longitud [L] = L; Superficie [�] = L2; Volumen [V] = L3 Tiempo [T] = T;

Para propiedades físicas que resultan combinaciones de las variables básicas, se

tiene:

Velocidad, [v] = TL

; Aceleración, [a] = 2T

L

La ecuación de dimensión de la fuerza en el sistema técnico resulta: [f] = F, en

cambio en los sistemas másicos resulta:

[f] = M 2T

L

La ecuación de dimensión de la Masa en los sistemas másicos resulta [m] = M, en

cambio en el sistema técnico es:

Pagina 2Ing. Gustavo Jiménez - Ecuaciones de dimensión

Page 12: Modulo dinamica

[M] = LTF

TLF 2

2

=

La ecuación de dimensión de la Energía o Trabajo en el sistema técnico es:

E = F L

Y en los másicos al reemplazar F en la función de M, resulta la expresión:

2

2

2 TLML

TLME ==

Procediendo en forma similar para la potencia, se tiene que:

TLFP= ; y en los sistemas másicos:

3

2

2 TLM

TL

TLMP ==

La propiedad más importante de la ecuación de dimensión, es que una vez

planteada la misma es inmediata la determinación de las unidades de la propiedad física analizada para el sistema de unidades elegido.

En efecto, veamos como ejemplo la energía. En el sistema cgs (másico),

reemplazando en la ecuación correspondiente por las unidades básicas del sistema, resulta:

2

2

m scmg . En los sistemas MKS o SIMELA (indistintamente), resulta:

2

2

m smKg .

En cambio, para el sistema técnico la unidad resulta: Kgf. m.

2- ECUACIONES DE DIMENSIÓN DE LAS PROPIEDADES FÍSICAS DE LAS LÍQUIDOS

2-1-MASA ESPECÍFICA Se la define como la relación entre la masa de una sustancia y el volumen que

ocupa, o, dicho de otra manera, la “Masa de la unidad de volumen”.

En símbolos: VM

=ρ ; cuyas ecuaciones de dimensión son:

Pagina 3Ing. Gustavo Jiménez - Ecuaciones de dimensión

Page 13: Modulo dinamica

[ ]4

2

2

33 LTF

TLF

L1

LM

===ρ

Por lo que en el sistema SIMELA (o MKS) la unidad resulta

3m

mKg , y en el sistema

técnico es 4

2f

msKg . Para el agua en condiciones normales de presión y temperatura, su

valor es de 102 4

2f

mskg , o 1000

3m

mkg , indistintamente.

2-2- PESO ESPECÍFICO

Se lo define como el peso de la sustancia en estudio, en relación con el volumen que ocupa, o también como el “peso de la unidad de volumen”.

En símbolos: VP

=γ ; cuyas ecuaciones de dimensión son:

2233 TLM

TLM

L1

LF

===γ

Es decir que las unidades en los sistemas técnico y SIMELA (o MKS), serán:

22m

3f

smkgy

mkg

Se recuerda que el peso P es la masa de la porción de sustancia considerada,

multiplicada por la aceleración normal de la gravedad g, es decir que:

P = M . g

Pero, por otra parte, de la definición de “Peso específico” se deduce que: P = �. V Por lo tanto: P = M . g = �. V;

De donde se deduce que: � = VM

g = � g

Nótese que para los valores medios de � y g, el valor de � resulta:

3f

24

2f

mkg

1000sm

81,9m

skg102 ≅=γ

Pagina 4Ing. Gustavo Jiménez - Ecuaciones de dimensión

Page 14: Modulo dinamica

2-3-DENSIDAD

Se la define como la relación entre la masa específica o peso específico de la sustancia en análisis, con respecto a la del agua en condiciones normales de presión y temperatura y medida a nivel del mar. En símbolos:

agua

sust

agua

sust

agua

.sust

gMgM

ρρ

==γγ

De la anterior se deduce claramente, que al ser “g” un valor constante, puede ser

simplificado, por lo que el cociente de las masas específicas dará el mismo valor que el cociente entre los pesos específicos.

La densidad también puede denominarse “Peso específico relativo” o “Masa

específica relativa”. Su característica fundamental es que es adimensional, es decir, un número sin ninguna dimensión que lo acompañe. Obviamente la densidad del agua es la unidad.

2-4- PRESIÓN Y ESFUERZO CORTANTE

Dada una fuerza actuando sobre una superficie, si se descompone en sus

componentes normal al plano S, Pn y tangente al mismo Pt Se define como Presión al cociente entre la componente normal y la superficie S, y como Esfuerzo Tangencial, al cociente entre la componente tangencial y la superficie S. En símbolos:

SP

p n=

SPt=τ

Evidentemente, ambas constituyen, conceptual y dimensionalmente hablando, la

distribución de una fuerza sobre una superficie, por lo que sus ecuaciones de dimensión resultarán idénticas y dadas por:

[ ] [ ] 2LFp =τ=

2-5- COEFICIENTE Y MÓDULO DE COMPRESIBILIDAD DE LÍQUIDOS

La expresión de compresibilidad, en diferencias finitas es:

Pagina 5Ing. Gustavo Jiménez - Ecuaciones de dimensión

Page 15: Modulo dinamica

ρρ∆

ε=∆ p

Evidentemente, las dimensiones de ε son las de presión puesto que el cociente ∆ρ/ρ

es adimensional, por lo que la igualdad implica que las dimensiones corresponden a las del primer término. Obviamente, las dimensiones de α son las inversas de las dimensiones de presión (ver “Propiedades Físicas” en el texto de base.

A continuación, las ecuaciones de dimensión de ambas:

[ ] [ ]2

2

LF;

FL

=ε=α

.

2-6- VISCOSIDAD

La expresión de Newton, en diferencias finitas, para la Viscosidad Absoluta es:

ZV∆∆

µ=τ

La ecuación de dimensión se obtiene, para los sistemas másicos y el sistema técnico

como sigue:

[ ] [ ]T1

LTL

LF

2µ=µ=

[ ]TL

MLT

TLM

LTF

222===µ∴

En especial por constituir su determinación experiencias de laboratorio, se utiliza el

sistema de unidades cgs, por lo que la unidad resultará indistintamente gf.s/cm2 o gM /cm.s, definida como “Poisse” en honor del investigador de los escurrimientos laminares, Dr. Poisseuille. Cómo su orden de magnitud es 0.01, se utiliza por practicidad el “Centipoisse”, para no usar números muy pequeños.

Cuando se considera la viscosidad absoluta de la sustancia fluida, relativa a su masa

específica, es decir el cociente entre � y �, se obtiene la denominada “viscosidad cinemática �”. La que debe su nombre al hecho que sus dimensiones son de la cinemática, es decir, no aparecen fuerzas o masas, tal como se puede apreciar en el análisis siguiente:

Pagina 6Ing. Gustavo Jiménez - Ecuaciones de dimensión

Page 16: Modulo dinamica

HIDRÁULICA APLICADA A LAS CONDUCCIONES CAPÍTULO 1

[ ]TL

LM

TLM

2

3

==υ∴ρµ

La unidad consecuente será m2/s en los sistemas SIMELA, MKS y Técnico y cm2/s

en el cgs. En laboratorio, por razones similares a la descripta previamente se utiliza el

“centistoke”.

Pagina 7Ing. Gustavo Jiménez - Ecuaciones de dimensión

Page 17: Modulo dinamica

Ing. Gustavo Jiménez

1

Las Magnitudes Físicas

Los aspectos medibles de un fenómeno se denominan magnitudes.

Magnitud: Es toda propiedad de los cuerpos que se puede medir. Por ejemplo: temperatura, velocidad,

masa, peso, etc.

Medir: Es comparar la magnitud con otra similar, llamada unidad, para averiguar cuántas veces la contiene.

Unidad: Es una cantidad que se adopta como patrón para compara con ella cantidades de la misma

especie.

Sistema Internacional de Unidades: Para resolver el problema que suponía la utilización de diferentes

unidades en distintos países, en 1960, se estableció el SI. Para ello se actuó de la siguiente forma:

-Un primer lugar, se eligieron las magnitudes fundamentales y la unidad correspondiente a cada magnitud

fundamental. Una magnitud fundamental es aquella que se define por si misma y es independiente de las

demás ( masa, tiempo, longitud etc.).

-En segundo lugar, se definieron las magnitudes derivada y su unidad correspondiente. Una magnitud

fundamental es aquella que se obtiene mediante expresiones matemáticas a partir de las magnitudes

fundamentales ( densidad, superficie, velocidad etc.).

En el cuadro siguiente se pueden ver las magnitudes fundamentales y derivadas más frecuentes que se

utilizan en farmacia, expresándolas por su dimensión , unidad y símbolo.

Unidades básicas.

Magnitud Nombre Símbolo

Longitud metro m

Masa kilogramo kg

Tiempo segundo s

Intensidad de corriente eléctrica ampere A

Temperatura termodinámica kelvin K

Cantidad de sustancia mol mol

Intensidad luminosa candela cd

Unidad de longitud: metro (m)

El metro es la longitud de trayecto recorrido en el vacío por la

luz durante un tiempo de 1/299 792 458 de segundo.

Unidad de masa El kilogramo (kg) es igual a la masa del prototipo internacional

del kilogramo

Unidad de tiempo El segundo (s) es la duración de 9 192 631 770 periodos de la

radiación correspondiente a la transición entre los dos niveles

hiperfinos del estado fundamental del átomo de cesio 133.

Unidad de intensidad de

corriente eléctrica

El ampere (A) es la intensidad de una corriente constante que

manteniéndose en dos conductores paralelos, rectilíneos, de

longitud infinita, de sección circular despreciable y situados a

una distancia de un metro uno de otro en el vacío, produciría una

fuerza igual a 2·10-7

newton por metro de longitud.

Unidad

de temperaturatermodinámica

El kelvin (K), unidad de temperatura termodinámica, es la

fracción 1/273,16 de la temperatura termodinámica del punto

triple del agua.

Page 18: Modulo dinamica

Ing. Gustavo Jiménez

2

Observación: Además de la temperatura termodinámica

(símbolo T) expresada en kelvins, se utiliza también la

temperatura Celsius (símbolo t) definida por la ecuación t = T -

T0 donde T0 = 273,15 K por definición.

Unidad de cantidad de

sustancia

El mol (mol) es la cantidad de sustancia de un sistema que

contiene tantas entidades elementales como átomos hay en 0,012

kilogramos de carbono 12.

Cuando se emplee el mol, deben especificarse las unidades

elementales, que pueden ser átomos, moléculas, iones,

electrones u otras partículas o grupos especificados de tales

partículas.

Unidad de intensidad luminosa La candela (cd) es la unidad luminosa, en una dirección dada,

de una fuente que emite una radiación monocromática de

frecuencia 540·1012

hertz y cuya intensidad energética en dicha

dirección es 1/683 watt por estereorradián.

Unidades derivadas sin dimensión.

Magnitud Nombre Símbolo Expresión en unidades

SI básicas

Ángulo plano Radián rad mm-1

= 1

Ángulo sólido Estereorradián sr m2m

-2= 1

Unidad de ángulo plano

El radián (rad) es el ángulo plano comprendido entre dos radios

de un círculo que, sobre la circunferencia de dicho círculo,

interceptan un arco de longitud igual a la del radio.

Unidad de ángulo sólido El estereorradián (sr) es el ángulo sólido que, teniendo su

vértice en el centro de una esfera, intercepta sobre la superficie de

dicha esfera un área igual a la de un cuadrado que tenga por lado

el radio de la esfera.

Unidades SI derivadas

Las unidades SI derivadas se definen de forma que sean coherentes con las unidades básicas y

suplementarias, es decir, se definen por expresiones algebraicas bajo la forma de productos de

potencias de las unidades SI básicas y/o suplementarias con un factor numérico igual 1.

Varias de estas unidades SI derivadas se expresan simplemente a partir de las unidades SI básicas y

suplementarias. Otras han recibido un nombre especial y un símbolo particular.

Si una unidad SI derivada puede expresarse de varias formas equivalentes utilizando, bien nombres

de unidades básicas y suplementarias, o bien nombres especiales de otras unidades SI derivadas, se

admite el empleo preferencial de ciertas combinaciones o de ciertos nombres especiales, con el fin

de facilitar la distinción entre magnitudes que tengan las mismas dimensiones. Por ejemplo, el hertz

se emplea para la frecuencia, con preferencia al segundo a la potencia menos uno, y para el

momento de fuerza, se prefiere el newton metro al joule.

Page 19: Modulo dinamica

Ing. Gustavo Jiménez

3

Unidades SI derivadas expresadas a partir de unidades básicas y suplementarias.

Magnitud Nombre Símbolo

Superficie metro cuadrado m2

Volumen metro cúbico m3

Velocidad metro por segundo m/s

Aceleración metro por segundo cuadrado m/s2

Número de ondas metro a la potencia menos uno m-1

Masa en volumen kilogramo por metro cúbico kg/m3

Velocidad angular radián por segundo rad/s

Aceleración angular radián por segundo cuadrado rad/s2

Unidad de velocidad

Un metro por segundo (m/s o m·s-1

) es la velocidad de un cuerpo

que, con movimiento uniforme, recorre, una longitud de un metro

en 1 segundo.

Unidad de aceleración Un metro por segundo cuadrado (m/s2 o m·s

-2) es la aceleración

de un cuerpo, animado de movimiento uniformemente variado,

cuya velocidad varía cada segundo, 1 m/s.

Unidad de número de ondas Un metro a la potencia menos uno (m-1

) es el número de ondas

de una radiación monocromática cuya longitud de onda es igual a 1

metro.

Unidad de velocidad angular Un radián por segundo (rad/s o rad·s-1

) es la velocidad de un

cuerpo que, con una rotación uniforme alrededor de un eje fijo,

gira en 1 segundo, 1 radián.

Unidad de aceleración

angular

Un radián por segundo cuadrado (rad/s2 o rad·s

-2) es la

aceleración angular de un cuerpo animado de una rotación

uniformemente variada alrededor de un eje fijo, cuya velocidad

angular, varía 1 radián por segundo, en 1 segundo.

Unidades SI derivadas con nombres y símbolos especiales.

Magnitud Nombre Símbolo Expresión en

otras unidades

SI

Expresión en unidades

SI básicas

Frecuencia hertz Hz s-1

Fuerza newton N m·kg·s-2

Presión pascal Pa N·m-2

m-1

·kg·s-2

Energía, trabajo, joule J N·m m2·kg·s

-2

Page 20: Modulo dinamica

Ing. Gustavo Jiménez

4

cantidad de calor

Potencia watt W J·s-1

m2·kg·s

-3

Cantidad de electricidad

carga eléctrica

coulomb C s·A

Potencial eléctrico

fuerza electromotriz

volt V W·A-1

m2·kg·s

-3·A

-1

Resistencia eléctrica ohm V·A-1

m2·kg·s

-3·A

-2

Capacidad eléctrica farad F C·V-1

m-2

·kg-1

·s4·A

2

Flujo magnético weber Wb V·s m2·kg·s

-2·A

-1

Inducción magnética tesla T Wb·m-2

kg·s-2

·A-1

Inductancia henry H Wb·A-1

m2·kg s

-2·A

-2

Unidad de frecuencia

Un hertz (Hz) es la frecuencia de un fenómeno periódico cuyo

periodo es 1 segundo.

Unidad de fuerza Un newton (N) es la fuerza que, aplicada a un cuerpo que tiene una

masa de 1 kilogramo, le comunica una aceleración de 1 metro por

segundo cuadrado.

Unidad de presión Un pascal (Pa) es la presión uniforme que, actuando sobre una

superficie plana de 1 metro cuadrado, ejerce perpendicularmente a

esta superficie una fuerza total de 1 newton.

Unidad de energía, trabajo,

cantidad de calor

Un joule (J) es el trabajo producido por una fuerza de 1 newton,

cuyo punto de aplicación se desplaza 1 metro en la dirección de la

fuerza.

Unidad de potencia, flujo

radiante

Un watt (W) es la potencia que da lugar a una producción de

energía igual a 1 joule por segundo.

Unidad de cantidad de

electricidad, carga eléctrica

Un coulomb (C) es la cantidad de electricidad transportada en 1

segundo por una corriente de intensidad 1 ampere.

Unidad de potencial

eléctrico, fuerza

electromotriz

Un volt (V) es la diferencia de potencial eléctrico que existe entre

dos puntos de un hilo conductor que transporta una corriente de

intensidad constante de 1 ampere cuando la potencia disipada entre

estos puntos es igual a 1 watt.

Unidad de resistencia

eléctrica Un ohm () es la resistencia eléctrica que existe entre dos puntos

de un conductor cuando una diferencia de potencial constante de 1

volt aplicada entre estos dos puntos produce, en dicho conductor,

una corriente de intensidad 1 ampere, cuando no haya fuerza

electromotriz en el conductor.

Page 21: Modulo dinamica

Ing. Gustavo Jiménez

5

Unidad de capacidad

eléctrica

Un farad (F) es la capacidad de un condensador eléctrico que entre

sus armaduras aparece una diferencia de potencial eléctrico de 1

volt, cuando está cargado con una cantidad de electricidad igual a 1

coulomb.

Unidad de flujo magnético Un weber (Wb) es el flujo magnético que, al atravesar un circuito

de una sola espira produce en la misma una fuerza electromotriz de

1 volt si se anula dicho flujo en un segundo por decaimiento

uniforme.

Unidad de inducción

magnética

Una tesla (T) es la inducción magnética uniforme que, repartida

normalmente sobre una superficie de 1 metro cuadrado, produce a

través de esta superficie un flujo magnético total de 1 weber.

Unidad de inductancia Un henry (H) es la inductancia eléctrica de un circuito cerrado en

el que se produce una fuerza electromotriz de 1 volt, cuando la

corriente eléctrica que recorre el circuito varía uniformemente a

razón de un ampere por segundo.

Unidades SI derivadas expresadas a partir de las que tienen nombres especiales

Magnitud Nombre Símbolo Expresión en

unidades SI

básicas

Viscosidad dinámica pascal segundo Pa·s m-1

·kg·s-1

Entropía joule por kelvin J/K m2·kg·s

-2·K

-1

Capacidad térmica másica joule por kilogramo

kelvin

J/(kg·K) m2·s

-2·K

-1

Conductividad térmica watt por metro kelvin W/(m·K) m·kg·s-3

·K-1

Intensidad del campo

eléctrico

volt por metro V/m m·kg·s-3

·A-1

Unidad de viscosidad dinámica

Un pascal segundo (Pa·s) es la viscosidad dinámica de un

fluido homogéneo, en el cual, el movimiento rectilíneo y

uniforme de una superficie plana de 1 metro cuadrado, da

lugar a una fuerza retardatriz de 1 newton, cuando hay una

diferencia de velocidad de 1 metro por segundo entre dos

planos paralelos separados por 1 metro de distancia.

Unidad de entropía Un joule por kelvin (J/K) es el aumento de entropía de un

sistema que recibe una cantidad de calor de 1 joule, a la

temperatura termodinámica constante de 1 kelvin, siempre

Page 22: Modulo dinamica

Ing. Gustavo Jiménez

6

que en el sistema no tenga lugar ninguna transformación

irreversible.

Unidad de capacidad térmica

másica

Un joule por kilogramo kelvin (J/(kg·K) es la capacidad

térmica másica de un cuerpo homogéneo de una masa de 1

kilogramo, en el que el aporte de una cantidad de calor de un

joule, produce una elevación de temperatura termodinámica

de 1 kelvin.

Unidad de conductividad térmica Un watt por metro kelvin W/(m·K) es la conductividad

térmica de un cuerpo homogéneo isótropo, en la que una

diferencia de temperatura de 1 kelvin entre dos planos

paralelos, de área 1 metro cuadrado y distantes 1 metro,

produce entre estos planos un flujo térmico de 1 watt.

Unidad de intensidad del campo

eléctrico

Un volt por metro (V/m) es la intensidad de un campo

eléctrico, que ejerce una fuerza de 1 newton sobre un cuerpo

cargado con una cantidad de electricidad de 1 coulomb.

Nombres y símbolos especiales de múltiplos y submúltiplos decimales de unidades SI autorizados

Magnitud Nombre Símbolo Relación

Volumen litro l o L 1 dm3=10

-3 m

3

Masa tonelada t 103 kg

Presión y

tensión

bar bar 105 Pa

Unidades definidas a partir de las unidades SI, pero que no son múltiplos o submúltiplos decimales de dichas unidades.

Magnitud Nombre Símbolo Relación

Ángulo plano vuelta 1 vuelta= 2 rad

grado º (/180) rad

minuto de ángulo ' ( /10800) rad

segundo de ángulo " ( /648000) rad

Tiempo minuto min 60 s

hora h 3600 s

día d 86400 s

Page 23: Modulo dinamica

Ing. Gustavo Jiménez

7

Unidades en uso con el Sistema Internacional cuyo valor en unidades SI se ha obtenido experimentalmente.

Magnitud Nombre Símbolo Valor en unidades SI

Masa unidad de masa atómica u 1,6605402 10-27

kg

Energía electronvolt eV 1,60217733 10-19

J

Múltiplos y submúltiplos decimales

Factor Prefijo Símbolo Factor Prefijo Símbolo

1024

yotta Y 10-1

deci d

1021

zeta Z 10-2

centi c

1018

exa E 10-3

mili m

1015

peta P 10-6

micro μ

1012

tera T 10-9

nano n

109 giga G 10

-12 pico p

106 mega M 10

-15 femto f

103 kilo k 10

-18 atto a

102 hecto h 10

-21 zepto z

101 deca da 10

-24 yocto y

Unidades con nombre especial [editar]

Hertz o hercio (Hz). Unidad de frecuencia.

Definición: un hercio es un ciclo por segundo.

Newton (N). Unidad de fuerza.

Definición: un newton es la fuerza necesaria para proporcionar una aceleración de 1 m/s2 a un

objeto cuya masa sea de 1 kg.

Pascal (Pa). Unidad de presión.

Definición: un pascal es la presión normal (perpendicular) que una fuerza de un newton ejerce sobre

una superficie de un metro cuadrado.

Page 24: Modulo dinamica

Ing. Gustavo Jiménez

8

Vatio (W). Unidad de potencia.

Definición: un vatio es la potencia que genera una energía de un julio por segundo. En términos

eléctricos, un vatio es la potencia producida por una diferencia de potencial de un voltio y

una corriente eléctrica de un amperio.

Culombio (C). Unidad de carga eléctrica.

Definición: un culombio es la cantidad de electricidad que una corriente de

un amperio de intensidad transporta durante un segundo.

Voltio (V). Unidad de potencial eléctrico y fuerza electromotriz.

Definición: diferencia de potencial a lo largo de un conductor cuando una corriente de

una intensidad de un amperio utiliza un vatiode potencia.

Ohmio (Ω). Unidad de resistencia eléctrica.

Definición: un ohmio es la resistencia eléctrica existente entre dos puntos de un conductor cuando -

en ausencia de fuerza electromotriz en éste- una diferencia de potencial constante de un voltio

aplicada entre esos dos puntos genera una corriente de intensidad de un amperio.

Siemens (S). Unidad de conductancia eléctrica.

Definición: un siemens es la conductancia eléctrica existente entre dos puntos de un conductor de

un ohmio de resistencia.

Faradio (F). Unidad de capacidad eléctrica.

Definición: un faradio es la capacidad de un conductor que con la carga estática de un culombio

adquiere una diferencia de potencial de un voltio.

Tesla (T). Unidad de densidad de flujo magnético e intensidad de campo magnético.

Definición: un tesla es una inducción magnética uniforme que, repartida normalmente sobre una

superficie de un metro cuadrado, a través de esta superficie produce un flujo magnético de

un weber.

Page 25: Modulo dinamica

Ing. Gustavo Jiménez

9

Weber (Wb). Unidad de flujo magnético.

Definición: un weber es el flujo magnético que al atravesar un circuito uniespiral genera en éste una

fuerza electromotriz de un voltio si se anula dicho flujo en un segundo por decrecimiento uniforme.

Henrio (H). Unidad de inductancia.

Definición: un henrio es la inductancia de un circuito en el que una corriente que varía a razón de

un amperio por segundo da como resultado una fuerza electromotriz autoinducida de un voltio.

Radián (rad). Unidad de ángulo plano.

Definición: un radián es el ángulo que limita un arco de circunferencia cuya longitud es igual

al radio de la circunferencia.

Estereorradián (sr). Unidad de ángulo sólido.

Definición: un estereorradián es el ángulo sólido que, teniendo su vértice en el centro de una esfera,

sobre la superficie de ésta cubre un área igual a la de un cuadrado cuyo lado equivalga al radio de

la esfera.

Lumen (lm). Unidad de flujo luminoso.

Definición: un lumen es el flujo luminoso producido por una candela de intensidad luminosa,

repartida uniformemente en un estereorradián.

Lux (lx). Unidad de iluminancia.

Definición: un lux es la iluminancia generada por un lumen de flujo luminoso, en una superficie

equivalente a la de un cuadrado de un metro por lado.

Becquerelio (Bq). Unidad de actividad radiactiva.

Definición: un becquerel es una desintegración nuclear por segundo.

Page 26: Modulo dinamica

Ing. Gustavo Jiménez

10

Gray (Gy). Unidad de dosis de radiación absorbida.

Definición: un gray es la absorción de un julio de energía ionizante por un kilogramo de material

irradiado.

Sievert (Sv). Unidad de dosis de radiación absorbida equivalente.

Definición: un sievert es la absorción de un julio de energía ionizante por un kilogramo de tejido vivo

irradiado.

Katal (kat). Unidad de actividad catalítica.

Definición: un katal es la actividad catalítica responsable de la transformación de un mol de

compuesto por segundo.

Grado Celsius (°C). Unidad de temperatura termodinámica.

Definición: la magnitud de un grado Celsius (1 °C) es igual a la de un kelvin.

, donde t es la temperatura en grados Celsius, y T significa kélvines.

De escala Fahrenheit a escala Kelvin:

De escala Kelvin a escala Fahrenheit:

Unidades sin nombre especial

En principio, las unidades básicas se pueden combinar libremente para generar otras unidades. A

continuación se incluyen las importantes.

Unidad de área.

Definición: un metro cuadrado es el área equivalente a la de un cuadrado de un metro por lado.

Unidad de volumen.

Definición: un metro cúbico es el volumen equivalente al de un cubo de un metro por lado.

Page 27: Modulo dinamica

Ing. Gustavo Jiménez

11

Unidad de velocidad o de rapidez.

Definición: un metro por segundo es la velocidad de un cuerpo que, con movimiento uniforme, en un

segundo recorre una longitud de un metro.

Unidad de ímpetu lineal o cantidad de movimiento.

Definición: es la cantidad de movimiento de un cuerpo con una masa de un kilogramo que se mueve

a una velocidad instantánea de un metro por segundo.

Unidad de aceleración.

Definición: es el aumento de velocidad regular -que afecta a un objeto- equivalente a un metro por

segundo cada segundo.

Unidad de número de onda.

Definición: es el número de onda de una radiación monocromática cuya longitud de onda es igual a

un metro.

Unidad de velocidad angular.

Definición: es la velocidad de un cuerpo que, con una rotación uniforme alrededor de un eje fijo, en

un segundo gira un radián.

Unidad de aceleración angular.

Definición: es la aceleración angular de un cuerpo sujeto a una rotación uniformemente variada

alrededor de un eje fijo, cuya velocidad angular, en un segundo, varía un radián.

Unidad de momento de fuerza y torque.

Definición: es el momento o torque generado cuando una fuerza de un newton actúa a un metro de

distancia del eje fijo de un objeto e impulsa la rotación de éste.

Unidad de viscosidad dinámica.

Page 28: Modulo dinamica

Ing. Gustavo Jiménez

12

Definición: es la viscosidad dinámica de un fluido homogéneo, en el cual, cuando hay una diferencia

de velocidad de un metro por segundo entre dos planos paralelos separados un metro, el

movimiento rectilíneo y uniforme de una superficie plana de un metro cuadrado provoca una fuerza

retardatriz de un newton.

Unidad de entropía.

Definición: es el aumento de entropía de un sistema que -siempre que en el sistema no ocurra

transformación irreversible alguna- a la temperatura termodinámica constante de un kelvin recibe

una cantidad de calor de un julio.

Unidad de calor específico o capacidad calorífica.

Definición: es la cantidad de calor, expresada en julios, que, en un cuerpo homogéneo de una masa

de un kilogramo, produce una elevación de temperatura termodinámica de un kelvin.

Unidad de conductividad térmica.

Definición: es la conductividad térmica de un cuerpo homogéneo isótropo en la que una diferencia

de temperatura de un kelvin entre dos planos paralelos de un metro cuadrado y distantes un metro,

entre estos planos genera un flujo térmico de un watio.

Unidad de intensidad del campo eléctrico.

Definición: es la intensidad de un campo eléctrico que ejerce una fuerza de un newton sobre un

cuerpo cargado con una cantidad de electricidad de un culombio.

Unidad de rendimiento luminoso.

Definición: es el rendimiento luminoso obtenido de un artefacto que gasta un vatio de potencia y

genera un lumen de flujo luminoso.

Page 29: Modulo dinamica

TEOREMA DEL RESIDUO

Sea P(x) un polinomio cualquiera. Entonces el residuo que se obtiene de dividirP(x) entre el binomio (x - r) es P(r).

TEORÍA DE LAS ECUACIONES

En este tema se va a estudiar de manera breve un poco de la teoría sobre la resolución de ecua-ciones de grado superior a dos. Como se irá analizando sobre la marcha, está bastante restringidoel tema, pues solamente se refiere a ciertas ecuaciones y a ciertas soluciones, no a todas.

Para ello es necesario tener como antecedentes algunos teoremas y la división sintética.

1) TEOREMA DEL RESIDUO: Se utiliza para obtener de manera rápida el residuo de la divisiónde un polinomio entre un binomio (x - r), sin hacer la división.

Ejemplo 1: Encontrar el residuo que se obtiene al dividir 2x 4 - 5x 3 + 11x 2 - 20x + 5 entre x - 2.

Solución: En este caso, P(x) = 2x 4 - 5x 3 + 11x 2 - 20x + 5 y (x - r) = (x - 2) , de donde se deduce quer = 2. Así que el residuo es

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 1

Page 30: Modulo dinamica

P(2) = 2(2)4 - 5(2)3 + 11(2)2 - 20(2) + 5P(2) = 1

El residuo es uno.

COMPROBACIÓN: 3 2

4 3 2

4 3

3 2

3 2

2

2

2 9 2

2 2 5 11 20 52 4

112

9 209 18

2 52 4

1

x x x

x x x x xx x

x xx x

x xx x

xx

− + −

− − + − +

− +

− +

− +

− +−

+

Ejemplo 2: Hallar el residuo que se obtiene al dividir 5x 4 + 6x 3 - 10x 2 + 20x + 15 entre x + 3.

Solución: En este caso, P(x) = 5x 4 + 6x 3 - 10x 2 + 20x + 15 y (x - r) = (x + 3) , de donde se deduce quer = - 3. Así que el residuo es

P(- 3) = 5(- 3)4 + 6(- 3)3 - 10(- 3)2 + 20(- 3) + 15P(- 3) = 108

El residuo es 108.

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 2

Page 31: Modulo dinamica

TEOREMA DEL FACTOR Y SU RECIPROCO

Sea P(x) un polinomio cualquiera. Si r es raíz de la ecuación racional enteraP(x) = 0, entonces (x - r) es factor de P(x).

Si (x - r) es factor de P(x) = 0, entonces r es raíz de la ecuación racional enteraP(x) = 0.

EJERCICIO 19

Encontrar el residuo que se obtiene de las siguientes divisiones, aplicando el teorema del residuo.

1) (x4 + x3 - 7x2 - 5x + 2) ÷ (x - 5)2) (4x5 - 8x3 + 12x - 11) ÷ (x + 1)3) (2x4 - 12x3 + x2 + 21x - 34) ÷ (x - 6)4) (6x6 - 2x3 - 17x2 - 11) ÷ (x + 4)5) (3x4 + 2x3 + 17x2 - 55x - 21) ÷ (x - 9)6) (2x5 - 7x3 - 11x + 31) ÷ (x + 9)7) (7x4 - 10x3 - 3x2 + 29x - 44) ÷ (x - 10)8) (x6 + x5 - 7x3 - 7x2 - 31) ÷ (x + 8)

2) TEOREMA DEL FACTOR Y SU RECIPROCO:

Se trata de un teorema cuya demostración o veracidad es muy directa y obvia. De hecho, sufundamentación es el equivalente al inverso de la solución de una ecuación por el método defactorización.

Por ejemplo, para resolver la ecuación x 2 + 3x - 4 = 0 por el método de factorización se siguenestos pasos:

1) x 2 + 3x - 4 = 02) Se factoriza: (x - 1)(x + 4) = 03) Se razona de la siguiente forma: Dos cantidades multiplicadas entre sí dan cero solamente

que por lo menos una de ellas sea cero. Dos cantidades diferentes de cero multiplicadasentre sí nunca dan cero.

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 3

Page 32: Modulo dinamica

Lo anterior implica que si el factor (x - 1) es igual a cero, la igualdad propuesta en laecuación (x - 1)(x + 4) = 0 es cierta, porque cero por lo que sea da cero. Por lo tanto elsiguiente paso es igualar a cero dicho factor:

x - 1 = 0de donde x1 = 1

De igual forma, si el factor (x + 4) es igual a cero, la igualdad propuesta en la ecuación(x - 1)(x + 4) = 0 es cierta. Por lo tanto el siguiente paso es igualar a cero dicho factor:

x + 4 = 0de donde x2 = - 4

El proceso inverso sería:

1) Si x2 = - 4 , se afirma la existencia de una raíz para la ecuación x 2 + 3x - 4 = 0.

2) Se construye con esa raíz el factor (x + 4), a partir de que si x + 4 = 0 , la igualdad o ecua-ción original es igual a cero también.

Ejemplo 3: Demostrar que (x + 1) es factor del polinomio x 3 + 3x 2 + 4x + 2.

Solución: Si (x + 1) es factor del polinomio, implica que x = - 1 es raíz de la ecuación racional enterax 3 + 3x 2 + 4x + 2 = 0 ; y si x = - 1 es raíz de dicha ecuación, entonces el residuo de la divi-sión de x 3 + 3x 2 + 4x + 2 entre (x + 1) debe ser cero, lo cual se puede probar con el teoremadel residuo:

P(x) = x 3 + 3x 2 + 4x + 2P(- 1) = (- 1)3 + 3(- 1)2 + 4(- 1) + 2P(- 1) = - 1 + 3 - 4 + 2P(- 1) = 0

Es decir, el residuo es cero y por lo tanto (x + 1) es factor.

DIVISION SINTETICA

Es un proceso mediante el cual se puede reducir considerablemente el trabajo realizado paraencontrar el cociente y el residuo que resultan al dividir un polinomio P(x) entre (x - r).

Se deja como ejercicio de clase deducir los pasos de reducción del proceso hasta llegar a laregla misma de la división sintética, la cual es:

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 4

Page 33: Modulo dinamica

REGLA DE LA DIVISIÓN SINTÉTICA

Para dividir el polinomio P(x) entre x - r :

1) Se escriben en el primer renglón los coeficientes de P(x) en el mismo ordenque las potencias decrecientes de x. Si falta una de éstas se escribe cero enel lugar que le corresponde.

2) Se sustituye el divisor (x - r) por + r y se escribe también en el primer ren-glón, a la derecha, separado por el signo .

3) Se vuelve a escribir debajo de él mismo y en la tercera línea, el coeficientede la mayor potencia de x (el de la izquierda) y se multiplica por r . El pro-ducto obtenido se coloca en la segunda línea inmediatamente debajo delcoeficiente de x que sigue en orden, se suma con éste y el resultado se escri-be en la tercera línea. La suma obtenida se multiplica por r y el productoobtenido se coloca en la segunda línea debajo del coeficiente que sigue enorden y se suma con el mismo. Se continúa con el procedimiento hasta obte-ner un producto que se suma al término constante.

4) El último número de la tercera línea es el residuo y los otros, leídos de iz-quierda a derecha, son los coeficientes del cociente, cuyo grado es siempremenor en uno que el grado de P(x).

Ejemplo 4: Obtener el cociente y el residuo, empleando la división sintética, de la división del polinomio P(x) = 4x 3 + 2x 2 + 9x - 11 entre (x + 2) .

Solución: En este caso, r = - 2 .

PASO 1: Se escriben en la primera línea los coeficientes del polinomio P(x). A su derecha,

en la misma línea y separado por , se escribe el valor de + r . Se deja libre por el momen-to el segundo y el tercer renglones, separándolos con una línea, como se muestra a continua-ción:

+ r

( )coeficientes de 4 2 9 11 2

segundo renglón

tercer renglón

P x + + + − −

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 5

Page 34: Modulo dinamica

PASO 2: Se reproduce el primer coeficiente en el tercer renglón y abajo de él mismo:

4 2 9 11 2

4

+ + − −

PASO 3: Se multiplica el coeficiente 4 escrito en el tercer renglón por - 2 y el producto seescribe en el segundo renglón, exactamente abajo del siguiente coeficiente del polinomioP(x):

4 2 9 11 2

8

4

+ + − −

se suman

PASO 4: Se suman y el resultado se escribe abajo en el tercer renglón:

4 2 9 11 2

8

4 6

+ + − −

PASO 5: Se multiplica el - 6 obtenido en el paso anterior por - 2 y se repite todo el procesohasta terminar con todos los coeficientes de P(x):

residuo

coeficientesdel cociente

4 2 9 11 2

8 12 42

4 6 21 53

+ + − −

− + −

− + −

El último número de la derecha obtenido en el tercer renglón es el residuo de la división. Losotros números del tercer renglón, leídos de izquierda a derecha son los coeficientes del co-ciente, es decir, el cociente es 4x 2 - 6x + 21 y el residuo es - 53 .

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 6

Page 35: Modulo dinamica

Ejemplo 5: Obtener el cociente y el residuo, empleando la división sintética, de la división del polinomio P(x) = 5x 4 - 63x 2 + 8x - 11 entre (x - 4) .

Solución: En este caso, r = + 4 .

Mecanizando el proceso, lo que se obtiene se muestra a continuación:

residuo

coeficientesdel cociente

5 0 63 8 11 4

20 80 68 304

5 20 17 76 293

+ − + −

+ + + +

+ + + +

El cociente es: 5x 3 + 20x 2 + 17x + 76el residuo es: + 293

EJERCICIO 20

Encontrar el cociente y el residuo que se obtiene de las siguientes divisiones, aplicando división sintética.

1) (x4 + x3 - 7x2 - 5x + 2) ÷ (x - 5)2) (4x5 - 8x3 + 12x - 11) ÷ (x + 1)3) (2x4 - 12x3 + x2 + 21x - 34) ÷ (x - 6)4) (6x6 - 2x3 - 17x2 - 11) ÷ (x + 4)5) (3x4 + 2x3 + 17x2 - 55x - 21) ÷ (x - 9)6) (2x5 - 7x3 - 11x + 31) ÷ (x + 9)7) (7x4 - 10x3 - 3x2 + 29x - 44) ÷ (x - 10)8) (x6 + x5 - 7x3 - 7x2 - 31) ÷ (x + 8)

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 7

Page 36: Modulo dinamica

RAICES RACIONALES DE UNA ECUACION RACIONAL ENTERA

El estudio de las ecuaciones al que se refiere este tema, como se dijo al inicio, está bastanterestringido, ya que solamente se refiere a ciertas ecuaciones y a ciertas soluciones, no a todas. Unade las limitantes es que las soluciones que se pueden encontrar por el método que un poco másadelante se va a detallar solamente son racionales. El presente método no localiza raíces que seannúmeros irracionales o complejos.

Para establecer los pasos a seguir en la localización de raíces en una ecuación polinomial, esnecesario introducir dos conceptos.

Sea la ecuación polinomial , es decir, a0 repre-1 20 1 2 1... 0n n n

n na x a x a x a x a− −−+ + + + + =

senta el coeficiente de la mayor potencia de x y an representa el coeficiente del término indepen-diente. Entonces se tiene que:

1) POSIBLES RAÍCES: Las posibles raíces racionales de una ecuación racional entera o polino-mial tienen como numerador a un factor de an y como denominador a un factor de a0 .

Significa que si la ecuación tiene raíces racionales, serán algunas de las que se enlisten comoposibles, ninguna otra.

Ejemplo 1: Enlistar las posibles raíces de la ecuación 2x 4 - 5x 3 - 13x 2 + x + 6 = 0 .

Solución: Factores del numerador: ± 1 , ± 2 , ± 3 y ± 6 (factores de 6).Factores del denominador: ± 1 y ± 2 (factores de 2).

Las posibles raíces son todas las fracciones que se puedan obtener combinando todos losposibles numeradores con todos los posibles denominadores. Son:

± 1 , ± 2 , ± 3 , ± 6 (con denominador 1)

(con denominador 2)1 3,2 2

± ±

Nótese que en los que contienen denominador 2 no aparecen las combinaciones que tienennumerador 2 y 6, ya que equivalen a un entero y tres enteros respectivamente, que ya estabanenlistados.

Ejemplo 2: Enlistar las posibles raíces de la ecuación 6x 4 - 5x 3 - 13x 2 + x + 10 = 0 .

Solución: Factores del numerador: ± 1 , ± 2 , ± 5 y ± 10 (factores de 10).Factores del denominador ± 1 , ± 2 , ± 3 y ± 6 (factores de 6).

Las posibles raíces son todas las fracciones que se puedan obtener combinando todos losposibles numeradores con todos los posibles denominadores. Son:

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 8

Page 37: Modulo dinamica

± 1 , ± 2 , ± 5 , ± 10 (con denominador 1)

(con denominador 2)1 5,2 2

± ±

(con denominador 3)1 2 5 10, , ,3 3 3 3

± ± ± ±

(con denominador 6)1 5,6 6

± ±

Nótese que en los que contienen denominador 2 y denominador 6 no aparecen las combina-ciones que tienen numerador 2 y 10, ya que equivalen a fracciones simplificadas que ya esta-ban enlistados.

2) ECUACION DEGRADADA: La Ecuación degradada es la que se obtiene de igualar a cero elcociente de la división del polinomio P(x) entre (x - r) , donde r es una raíz encontrada.

Se emplea la ecuación degradada una vez obtenida una raíz, en virtud de que, por los teoremasdel residuo y del factor, si r es raíz de la ecuación polinomial P(x) = 0 , significa que (x - r)es un factor del polinomio P(x) , o sea que el residuo de la división de P(x) ÷ (x - r) es iguala cero.

En otras palabras, P(x) = (x - r) Q(x) , en donde Q(x) es el cociente.

Si P(x) = 0 , entonces es lo mismo que (x - r) Q(x) = 0 . Y por el razonamiento del método defactorización de las ecuaciones, si dos cantidades multiplicadas dan cero, implica que por lomenos una de ellas sea cero. Así que se puede hacer Q(x) = 0 para que se cumpla la ecuaciónoriginal.

Ejemplo 1: Hallar la ecuación degradada de la ecuación 5x 4 - 12x 3 + 8x 2 - 11x + 6 = 0 , sabiendo quex = 2 es una raíz.

Solución: Realizando la división de 5x 4 - 12x 3 + 8x 2 - 11x + 6 ÷ (x - 2) , por división sintética se ob-tiene que

El cociente es Q(x) = 5x 3 - 2x 2 + 4x - 3 . Como el residuo es cero, significa que

5x 4 - 12x 3 + 8x 2 - 11x + 6 = (x - 2)(5x 3 - 2x 2 + 4x - 3)

Como está igualada a cero, entonces la ecuación original puede escribirse también como

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 9

Page 38: Modulo dinamica

PASOS GENERALES PARA LOCALIZAR LAS RAÍCES RACIONALES DEUNA ECUACIÓN POLINOMIAL:

1) Se enlistan todas las posibles raíces.

2) Se ensaya por división sintética una a una las posibles raíces, hasta que elresiduo sea cero. Por el teorema del residuo y del factor, ésa será una raíz.

3) Una vez localizada una raíz, se continúa ensayando con la ecuación degrada-da hasta localizar la siguiente raíz de la ecuación.

4) Se continúa así hasta llegar a una ecuación de segundo grado, la que se re-suelve por la fórmula general.

5) Toda posible raíz que haya salido que no es raíz en la división sintética, tam-poco lo será en la ecuación degradada; en cambio, cualquier raíz que ya hayasalido, puede volver a serlo en la ecuación degradada.

(x - 2)(5x 3 - 2x 2 + 4x - 3) = 0

De manera que por el razonamiento del método de factorización de las ecuaciones, si doscosas multiplicadas dan cero implica que al menos una de ellas sea cero. Si el primer factores igual a cero, es decir que x - 2 = 0 , se obtiene la raíz propuesta desde el enunciado; perotambién el segundo factor puede ser igual a cero y de allí salen las demás raíces.

Así que la ecuación degradada es

5x 3 - 2x 2 + 4x - 3 = 0

PROCESO GENERAL

De manera muy general, sin manejar todavía algunos detalles, el proceso para localizar lasraíces racionales de una ecuación polinomial es el siguiente:

Ejemplo 1: Localizar las raíces racionales de la ecuación 2x 3 + 3x 2 - 8x - 12 = 0 .

Solución: Las posibles raíces son

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 (con denominador 1)

(con denominador 2)1 3,2 2

± ±

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 10

Page 39: Modulo dinamica

Se ensayan por división sintética una por una las posibles raíces, hasta que el residuo seaigual a cero. Haciéndolo, por ejemplo, con + 1 :

Como el residuo es - 15 , es decir, no es igual a cero, significa que x = 1 no es raíz de laecuación. Debe ensayarse con otra de las posibles raíces, por ejemplo con 2:

Como el residuo es cero, significa que x = 2 es una raíz y además (x - 2) es un factor de. El otro factor es el cociente obtenido en la división, el cual es3 22 3 8 12x x x+ − −

. Es decir,22 7 6x x+ +

2x 3 + 3x 2 - 8x - 12 = (x - 2)(2x 2 + 7x + 6) = 0

por lo que se puede afirmar que 2x 2 + 7x + 6 = 0 (que es igual a cero). Esta es la ecuacióndegradada y a partir de este momento con ella se seguirá trabajando. Pero como ya es unaecuación de segundo grado, ya se puede utilizar la fórmula general:

2 42

b b acxa

− ± −=

27 7 4 (2)(6)2(2)

x− ± −

=

7 49 484

x − ± −=

7 14

x − ±=

23

2x −

=

x3 = - 2

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 11

Page 40: Modulo dinamica

Las tres raíces son: x1 = 2 ; ; x3 = - 2232

x = −

Nótese que las tres raíces pertenecen al enlistado inicial que se hizo de las posibles raíces.

Ejemplo 2: Localizar las raíces racionales de la ecuación 6x 4 - 5x 3 - 39x 2 - 4x + 12 = 0 .

Solución: Las posibles raíces son

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 (con denominador 1)

(con denominador 2)1 3,2 2

± ±

(con denominador 3)1 2 4, ,3 3 3

± ± ±

(con denominador 6)16

±

Se ensayan por división sintética una por una las posibles raíces, hasta que el residuo seaigual a cero. Haciéndolo, por ejemplo, con + 1 :

Como el residuo es - 30 , es decir, no es igual a cero, significa que x = 1 no es raíz de laecuación. Debe ensayarse con otra de las posibles raíces, por ejemplo con 3:

Como el residuo es cero, significa que x = 3 es una raíz y además (x - 3) es un factor de. El otro factor es el cociente obtenido en la división, el cual4 3 26 5 39 4 12x x x x− − − +

es 6x 3 + 13x 2 - 4 . Es decir,

6x 4 - 5x 3 - 39x 2 - 4x + 12 = (x - 3)(6x 3 + 13x 2 - 4) = 0

por lo que se puede afirmar que 6x 3 + 13x 2 - 4 = 0 (que es igual a cero). Esta es la ecuacióndegradada y a partir de este momento con ella se seguirá trabajando. Se vuelven a realizarensayos por división sintética, en donde hay que considerar que x = 1 ya no puede ser raíz

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 12

Page 41: Modulo dinamica

porque no lo fue anteriormente, en cambio, x = 3 sí puede volver a serlo. Ensayando porejemplo con - 1 :

Como el residuo es + 3 , es decir, no es igual a cero, significa que x = - 1 no es raíz de laecuación. Debe ensayarse con otra de las posibles raíces, por ejemplo con - 2:

Como el residuo es cero, significa que x = - 2 es una raíz y además (x + 2) es un factor de. El otro factor es el cociente obtenido en la división, el cual es3 26 13 4x x+ −

. Es decir,26 2x x+ −

6x 3 + 13x 2 - 4 = (x + 2)(6x 2 + x - 2) = 0

por lo que se puede afirmar que 6x 2 + x - 2 = 0 (que es igual a cero). Esta es la ecuacióndegradada y a partir de este momento con ella se seguirá trabajando. Pero como ya es unaecuación de segundo grado, ya se puede utilizar la fórmula general:

2 42

b b acxa

− ± −=

21 1 4(6)( 2)2(6)

x− ± − −

=

1 712

x − ±=

323

x = −

412

x =

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 13

Page 42: Modulo dinamica

Las cuatro raíces son: x1 = 3 ; x2 = - 2 ; ; 323

x = − 412

x =

Ejemplo 3: Localizar las raíces racionales de la ecuación 9x 4 - 30x 3 + 13x 2 + 20x + 4 = 0 .

Solución: Las posibles raíces son

± 1 , ± 2 , ± 4 (con denominador 1)

(con denominador 3)1 2 4, ,3 3 3

± ± ±

(con denominador 9)1 2 4, ,9 9 9

± ± ±

Se ensayan por división sintética una por una las posibles raíces, hasta que el residuo seaigual a cero. Haciéndolo, por ejemplo, con + 2 :

Como el residuo es cero, significa que x = 2 es una raíz y además (x - 2) es un factor de. El otro factor es el cociente obtenido en la división, el cual4 3 29 30 13 20 4x x x x− + + +

es 9x 3 - 12x 2 - 11x - 2 . Es decir,

9x 4 - 30x 3 + 13x 2 + 20x + 4 = (x - 2)(9x 3 - 12x 2 - 11x - 2) = 0

por lo que se puede afirmar que 9x 3 - 12x 2 - 11x - 2 = 0 (que es igual a cero). Esta es laecuación degradada y recordar que a partir de este momento con ella se seguirá trabajando.Se vuelven a realizar ensayos por división sintética, en donde hay que considerar que 2x =sí puede volver a ser raíz. Ensayando entonces de nuevo con 2 :

Como el residuo es cero, significa que x = 2 es una raíz y además (x - 2) es un factor de

. El otro factor es el cociente . Es decir,3 29 12 11 2x x x− − − 29 6 1x x+ +

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 14

Page 43: Modulo dinamica

9x 3 - 12x 2 - 11x - 2 = (x - 2)(9x 2 + 6x + 1) = 0

por lo que se puede afirmar que 9x 2 + 6x + 1 = 0 (que es igual a cero). Esta es la ecuacióndegradada y a partir de este momento con ella se seguirá trabajando. Pero como ya es unaecuación de segundo grado, ya se puede utilizar la fórmula general:

2 42

b b acxa

− ± −=

26 6 4 (9) (1)2 (9)

x− ± −

=

6 36 3618

x− ± −

=

6 018

x − ±=

36 018

x − +=

313

x = −

46 018

x − −=

413

x = −

Las cuatro raíces son: x1 = 2 ; x2 = 2 ; ; 313

x = − 413

x = −

Nótese que se trata de un caso de raíces repetidas.

Ejemplo 4: Localizar las raíces racionales de la ecuación 9x 3 - 24x 2 + 14x - 4 = 0 .

solución: Las posibles raíces son

± 1 , ± 2 , ± 4 (con denominador 1)

(con denominador 3)1 2 4, ,3 3 3

± ± ±

(con denominador 9)1 2 4, ,9 9 9

± ± ±

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 15

Page 44: Modulo dinamica

Se ensayan por división sintética una por una las posibles raíces, hasta que el residuo seaigual a cero. Haciéndolo, por ejemplo, con + 2 :

Como el residuo es cero, significa que x = 2 es una raíz y además (x - 2) es un factor de. El otro factor es el cociente obtenido en la división, el cual es3 29 24 14 4x x x− + −

. Es decir,29 6 2x x− +

9x 3 - 24x 2 + 14x - 4 = (x - 2)(9x 2 - 6x + 2) = 0

por lo que se puede afirmar que 9x 2 - 6x + 2 = 0 (que es igual a cero). Esta es la ecuacióndegradada y a partir de este momento con ella se seguirá trabajando. Pero como ya es unaecuación de segundo grado, ya se puede utilizar la fórmula general:

2 42

b b acxa

− ± −=

26 6 4 (9) (2)2 (9)

x± −

=

6 3618

x± −

=

Como la raíz cuadrada es negativa, las raíces de la ecuación serán complejas. De manera quepor lo visto en el tema 5 de números complejos, se tiene que:

6 36 118

x± −

=

6 618

ix ±=

( )6 118

ix

±=

13

ix ±=

1 13 3

x i= ±

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 16

Page 45: Modulo dinamica

21 13 3

x i= +

31 13 3

x i= −

Las tres raíces son: x1 = 2

21 13 3

x i= +

31 13 3

x i= −

Nótese que la primera raíz pertenece al enlistado inicial que se hizo de las posibles raíces,las otras dos no, ya que son complejas y realmente no se obtuvieron por este método, sinopor la fórmula general. Conviene recordar que este método de raíces racionales solamenteproporciona soluciones en el campo de los números racionales, es decir, reales, pero no com-plejas.

COTAS

Como se puede ver, el trabajo de calcular las raíces racionales de una ecuación polinomial esbastante laborioso. Con la intención de reducir un poco ese trabajo, algunos Matemáticos se handado a la tarea de investigar la manera de "cercar" lo más posible las raíces, que no es otra cosaque tratar de eliminar de la lista de posibles raíces las más que se puedan que no lo sean, paraevitar cálculos inútiles. Las cotas son eso.

Encontrar cotas es definir un rango de valores entre los cuales estén todas las raíces reales deuna ecuación polinomial, de tal manera que toda posible raíz que quede afuera de ese rango, auto-máticamente queda eliminada.

MÉTODO DE LA RAÍZ

Sea la ecuación polinomial con 0 1 1( ) 1 + ... 0n nf x a x a x a x a−= + − + + = 0 0a >y sean

k = Diferencia entre el grado n de la ecuación y el exponente de la máxima potenciade x que tenga coeficiente negativo.

G = Máximo valor absoluto de los coeficientes negativos de la ecuación f(x).U = Cota superior.L = Cota inferior.

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 17

Page 46: Modulo dinamica

Entonces una cota superior U r es

0

1 kr

GUa

= +

La cota inferior se obtiene repitiendo el proceso anterior con la ecuación f(- x) = 0 , dondetambién debe cumplirse que a0 > 0 . Si U 'r es la cota superior de f(- x) = 0 , entonces la cotainferior de f(x) = 0 es L r = - U 'r .

MÉTODO DE LAS FRACCIONES

Se construyen todas las fracciones posibles que tengan por numerador respectivamente el valorabsoluto de cada coeficiente negativo de f(x) = 0 y por denominador la suma de todos los coefi-cientes positivos que lo preceden. Agréguese 1 a la mayor fracción así obtenida y ésa será cotasuperior U f .

La cota inferior se obtiene repitiendo el proceso anterior con la ecuación f(- x) = 0 , dondetambién debe cumplirse que a0 > 0 . Si U'f es la cota superior de f(- x) = 0 , entonces la cota infe-rior de f(x) = 0 es Lf = - U'f .

A veces, pero no siempre, coinciden las cotas obtenidas por un método con las del otro. Cuandono coinciden deben seleccionarse las mejores cotas.

Ejemplo 1: Hallar las mejores cotas para la ecuación x 4 - 14x 3 + 51x 2 - 14x - 80 = 0 .

Solución: Haciéndolo por el método de la raíz:

En este caso se tiene:

f(x) = x 4 - 14x 3 + 51x 2 - 14x - 80a 0 = 1n = 4k = 4 - 3 = 1G = 80

sustituyendo en la fórmula

0

1 kr

GUa

= +

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 18

Page 47: Modulo dinamica

1 8011rU = +

U r = 1 + 80U r = 81

Para obtener la cota inferior, se construye la ecuación f(- x) = 0 , que no es otra cosa quesustituir la x por - x en la ecuación original. Haciéndolo:

f(- x) = (- x)4 - 14(- x)3 + 51(- x)2 - 14(- x) - 80 = 0f(- x) = x 4 + 14x 3 + 51x 2 + 14x - 80 = 0

y repitiendo el procedimiento de cota superior, ahora con

a 0 = 1n = 4k = 4 - 0 = 4G = 80

sustituyendo en la fórmula

0

' 1 kr

GUa

= +

4 80' 11rU = +

U'r = 1 + 2.990697562U'r = 3.990697562

De modo que la cota inferior para f(x) = 0 es

Lr = - 3.990697562

Haciéndolo ahora por el método de las fracciones. Las fracciones que se pueden construirtomando como numerador cada coeficiente negativo (en valor absoluto) y como denomina-dor la suma de los coeficientes positivos que le anteceden, son

1 4 1 4 8 0, ,1 1 5 1 1 5 1+ +

La mayor fracción así obtenida es . 141

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 19

Page 48: Modulo dinamica

Entonces una cota superior es dicha fracción más uno, es decir

U f = 1 + 14 = 15U f = 15

Para obtener la cota inferior, se construye la ecuación f(- x) = 0 , que no es otra cosa quesustituir la x por - x en la ecuación original. Haciéndolo:

f(- x) = (- x)4 - 14(- x)3 + 51(- x)2 - 14(- x) - 80 = 0f(- x) = x 4 + 14x 3 + 51x 2 + 14x - 80 = 0

y repitiendo el procedimiento de cota superior, se construyen ahora las fracciones

8 0 8 01 1 4 5 1 1 4 8 0

=+ + +

La mayor fracción así obtenida, por ser la única, es . Entonces una cota superior para8080

f(- x) = 0 es dicha fracción más uno, es decir

U 'f = 1 + 1 = 2

De modo que la cota inferior para f(x) = 0 es

L r = - 2

Lo que resta es comparar las cotas obtenidas por uno y otro método y seleccionar las mejo-res.

MÉTODO DE LA RAÍZ MÉTODO DE LAS FRACCIONES

U r = 81

L r = - 3.99069

U f = 15

L f = - 2

Las mejores cotas son

U = 15L = - 2

lo que significa que las raíces reales de la ecuación x 4 - 14x 3 + 51x 2 - 14x - 80 = 0 estánentre - 2 y 15 .

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 20

Page 49: Modulo dinamica

Ejemplo 2: Hallar las mejores cotas para la ecuación 2x 5 + x 4 - 11x 3 + 25x 2 - 34x - 8 = 0 .

Solución: Haciéndolo por el método de la raíz:

En este caso se tiene:

f(x) = 2x 5 + x 4 - 11x 3 + 25x 2 - 34x - 8a 0 = 2n = 5k = 5 - 3 = 2G = 34

sustituyendo en la fórmula

0

1 kr

GUa

= +

2 3412rU = +

U r = 1 + 4.123105626U r = 5.123105626

Para obtener la cota inferior, se construye la ecuación f(- x) = 0 , que no es otra cosa quesustituir la x por - x en la ecuación original. Haciéndolo:

f(- x) = 2(- x)5 + (- x)4 - 11(- x)3 + 25(- x)2 - 34(- x) - 8 = 0f(- x) = - 2x 5 + x 4 + 11x 3 + 25x 2 + 34x - 8 = 0

Como es necesario que a 0 sea positivo, basta multiplicar por (- 1) toda la ecuación, o lo quees lo mismo, cambiarle de signo, aplicando la ley uniforme o de las igualdades. Haciéndoloresulta:

2x 5 - x 4 - 11x 3 - 25x 2 - 34x + 8 = 0

y repitiendo el procedimiento de cota superior, ahora con

a 0 = 2n = 5k = 5 - 4 = 1G = 34

sustituyendo en la fórmula

0

´ 1 kr

GUa

= +

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 21

Page 50: Modulo dinamica

1 34´ 12rU = +

U'r = 1 + 17U'r = 18

De modo que la cota inferior para f(x) = 0 es

Lr = - 18

Haciéndolo ahora por el método de las fracciones. Las fracciones que se pueden construirtomando como numerador cada coeficiente negativo (en valor absoluto) y como denomina-dor la suma de los coeficientes positivos que le anteceden, son

11 34 8, ,2 1 2 1 25 2 1 25+ + + + +

La mayor fracción así obtenida es . 113

3666666= .

Entonces una cota superior es dicha fracción más uno, es decir

Uf = 1 + 3.666666 = 4.66666666Uf = 4.66666666

Para obtener la cota inferior, se construye la ecuación f(- x) = 0 , que no es otra cosa quesustituir la x por - x en la ecuación original. Haciéndolo:

f(- x) = 2(- x)5 + (- x)4 - 11(- x)3 + 25(- x)2 - 34(- x) - 8 = 0f(- x) = - 2x 5 + x 4 + 11x 3 + 25x 2 + 34x - 8 = 0

Como es necesario que a 0 sea positivo, basta multiplicar por (- 1) toda la ecuación, o lo quees lo mismo, cambiarle de signo, aplicando la ley uniforme o de las igualdades. Haciéndoloresulta:

2x 5 - x 4 - 11x 3 - 25x 2 - 34x + 8 = 0

y repitiendo el procedimiento de cota superior, se construyen ahora las fracciones

12

112

252

342

, , ,

La mayor fracción así obtenida es . 342

17=

Entonces una cota superior para f(- x) = 0 es dicha fracción más uno, es decir

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 22

Page 51: Modulo dinamica

U'f = 1 + 17= 18

De modo que la cota inferior para f(x) = 0 es

L r = - 18

Lo que resta es comparar las cotas obtenidas por uno y otro método y seleccionar las mejo-res.

MÉTODO DE LA RAÍZ MÉTODO DE LAS FRACCIONES

U r = 5.123105626

L r = - 18

U f = 4.66666666

L f = - 18

Las mejores cotas son

U = 4.6666666L = - 18

que significa que las raíces reales de la ecuación 2x 5 + x 4 - 11x 3 + 25x 2 - 34x - 8 = 0 estánentre - 18 y 4.666666 .

Algunas consideraciones prácticas son:

1) En los ejemplos anteriores, compárense las ecuaciones f(x) = 0 con los resultados obtenidosal calcular f(- x) = 0 . En la siguiente tabla se muestran:

EN EL PRIMER EJEMPLO EN EL SEGUNDO EJEMPLO

f(x) x 4 - 14x 3 + 51x 2 - 14x - 80 = 0 2x 5 + x 4 - 11x 3 + 25x 2 - 34x - 8 = 0

f( - x ) x 4 + 14x 3 + 51x 2 + 14x - 80 = 0 2x 5 - x 4 - 11x 3 - 25x 2 - 34x + 8 = 0

Se nota que los términos colocados en lugar non, leídos de izquierda a derecha, conservaronsu signo, mientras que los situados en lugar de orden par lo cambiaron. Esa es una regla prácti-ca para obtener f(- x) = 0 .

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 23

Page 52: Modulo dinamica

2) La ecuación f(x) = 0 no tiene raíces positivas si todos los coeficientes son positivos, lo queimplica que todas sus raíces o son cero o son negativas, ya que si alguna fuera positiva, al susti-tuir en la ecuación se obtendría una suma de términos todos positivos y eso jamás daría cero.Por una razón similar, la ecuación f(x) = 0 no tiene raíces negativas si los coeficientes sonalternadamente positivos y negativos, lo que implica que todas sus raíces o son cero o son posi-tivas, ya que al hacer f(- x) = 0 , por lo dicho renglones arriba, solo se cambian de signo lostérminos colocados en 2º, 4º, 6º, etc., lugares que corresponden justamente a los negativos de

, volviéndose así todos positivos.( ) 0f x =

EJERCICIO 21

Encontrar las raíces racionales y/o reales de las siguientes ecuaciones:

1) 2x3 + x2 - 4x - 3 = 02) 6x3 + 19x2 - 19x + 4 = 03) 6x3 + 17x2 + 4x - 12 = 04) 27x3 - 27x2 + 9x - 1 = 05) 4x3 + x2 + 9x - 9 = 06) 3x3 + 8x2 + 19x + 10 = 07) 6x3 - 5x2 + 35x + 6 = 08) 2x4 + 3x3 - 3x2 - 7x - 3 = 09) 6x4 + 31x3 + 19x2 - 34x + 8 = 010) 6x4 + 47x3 + 89x2 + 8x - 60 = 011) 16x4 - 8x3 + 33x2 - 63x + 27 = 012) 9x4 + 30x3 + 73x2 + 68x + 20 = 0

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 24

Page 53: Modulo dinamica

FACTORIZACIÓN

Pueden utilizarse los teoremas vistos al inicio de este tema y los métodos de resolución de ecua-ciones para encontrar la factorización del polinomio f(x) , considerando que si x = c es una raízde la ecuación f(x) = 0 , entonces (x - c) es un factor de dicha ecuación.

Únicamente debe tenerse cuidado de que el producto de los primeros términos de cada factordé exactamente el primer término del polinomio f(x) . En caso de que no sea así significa que hacefalta agregarle el factor numérico que los iguales. Dicho factor numérico debe "distribuirse" entretodos aquellos que contengan fracciones para eliminarlas.

Esa diferencia se debe a que originalmente se tiene el polinomio f(x) sin igualar a cero ni anada, ya que no tiene por qué estarlo, es simplemente un polinomio, es decir, no es ecuación, ypara encontrar sus factores se iguala arbitrariamente a cero para construir una ecuación que coinci-da con el polinomio y aplicarle las técnicas y teoremas vistos. El polinomio original f(x) no sepuede multiplicar por ninguna cantidad porque se altera, ya que no está igualado a nada, en cambiola ecuación f(x) = 0 sí se puede multiplicar aplicando la ley uniforme o ley de las igualdades.

Ejemplo 1: Factorizar 6x 3 - 29x 2 - 62x + 120 .

Solución: Nótese que el enunciado no hace referencia a ninguna ecuación, simplemente al polinomio6x 3 - 29x 2 - 62x + 120 . No es una igualdad, simplemente es una expresión algebraica.

El procedimiento para factorizar es tratar a f(x) como ecuación, es decir, igualándola a ceroy aplicándole todos los conceptos antes vistos.

Así que considérese la ecuación 6x 3 - 29x 2 - 62x + 120 = 0 .

Las cotas son U = 11.33 y L = - 4.42 ; se deja como ejercicio al alumno que las obtengaaplicando los métodos de la raíz y de las fracciones vistas en las páginas 189 y 190.

Las posibles raíces, considerando las cotas, son:

± 1 ; ± 2 ; ± 3 ; ± 4 ; 5 ; 6 ; 8 ; 10

± ± ± +12

32

52

152

, , ,

± ± ± ± ± ± +13

23

43

53

83

103

203

, , , , , ,

± ±16

56

,

Luego de ensayar con algunos valores se llega a

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 25

Page 54: Modulo dinamica

La primera raíz de la ecuación es x 1 = 6 .

De la ecuación degradada 6x 2 + 7x - 20 = 0 , se obtiene que

( ) ( )( )

27 7 4 6 202 6

x− ± − −

=

7 49 48012

x− ± +

=

7 2312

x − ±=

243

x =

352

x = −

Las raíces de la ecuación son

x 1 = 6

243

x =

352

x = −

Por el teorema de la raíz, los factores de la ecuación son

( ) 4 56 03 2

x x x⎡ ⎤ ⎡ ⎤− − + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

que es equivalente a 6x 3 - 29x 2 - 62x + 120 = 0 .

Sin embargo (no son iguales),

( )3 2 4 56 29 62 120 6 03 2

x x x x x x⎡ ⎤ ⎡ ⎤− − + ≠ − − + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 26

Page 55: Modulo dinamica

Puede comprobarse fácilmente que no son iguales ya que si multiplican los primeros térmi-nos de los tres factores, se obtiene x 3

, pero no 6x 3 como está en la ecuación equivalente.

Lo mismo puede hacerse con los términos independientes, en donde si se multiplican

( ) 4 563 2

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

no se obtiene + 120 que es el término independiente de la otra expresión.

Debe tenerse mucho cuidado y entenderse que las dos ecuaciones anteriores, la factorizaday la no factorizada, son equivalentes porque al estar igualadas a cero se puede aplicar la leyuniforme o de las igualdades "lo que se haga de un lado de una igualdad debe hacerse delotro lado", de manera que lo que realmente se hizo fue dividir entre seis a la ecuación origi-nal factorizada.

Este es el detalle fundamental en el proceso de factorización por este método. El error quesuele cometer el estudiante es afirmar que

( )3 2 4 56 29 62 120 63 2

x x x x x x⎡ ⎤⎡ ⎤− − + = − − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

cuando realmente no son iguales ambas expresiones por lo que se acaba de mencionar.

Para que sí sean iguales debe descubrirse qué factor le hace falta al producto de los primerostérminos de la factorización para que dé el primer término de la no factorizada, y agregarlo.En este caso, lo que hace falta es multiplicar por seis. De manera que

( )3 2 4 56 29 62 120 6 63 2

x x x x x x⎡ ⎤ ⎡ ⎤− − + = − − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

sí es ya realmente igual, ya que al multiplicar (x)(x)(x) por el seis agregado ahora sí da el

original del primer término. 36x

Y también al multiplicar por el 6 agregado se obtiene + 120.( ) 4 563 2

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Lo único que resta por hacer es "distribuir" ese seis agregado en los factores que tienen frac-ción para que desaparezcan. En este caso, ese seis agregado es igual a tres por dos. El treses para el segundo factor que tiene un denominador tres, mientras que el dos es para el tercerfactor que tiene un denominador dos, de la siguiente forma:

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 27

Page 56: Modulo dinamica

3 26 29 62 120 ( 6)(3 4)(2 5)x x x x x x− − + = − − +

Esto último es la factorización correcta de la expresión polinomial original. Obsérvese quela multiplicación de los primeros términos (x)(3x)(2x) sí da ahora 6x 3 , lo mismo que la delos términos independientes (- 6)(- 4)(5) da 120 . De hecho, puede comprobarse fácilmentehaciendo toda la multiplicación.

FACTORES IRREDUCTIBLES

En este último tema de factorización es conveniente saber que algunos factores de segundogrado son reductibles y otros no. Reductible significa que se pueden reducir a dos o más por facto-rización, es decir, que son factorizables.

Los factores de segundo grado que son irreductibles (no reductibles) son aquellos que tratados

como ecuación de segundo grado dan negativa la raíz cuadrada de la correspondiente2 4b ac−

fórmula conocida .2 4

2b b acx

a− ± −

=

Por ejemplo, 3x 2 - 2x + 23 es irreductible, ya que tratado con la fórmula general de las ecuacio-nes de segundo grado, el radical da negativo. Se deja al alumno que lo practique y lo compruebe.

EJERCICIO 22

Factorizar los siguientes polinomios dentro del campo de los números reales. Si al llegar a la ecuación de segundogrado la raíz cuadrada resulta negativa, significa que no se puede factorizar dentro de los números reales y ese polino-mio de segundo grado es ya un factor.

1) 9x3 - 39x2 - 29x - 52) 3x3 - 25x2 + 64x - 483) 8x3 + 20x2 + 14x + 34) 6x3 + 17x2 + 4x - 125) 8x3 + 42x2 + 63x + 276) 4x3 + x2 + 9x - 97) 3x3 + 8x2 + 19x + 108) 16x4 - 8x3 + 33x2 - 63x + 279) 9x4 - 6x3 + 25x2 + 52x + 2010) 6x4 + 47x3 + 89x2 + 8x - 60

Ing. Gustavo Jiménez - Teoría de las EcuacionesPágina 28

Page 57: Modulo dinamica

Un vector es una magnitud fisica que tiene modulo y dirección. Se representa como un segmento orientado, con una dirección, dibujando de forma similar una “flecha”.

Ejemplos de vectores.

Módulo: Valor de un vector que determina el tamaño de este. Es decir, a mayor valor del vector (módulo) mayor sera su tamaño en una representación gráfica.

Sentido: Esta definido según “hacia donde apunte la flecha del vector”. Si bien existe una relación estrecha entre sentido y dirección de un vector, poseen significados distintos.

Dirección: La dirección de un vector esta definido por el ángulo existente entre las líneas de acción del vector y la línea de referencia. Está última es determinada en forma arbitraria por quien está desarrollando el análisis vectorial.

VECTORES Ing. Gustavo Jiménez - Ecuaciones de dimensión

Página 1

Page 58: Modulo dinamica

5

las proyecciones del vector en los ejes “X” e “Y” del plano cartesiano. Por ejemplo, como muestra la figura adjunta, el vector v posee dos proyecciones, una en el eje X (vx) y otra en el eje Y (vy). Ambas proyecciones se logran proyectando verticalmente el vector v (para poder obtener vx) y horizontalmente el vector v (para obtener vy).

representantes dos vectores tales que el extremo final de uno coincida con el extremo origen del otro vector. Método del paralelogramo: Consiste en colocar los dos vectores de manera que

los orígenes de ambos coincidan en un punto, así completando un paralelogramo, trazando rectas paralelas a cada uno de los vectores, en el extremo del otro. El resultado de la suma es la diagonal del paralelogramo que parte del origen común de ambos vectores.

COMPONENTES DE UN VECTOR Las proyecciones de un vector o tambien llamadas componentes de un vector, son

OPERACIONES CON VECTORES Suma de vectores: Para sumar dos vectores libres (vector y vector) se escogen como

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 2

Page 59: Modulo dinamica

Método del triángulo: Consiste en disponer un vector a continuación de otro; es decir, el origen de uno de los vectores se lleva sobre el extremo del otro y luego se une el origen del primer vector con el extremo del segundo.

Ejemplo: a = (-2, 5) b = (3, -1) a + b = (-2+3, 5-1) = (1,4) Propiedades de la suma de vectores:

Asociativa:

Conmutativa:

Elemento neutro:

Elemento opuesto:

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 3

Page 60: Modulo dinamica

Resta de vectores: Para restar vectores libres (a y b) se suma a con el opuesto de b para formar (a-b).

Método del triángulo

Método del paralelogramo

Ejemplo:

a = (-2, 5) b = (3, -1) a – b = (-2-3, 5-(-1)) = (-5, 6)

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 4

Page 61: Modulo dinamica

Coordenadas de un vector: Si las coordenadas de los puntos extremos, A y B, son: A (x1, y1) B(x2, y2) Las coordenadas del vector AB, son las coordenadas del extremo menos las coordenadas del origen.

AB = (x2 – x1, y1 – y2) A (2, 2) B (5, 7) AB = (5 – 2, 7 – 2) AB = (3, 5)

Distancia entre dos puntos: La distancia entre dos puntos es igual al módulo del vector que tiene de extremos dichos puntos.

A (x1, y1) B(x2, y2)

Ejemplo: A (2,1) B (-3,2)

Producto de vectores: El producto de un número n por un vector u es otro vector:

De igual dirección que el vector u. Del mismo sentido que el vector u si n es positivo. De sentido contrario del vector u si n es negativo.

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 5

Page 62: Modulo dinamica

Los componentes del vector resultante se obtienen multiplicando por n los componentes de un vector.

u = (u1, u2) n*(u1,u2) = (n*u1, n*u2) Ejemplo:

u = (-2, 5) v = (3, -1) -u = (2, 5); 3*v = (9,-3) Propiedades del producto de un número por un vector:

Asociativa:

Distributiva respecto a la suma de vectores:

Distributiva respecto a los escalares:

Elemento neutro:

Punto medio: Si las coordenadas de los puntos extremos, A y B, son: A (x1, y2) B (x1, y2) Las coordenadas del punto medio de un segmento coinciden con la semisuma de las coordenadas de los puntos extremos. XM = X1 + X2 YM = Y1 + Y2

2 2

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 6

Page 63: Modulo dinamica

Ejemplo: Las coordenadas del punto medio del segmento AB. A (3, 9) B (-1, 5) XM = 3 -1 YM = 9 + 5 2 2 M = (1, 7) Condición para que tres puntos estén alineados: Los puntos A (x1, y1), B (x2, y2) y C (x3, y3) están alineados siempre que los vectores AB y AC tengan la misma dirección. Esto ocurre cuando sus coordenadas son proporcionales.

Ejemplo: El valor para que los puntos estén alineados será: A (2, 1) B (4, 2) C (6, a) 4 - 2 = 2 – 1 6 – 4 a -2 a = 3

Punto simétrico: Si A’ es el simétrico de A respecto de M, entonces M es el punto medio del segmento AA’. Por lo que se verificará igualdad: AM= MA’

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 7

Page 64: Modulo dinamica

Ejemplo: Hallar el punto simétrico A (7,4) respecto de M (3,-11) AM= MA’ (-4, -15) = (x -3, y + 11) x – 3 = -4 x = -1 y + 11 = -15 y = -26 A´ = (-1, -26)

producto de sus módulos por el coseno del ángulo que forman.

Ejemplo:

Expresión analítica del producto del escalar:

Ejemplo:

PRODUCTO ESCALAR El producto escalar de dos vectores es un número real que resulta al multiplicar el

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 8

Page 65: Modulo dinamica

Expresión analítica del módulo de un vector:

Ejemplo:

Expresión analítica del ángulo de dos vectores:

Ejemplo:

Condición analítica de la ortogonalidad de dos vectores:

Ejemplo:

No son perpendiculares.

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 9

Page 66: Modulo dinamica

Interpretación geométrica del producto escalar: El producto de dos vectores no nulos es igual al módulo de uno de ellos por la proyección del otro sobre él.

Ejemplo: Hallar la proyección del vector u = (2, 1) sobre el vector v = (-3, 4)

Propiedades del producto escalar:

Conmutativa:

Asociativa: Distributiva: Producto escalar de un vector (no nulo) por si mismo siempre es positivo:

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 10

Page 67: Modulo dinamica

El producto vectorial es una operación binaria entre dos vectores de un espacio euclídeo tridimensional, que da como resultado un vector ortogonal a los dos vectores originales. También se les denomina producto cruz (pues se lo denota mediante el símbolo ×) o producto externo (pues está relacionado con el producto exterior). Definición: Sean a y b dos vectores en el espacio vectorial . El producto vectorial entre a y b da como resultado un nuevo vector c. Para definir este nuevo vector es necesario especificar su módulo y dirección:

El modulo de c esta dado por:

donde es el ángulo determinado por los vectores a y b.

La dirección del vector c, que es ortogonal a, a y ortogonal a b.

El producto vectorial entre a y b se denota mediante a × b, por ello se lo llama también producto cruz. El producto vectorial puede definirse de una manera más compacta de la siguiente manera:

Donde es el vector unitario y ortogonal a los vectores a y b y es, como antes, el ángulo entre a y b.

PRODUCTO VECTORIAL O CRUZ Ing. Gustavo Jiménez - Ecuaciones de dimensión

Página 11

Page 68: Modulo dinamica

Producto vectorial de dos vectores

Sean y dos vectores concurrentes de , el espacio afín tridimensional según la base anterior.

Se define el producto , y se escribe , como el vector:

En el que: Es el determinante de orden 2.

Ejemplo: El producto vectorial de los vectores a = (2, 0,1) y b = (1, -1,3) se calcula del siguiente modo:

Propiedades del producto cruz: Cualquiera sean los vectores a, b y c:

Anticonmutatividad:

Condición de paralelismo: Si

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 12

Page 69: Modulo dinamica

Regla de la expulsión:

Identidad de Jacobi:

, siendo θ el ángulo menor entre los vectores y ; esta expresión relaciona al producto vectorial con el área del paralelogramo que definen ambos vectores.

El vector unitario es normal al plano que contiene a los vectores y .

módulo, dirección y sentido. Para comprobarlo, se unen sus orígenes y sus extremos respectivos. Si el polígono resultante es un paralelogramo, los vectores son equipolentes.

Todos ellos poseen el mismo módulo, la misma dirección y el mismo sentido.

CLASIFICACIÓN DE VECTORES Vectores equipolentes: Dos vectores fijos son equipolentes si tienen el mismo

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 13

Page 70: Modulo dinamica

Vectores libres: El conjunto de todos los vectores equipolentes entre sí se llama vector libre. Es decir los vectores libres tienen el mismo módulo, dirección y sentido.

Vectores fijos: Un vector fijo es un representante del vector libre. Es decir, los vectores fijos tienen el mismo módulo, dirección, sentido y origen.

Vectores ligados: Los vectores ligados son vectores equipolentes que actúan en la misma recta. Es decir, los vectores fijos tienen el mismo módulo, dirección, sentido y se encuentran en la misma recta.

Vectores opuestos: Los vectores opuestos tienen el mismo módulo, dirección, y distinto sentido.

Vector unitario: Los vectores unitarios tienen de módulo la unidad.

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 14

Page 71: Modulo dinamica

Normalizar: Normalizar un vector consiste en obtener otro vector unitario, de la misma dirección y sentido que el vector dado. Para normalizar un vector se divide éste por su módulo. Ejemplo:

Vectores concurrentes: Los vectores concurrentes tienen el mismo origen.

Vector de posición: El vector OP que une el origen de coordenadas O con un punto P se llama vector de posición del punto P.

Vector linealmente dependiente: Varios vectores libres del plano son linealmente dependientes si existe una combinación lineal de ellos que sea igual al vector cero, sin que sean cero todos los coeficientes de la combinación lineal.

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 15

Page 72: Modulo dinamica

Vector linealmente independiente: Varios vectores libres son linealmente independientes si ninguno de ellos se puede expresar como combinación lineal de los otros.

Vectores ortogonales: Dos vectores son ortogonales o perpendiculares si su producto escalar es cero.

Vectores ortonormales: Dos productos son ortonormales si:

1. Su producto escalar es cero.

2. Los dos vectores son unitarios.

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 16

Page 73: Modulo dinamica

1. Hallar las coordenadas del punto C, sabiendo que B (2, -2) es el punto medio de AC, A (-3, 1).

Desarrollo:

2. Averiguar si están alineados los puntos: A (-2, -3), B (1, 0) y C (6, 5).

Desarrollo:

3. Calcula las coordenadas de D para que el cuadrilátero de vértices: A (-1, -2), B (4, -1), C (5, 2) y D; sea un paralelogramo.

Desarrollo:

EJERCICIOS DE VECTORES Ing. Gustavo Jiménez - Ecuaciones de dimensión

Página 17

Page 74: Modulo dinamica

4. Las coordenadas de los extremos del segmento AB son: A (2, - 1) y B (8, - 4). Hallar las coordenadas del punto C que divide al segmento AB en dos partes tales que AC es la mitad de CB.

Desarrollo:

5. Hallar el punto simétrico de A (4, -2) respecto de M (2, 6).

Desarrollo:

6. Determinar a con la condición de que los puntos A (0, a) y B (1, 2) disten una unidad.

Desarrollo:

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 18

Page 75: Modulo dinamica

7. Probar que los puntos: A (1, 7), B (4,6) y C (1, -3) pertenecen a una circunferencia de centro (1, 2). Si O es el centro de la circunferencia las distancias de O a A, B, C y D deben ser iguales Desarrollo:

8. Normalizar los siguientes vectores: = (1, ), = (-4, 3) y = (8. -8).

Desarrollo:

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 19

Page 76: Modulo dinamica

9. Probar que los puntos: A (1, 7), B (4,6) y C (1, -3) pertenecen a una circunferencia de centro (1, 2). Si O es el centro de la circunferencia las distancias de O a A, B, C y D deben ser iguales. Desarrollo: 10. Calcular los ángulos del triángulo de vértices: A (6,0), B (3,5), C (-1,-1).

Desarrollo:

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 20

Page 77: Modulo dinamica

11. Hallar el punto simétrico de A (3, - 2) respecto de M (- 2, 5).

Desarrollo:

12. Hallar un vector unitario de la misma dirección del vector .

Desarrollo:

Ing. Gustavo Jiménez - Ecuaciones de dimensiónPágina 21

Page 78: Modulo dinamica

Ing. Gustavo Jiménez – Diagrama de Cuerpo Libre Página 1

DIAGRAMA DE CUERPO LIBRE

Un diagrama de cuerpo libre (DCL) es un diagrama vectorial que describe todas las

fuerzas que actúan sobre un cuerpo u objeto en particular *. Consiste en colocar la

partícula en el origen de un plano de coordenadas, y representar a las fuerzas que actúan

sobre ella por medio de los vectores correspondientes, todos concurrentes en el origen.

La mayor aplicación de los DCL es visualizar mejor el sistema de fuerzas que actúan

sobre un cuerpo; además, se identifican mejor las fuerzas pares, como la de acción -

reacción y las componentes de las fuerzas. Si en un sistema existen dos o más cuerpos

de interés, éstos se deben separar y cada uno tiene un DCL propio con sus respectivas

fuerzas actuando.

Ejemplo. Construya el DCL para el siguiente sistema:

La partícula de interés para éste caso es el bloque de masa m, pero para el caso, las

fuerzas concurren en un mismo punto, el nodo que une las tres cuerdas de la figura.

Entonces, el origen de coordenadas se situará en ése punto. Las fuerzas que actúan son:

la tensión de la cuerda A (Ta), la tensión de la cuerda B (Tb) y el peso w del bloque de

masa m.

Page 79: Modulo dinamica

Ing. Gustavo Jiménez – Diagrama de Cuerpo Libre Página 2

En algunos casos, es conveniente girar el eje de coordenadas. Esto normalmente se hace

cuando la partícula tiene un movimiento sobre una superficie inclinada, y se facilita el

cálculo de las componentes si los ejes tienen la misma dirección de la superficie.

Ejemplo. Construya el DCL para el bloque de masa M de la figura:

El bloque de masa M tiene un movimiento sobre un plano inclinado. Para el caso, el

DCL será mejor manipulado si se inclinan los ejes. Las fuerzas que actúan son tres. Dos

de ellas son el peso w del bloque, siempre dirigido hacia abajo y la tensión de la cuerda

con la que el autobus hala el bloque.

La tercera fuerza es debida a la tercera ley de Newton: el bloque ejerce una fuerza sobre

el plano que la sostiene, asi como el plano hace una fuerza sobre el bloque, pero en

dirección contraria. Ésta fuerza se llama fuerza normal N, debido a que es perpendicular

(normal) a la superficie del plano. Se representan éstas tres fuerzas en el DCL del

bloque M:

¿Cómo construir un diagrama de cuerpo libre?

1. Identifique las condiciones del problema. Asegúrese de colocar todas las fuerzas que

actúan sobre el cuerpo de análisis. Éstas fuerzas deben tener las direcciones (ángulos) y

sentidos correctos.

Page 80: Modulo dinamica

Ing. Gustavo Jiménez – Diagrama de Cuerpo Libre Página 3

2. Si son varios cuerpos de estudio, sepárelos. Cada uno tiene su propio DCL. Si el

sistema es de dos cuerpos y aparece una fuerza entre ellas, no olvide colocar las de

acción y reacción en su respectivo DCL.

3. Las fuerzas se representan como vectores con su origen situado al centro de un

sistema de coordenadas rectangulares. Generalmente es el plano cartesiano, aunque

puede estar inclinado.

La aplicación más importante de la primera ley de Newton es encontrar el valor de

fuerzas que actúan sobre una partícula, a partir de la condición de equilibrio. En la

primera ley, se plantea que si una partícula está en equilibrio, se cumple que: ∑F = 0.

Como la fuerza es una cantidad vectorial, podemos plantear que:

∑Fx = 0 y ∑Fy = 0 (Componentes rectangulares de las fuerzas).

Ejemplo. Un cuadro de 2 Kg se cuelga de un clavo como se muestra en la figura, de

manera que las cuerdas que lo sostienen forman un ángulo de 60º. ¿Cuál es la tensión

en cada segmento de la cuerda?

Se debe determinar la situación del problema. Una cuerda sostiene un cuadro de 2 Kg,

en dos segmentos, cada segmento tiene una tensión Ta y Tb respectivamente, como se

ilustra en el DCL.

Page 81: Modulo dinamica

Ing. Gustavo Jiménez – Diagrama de Cuerpo Libre Página 4

De las tres fuerzas planteadas, sólamente se puede determinar el valor de su peso w.

∑Fy = 0 = Ta sen 60º + Tb sen 60º - w;

Ta sen 60º + Tb sen 60º = w = mg (1)

Luego, ∑Fx = 0 = - Ta cos 60º + Tb cos 60º

Ta cos 60º = Tb cos 60º, entonces Ta = Tb (2)

Sustituyendo (2) en (1):

2 Tb sen 60º = mg

Despejando Tb:

Como se demuestra en la ecuación (2), las tensiones en los segmentos de cuerda son

iguales. Es importante colocar el sentido de cada componente, según el marco de

referencia propuesto.

Page 82: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 1

FUERZAS DE FRICCION

La fuerza de fricción se da a partir del contacto entre dos cuerpos. En realidad, éste

efecto siempre está presente en el movimiento de un cuerpo debido a que siempre se

desplaza haciendo contacto con otro (el aire en la mayoría de los casos); en algunos

casos, éste efecto es muy pequeño y es una buena aproximación despreciar su valor,

pero en otros, es necesario tomar en cuenta ésta fuerza, debido a que determina el valor

del movimiento.

Fricción cinética.

Cuando un cuerpo descansa sobre una superficie, podemos expresar la fuerza de

contacto (por tercera ley del movimiento) en términos de sus componentes paralela y

perpendicular a la superficie: la componente perpendicular es la fuerza normal N y la

paralela a la superficie es la de fricción Ff. La dirección de Ff siempre es opuesta al

movimiento relativo de las dos superficies.

El tipo de fricción que actúa cuando un cuerpo se desliza sobre una superficie es

la fuerza de fricción cinética, Ffk (*). Ésta fuerza es proporcional a la normal: Ffk α N.

La constante de proporcionalidad para la relación anterior recibe el nombre

de coneficiente de fricción cinética µk y su valor depende de la superficie: mientras mas

lisa (como el lago congelado del ejemplo de la lección anterior) es la superficie, menor

será el valor de la constante. Entonces, la fuerza de fricción cinética se define como:

Ffk = µk * N

Ésta es una ecuación escalar y válida solo para las magnitudes de las componentes de la

fuerza de contacto.

La fuerza de fricción también puede actuar cuando no hay movimiento. En éste caso

recibe el nombre de fuerza de fricción estática Ffs. Suponga que una persona empuja

una caja sobre el piso tratando de moverla, pero no lo consigue, debido a que el piso

ejerce una fuerza Ffs. Ésta fuerza también es proporcional a la normal y la constante de

proporcionalidad se conoce comocoeficiente de fricción estática µs. En algún

punto, Ff es mayor que µs*N, que es cuando hay movimiento y Ff es Ffk = µk * N.

Pero, mientras no exista movimiento, Ff es:

Ffs ≤ µs * N.

Page 83: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 2

Es decir, Ffs está entre 0 y (µs * N).

En la vida cotidiana, el término trabajo se relaciona con cualquier actividad que requiere

algún tipo de esfuerzo físico o mental. En la mecánica y estudio de la cinética, éstos

esfuerzos son fuerzas externas que actúan sobre un cuerpo desplazándolo cierta

distanciadesde su punto inicial; por lo tanto, siempre que una fuerza actúa a lo largo de

una distancia, sobre una partícula, se realiza trabajo*. Su valor se relaciona con el valor

de la fuerza aplicada y eldesplazamiento causado por la fuerza.

Considere las siguientes figuras. Ignore el efecto de la fricción en la superficie plana. La

fuerza Fa está aplicada verticalmente sobre el objeto; pero ésta fuerza no logra desplazar

al objeto por el eje x, debido a que la fuerza resultante no tiene componente en ése eje, y

por la segunda ley del movimiento, éste objeto no tiene aceleración en ésa dirección.

La fuerza Fb logra desplazar cierta distancia al objeto por la superficie plana, debido a

que tiene una componente paralela al movimiento, y el objeto obtiene una componente

en x de la aceleración.

La fuerza Fc desplaza al objeto cierta distancia d, mayor al de la fuerza Fb, debido a que

la fuerza está totalmente en dirección al desplazamiento.

Por lo anterior, el trabajo mecánico W es realizado por la componente paralela al

desplazamiento d de la fuerza que lo realiza, y se define como:

W = F*d.

Page 84: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 3

Donde F es la fuerza paralela al desplazamiento que realiza trabajo. El trabajo total

realizado sobre una partícula es el producto de la fuerza resultante por el valor del

desplazamiento d.

La expresión anterior que define el trabajo W es un producto escalar, y sólo interesa la

magnitud y sentido de F y d. Es decir, a partir de un marco de referencia propuesto, se

puede obtener un trabajo negativo si la fuerza está dirigida en sentido contrario al

desplazamiento, como una fuerza de fricción de la superficie.

El trabajo W tiene unidades de N.m. en el sistema internacional (Newton - metro), lbf -

pulgada en el sistema inglés. En el sistema internacional de medidas, un N.m es

un Joule, representado por J,que son las unidades que definen la energía, concepto que

se define en las siguientes lecciones.

Ejemplo. Se empuja un libro 1.20 m sobre una mesa horizontal con una fuerza

horizontal de 3.0 N. La fuerza de fricción opuesta es de 0.6 N. a) ¿Qué trabajo efectúa

la fuerza de 3.0 N?; b) ¿Y la fricción?;c) ¿Qué trabajo total se efectúa sobre el libro?

a) La fuerza de 3 N está en dirección al desplazamiento. Entonces:

W = (3.0 N)*(1.20 m) = 3.6 N.m = 3.6 J

b) La fricción también está dirigida hacia el eje x, pero con sentido contrario:

Wf = (- 0.6 N)*(1.20 m) = - 0.72 J

c) El trabajo total está dado por la componente de la fuerza resultante en dirección al

movimiento. Las fuerzas que actúan en dirección al movimiento son la de 3.0 N y la

fricción:

∑Fx = 3.0 N + (- 0.6 N) = 2.4 N y

Wt = (2.4 N)*(1.2 m) = 2.88 J.

donde Wt es el trabajo total efectuado. Éste resultado es el mismo si se suman los

trabajos individuales de cada fuerza que actúa sobre el cuerpo:

Wt = W + Wf = 3.6 J + (- 0.72 J) = 2.88 J

Page 85: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 4

Ejemplo. El baúl de la figura es arrastrado en una distancia horizontal de 24 m por una

cuerda que forma un ángulo de 60º con el piso. Si la tensión en la cuerda es de 8

N, ¿Cuál es el trabajo realizado por la cuerda?

La fuerza no está en dirección al desplazamiento, pero tiene una componente paralela a

él, que es igual a:

F = (8 N) cos 60º

Y el trabajo es igual a:

W = F*d = ((8 N) cos 60º )*(24 m) = 96 J

FUERZAS DE FRICCION Y ROZAMIENTO

Rozamiento seco

El rozamiento seco es el producido entre dos superficies, no lubricadas, en contacto. El

típico ejemplo es un bloque apoyado sobre un plano horizontal o inclinado.

Este rozamiento se produce debido a que los átomos de uno y otro sólido forman

pequeños enlaces temporales, que es necesario romper para conseguir el desplazamiento

Page 86: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 5

relativo. Estos enlaces se forman debido a las irregularidades del material, a la presión

con la que se forma el contacto y al área de la superficie de contacto.

La fuerza de rozamiento seco tiende dos modalidades:

Rozamiento estático: se produce cuando las dos superficies están en reposo

relativo

Rozamiento dinámico: se da cuando una de las superficies desliza sobre la otra.

Rozamiento estático

El rozamiento estático posee las siguientes propiedades, conocidas como leyes de

Coulomb del rozamiento:

Es tangente a la superficie de contacto.

Posee un valor máximo, proporcional a la componente normal de la fuerza aplicada

entre los dos cuerpos

siendo μ una magnitud adimensional conocida como coeficiente de rozamiento

estático. Su valor depende de los dos materiales que estén en contacto:

Coeficientes de rozamiento estático

Material 1 Material 2 μ

Madera Cemento 0.6

Madera Madera 0.25−0.5

Goma Cemento 1.0

Teflón Teflón 0.04

Acero Acero 0.80

Es un error común el pensar que el coeficiente de rozamiento no puede

superar a la unidad. Sí, puede hacerlo (el de goma sobre materiales muy

abrasivos puede llegar a 4). No hay ningún impedimento físico para que la

fuerza de rozamiento supere en módulo a la fuerza normal.

La ley de rozamiento estático nos da un valor máximo para la fuerza de

rozamiento, no nos dice cuánto vale ésta.

Supongamos que tenemos un bloque de madera de 5 kg en reposo sobre el

suelo de cemento y aplicamos lateralmente una fuerza de 10 N. ¿Se moverá el

bloque? El valor máximo de la fuerza de rozamiento es

Pero naturalmente eso no es lo que vale la fuerza de rozamiento en este caso

concreto, ya que si tuviera dicho valor, superaría a la fuerza aplicada y el

Page 87: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 6

bloque se movería en la dirección opuesta a la que se le empuja, lo que es

absurdo. Lo que nos dice este resultado es que, puesto que el valor máximo

supera a la fuerza aplicada, el bloque no se mueve. La fuerza de rozamiento

vale, en este caso, 10 N (igual a la fuerza aplicada).

Si la fuerza aplicada hubiera sido de 40 N, este resultado nos diría que el

rozamiento no es capaz de oponerse a la fuerza aplicada y el bloque empieza

a moverse, momento a partir del cual se aplica la ley del rozamiento

dinámico.

La situación en la que la fuerza de rozamiento alcanza su valor máximo se

denomina de deslizamiento inminente, ya que una fuerza aplicada

ligeramente superior a las de esta configuración es capaz de conseguir el

deslizamiento de las superficies.

Asociado a la fuerza de rozamiento se encuentra el ángulo de

fricción β definido por la relación

Este ángulo equivale a la mayor inclinación que puede tener un plano

inclinado antes de que un bloque situado sobre él comience a deslizar, esto

es, se encuentre en posición de deslizamiento inminente. Esta relación

permite medir experimentalmente el coeficiente de rozamiento empleando

un plano de inclinación variable, que se va elevando lentamente hasta que se

produzca deslizamiento.

Gráficamente, el que la fuerza de rozamiento tenga un valor máximo quiere

decir que para que la fricción consiga oponerse al resto de fuerzas aplicadas,

la resultante de la fuerza normal y la fuerza de rozamiento que sería

necesaria para conseguir la anulación del sistema, debe hallarse dentro de un

cono con vértice el punto de contacto y de ángulo de apertura β. Si la

resultante queda fuera, se produce deslizamiento, ya que la fuerza de

rozamiento no puede alcanzar el valor necesario.

Page 88: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 7

Rozamiento dinámico

El rozamiento dinámico o por deslizamiento se produce cuando una superficie

desliza sobra sobre otra.

Este rozamiento se debe también a los enlaces que se forman entre átomos de

ambos materiales. Sin embargo, al ser estos enlaces de menor duración, por

el movimiento relativo, la fuerza de rozamiento estático es inferior que la

máxima posible en el caso estático.

La fuerza de rozamiento dinámico verifica aproximadamente las siguientes

propiedades:

El proporcional a la fuerza aplicada

Es independiente de la velocidad relativa

Va en sentido opuesto a la velocidad relativa

La proporcionalidad puede expresarse por la relación

siendo μd el coeficiente de rozamiento dinámico, que será inferior al estático

para los mismos materiales. De nuevo, no hay ninguna condición de que sea

inferior a la unidad (aunque suele serlo).

Coeficientes de rozamiento dinámico

Material 1 Material μ

Madera Madera 0.4−0.5

Goma Cemento 0.6−0.8

Teflón Teflón 0.04

Acero Acero 0.16

Asociado al coeficiente de rozamiento dinámico se encuentra otro ángulo de

rozamiento

Page 89: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 8

que sería el ángulo que debe tener un plano inclinado para que un bloque

descienda por él a velocidad constante.

Si representamos conjuntamente la fuerza de rozamiento estático y de

rozamiento dinámico, para un bloque, como función de la fuerza tangencial

aplicada, obtenemos una gráfica como la de la figura

La pendiente del primer tramo es la unidad, ya que en esa región la fuerza de

rozamiento no ha alcanzado su valor máximo y es igual en magnitud a la

fuerza aplicada. Cuando se alcanza el deslizamiento inminente se produce un

cambio brusco (que es muy fácil de experimentar al desplazar un mueble, por

ejemplo) y a partir de ahí la fuerza de rozamiento es más o menos constante,

pero con fluctuaciones. La flecha indica que este resultado se consigue

aumentando progresivamente la fuerza. Si en lugar de aumentar fuéramos

bajando, resultaría una gráfica diferente.

Rozamiento por rodadura

El rozamiento por rodadura es el que se produce cuando dos sólidos en

contacto ruedan el uno sobre otro. En una situación ideal de dos sólidos

perfectamente indeformables, la rodadura no tendría rozamiento alguno, ya

que el contacto se produciría en un solo punto, para el cual la velocidad es

nula.

Sin embargo, todos los sólidos son deformables, y en el contacto de una rueda

sobre el suelo éste no se produce en un solo punto, sino en una pequeña

extensión (mayor cuanto más deformable sea la rueda). Dado que la rueda se

encuentra en movimiento pero los puntos en contacto se hallan en reposo

instantáneo, se producen esfuerzos en esos puntos, que disipan energía y

producen rozamiento.

Page 90: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 9

La fuerza de rozamiento por rodadura obedece también la fórmula

El coeficiente de rozamiento, para ruedas poco deformables, puede ser

estimado como

siendo d el diámetro de la rueda y z la “distancia de hundimiento”. Cuanto

mayor sea ésta, mayor el rozamiento. Por ello es más barato enviar

mercancías por ferrocarril que por camión.

Debido al rozamiento por rodadura hay que vigilar la presión de los

neumáticos:

Si es demasiado baja, aumenta el rozamiento y se consume una cantidad

excesiva de energía

Si es demasiado alta, se hace más difícil frenar un coche, ya que se

reduce el área de contacto. Rozamiento viscoso

Un tipo de rozamiento diferente se da en el caso del movimiento de un sólido

en el interior de un fluido (líquido o gas). Este rozamiento está causado por

las colisiones con las partículas del fluido, que deben ser apartadas para que

el sólido pueda moverse por él.

Este rozamiento viscoso depende de numerosos factores:

De la velocidad del objeto relativa al fluido que le rodea, siendo nulo

para un objeto en reposo respecto al fluido.

De la naturaleza del fluido, en particular de su densidad y de

su viscosidad (medida de su cohesión interna del fluido que no debe

confundirse con la densidad; el aceite de oliva es más viscoso que el

agua, pero menos denso).

Page 91: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 10

De la forma del objeto. No es lo mismo tirarse de cabeza a una piscina

que tirarse en plancha.

La forma matemática de la fuerza de rozamiento viscoso puede ser muy

complicada. Los dos casos más simples son:

Resistencia lineal

Cuando el fluido es muy viscoso y la velocidad del objeto es pequeña,

puede hacerse la aproximación de que la fuerza de rozamiento es

proporcional a la velocidad:

siendo γ una constante empírica, que depende de la forma y tamaño

del objeto y de las propiedades del fluido. Se mide en N/(m/s) = kg/s.

Para una esfera vale γ = 6πRη (η es la viscosidad); en ese caso se conoce

la ley para el rozamiento como ley de Stokes. Aquí es siempre la

velocidad relativa al fluido. Si este se encuentra en movimiento

respecto a un sistema fijo con velocidad habrá que que

calcular .

Esta fórmula, aunque es muy usada por su simplicidad matemática,

posee aplicación limitada, ya que vale para partículas que se mueven

lentamente en agua o aceite, pero no es aplicable a cuerpos que se

mueven a mayor velocidad, como un barco, o para medios poco densos

o viscosos, como el aire.

Resistencia cuadrática

Para un objeto que se mueve en aire a una velocidad alta (pero no

próximo a la barrera del sonido o supersónica) puede ser una mejor

aproximación una ley cuadrática con la velocidad (ley de Rayleigh)

El vector velocidad en esta expresión nos dice que la fuerza de

rozamiento es paralela a la velocidad (medida respecto al fluido que

rodea a la partícula), y el signo que va en sentido opuesto a ella. Esta

ley provoca una mayor complejidad matemática en los cálculos, pero

es de mayor aplicabilidad que la anterior. Aquí ρ es la densidad del

fluido, A la sección transversal del objeto y Cd el coeficiente de

resistencia aerodinámica, empírico. Cuanto más bajo sea Cd más

aerodinámico es un objeto (como un coche o una aeronave) y menor su

fricción con el aire.

Page 92: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 11

Velocidad terminal

Cuando un objeto se mueve en un fluido sometido a una fuerza externa

constante partiendo del reposo, inicialmente se acelera, aumentando su

rapidez, pero al hacerlo se incrementa la fuerza de rozamiento viscoso, que

se opone a este aumento, con lo que la aceleración se va reduciendo

progresivamente, hasta anularse. A partir de ese momento, la partícula se

mueve con velocidad constante, conocida como velocidad terminal ovelocidad

límite.

Aplicando la segunda ley de Newton queda

Cuando se alcanza la velocidad límite la aceleración se anula y la fuerza de

rozamiento compensa exactamente a la fuerza aplicada

Rozamiento lineal

Para velocidades bajas o medios muy viscosos, esta ecuación nos da la

velocidad terminal

Esta ecuación nos dice que para medios extremadamente viscosos o

velocidades muy bajas, como los que se encuentra una bacteria en su

movimiento por el agua, sí se cumple, como decía Aristóteles, que la

fuerza es proporcional a la velocidad y que si no se aplica fuerza la

partícula se para.

Para el caso de que la fuerza sea el peso, esta ley nos da para la

velocidad límite de caída

Rozamiento cuadrático

Para velocidades medias o altas, la rapidez límite resultante es

En el caso particular de la caída de un objeto

Page 93: Modulo dinamica

Ing. Gustavo Jiménez – Fuerzas de Fricción Página 12

Potencia disipada por rozamiento

Cuando la velocidad no es nula, una fuerza de rozamiento (tanto seco como

viscoso) desarrolla una potencia

Dado que la fuerza de rozamiento se opone a la velocidad relativa, esta

potencia es negativa, esto es, disipa energía.

En el caso del rozamiento seco dinámico, es proporcional a la rapidez

En el caso del rozamiento viscoso lineal, la disipación va como el cuadrado de

la celeridad

esto es, doble de velocidad implica cuádruple de energía disipada por unidad

de tiempo.

En el caso del rozamiento viscoso cuadrático, la potencia va como el cubo de

la rapidez: doble de velocidad, óctuple de potencia disipada

Esta energía disipada se transmite como calor, aumentando la temperatura de

las superficies de contacto y llegando en ocasiones a su fusión (el “gripado”

de los motores). Por ello es importante reducir la fricción en máquinas y

mecanismos.