Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9,...

18
Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved by using photo- switchable fluorescence of diarylethene derivatives

Transcript of Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9,...

Page 1: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

Miyasaka Lab.Ikegami Takahiro

100nm

Ke Xu, H. P. Babcock,   X. Zhuang, Nature Methods, 2012, 9, 185–188.

Sub-diffraction limited point spread function achieved by using photo-switchable fluorescence of diarylethene derivatives

Page 2: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

I. BackgroundMicroscopyFluorescence MicroscopySuper-resolution Microscopy ( STED, PALM & STORM )

II. My workPrincipleSimulationExperience

III. Summary

IV. Future work

Page 3: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

I. BackgroundMicroscopyFluorescence MicroscopySuper-resolution Microscopy ( STED, PALM & STORM )

II. My workPrincipleSimulationExperience

III. Summary

IV. Future work

Have you ever used a microscope?

Page 4: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

20 μm

Shigeru Amemiya, Jidong Guo, Hui Xiong, Darrick A. Gross, Anal Bioanal Chem, 2006, 386, 458–471.

500 nm

5 μm0.5 μm

Scanning Electron Microscopy ( SEM )

Atomic Force Microscopy ( AFM )

Fluorescence Microscopy

Various Microscopy

L. Schermelleh, R. Heintzmann, H. Leonhard, THE JOURNAL OF CELL BIOLOGY, 2010, 190, 165-175.

S. Sharma, R. W. Johnson, T. A. Desai, Biosensors and Bioelectronics, 2004, 20, 227-239.

Page 5: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

Dye

Sample example

Imaging

Shtengel et al., PNAS. 2009, 10,1073.

Fluorescence microscopy

Observation target

・ Biological tissue

・ Polymer film

CCD camera

LaserScanning

Laser

GlassSiO2

Trajectory of dye in PolyHEAArai Yuhei, graduation thesis, 2014

3D trajectory of dye in PolyHEATaga Yuhei, thesis for master degree, 2014

Page 6: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

・ Internal observation ・ Contactless

・ Time resolution

Advantage of fluorescence microscopy

Spatial resolution

Fluorescence Microscopyλ/2 ( 200 nm )≧

Scanning Electron Microscopy ( SEM )Atomic Force Microscopy ( AFM )( 0.1 nm )≧

<<

0.5 μm5 μm

L. Schermelleh, R. Heintzmann, H. Leonhard, THE JOURNAL OF CELL BIOLOGY, 2010, 190, 165-175.

Page 7: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

Resolution of fluorescence microscopy

Low Resolution

High Resolution

Large LASER Spot

Small LASER Spot

Point Spread Function( PSF ) Fluorescence PSF

Objective

smaller thandiffraction limitSuper-ResolutionMicroscopy

Page 8: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

STED ( Stimulated Emission depletion )Super-Resolution Microscopy

h(v)

v

Δν

FWHM

Dye : RhodamineB  λSTED = 600 nm : STED beam wavelength  λexc = 490 nm : Ecitation beam wavelength  N.A.= 1.4 : Numerical aperture of objective

FWHM of effective PSF50 nm

S. W. Hell, J. Wichmann, OPICS LETTERS. 1994, 19, 11.

STED beam

Excitation beam

Page 9: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

PALM ( PhotoActivated Localization Microscopy )& STORM ( Stochastic Optical Reconstruction Microscopy )

Super-Resolution Microscopy

CCD

camera

B. Huang, W. Wang, M. Bates, X. Zhuang, Science, 2008, 319, 810-813.

Low Resolution

Fluorescence PSF

Localization

(A) Normal

PALM & STORM

Normal (B) STORM

Page 10: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

I. BackgroundMicroscopyFluorescence MicroscopySuper-resolution Microscopy ( STED, PALM & STORM )

II. My workPrincipleSimulationExperience

III. Summary

IV. Future work

Page 11: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

diarylethene derivative (DE1)

1.6

1.2

0.8

0.4

0.0

Ab

s.

700600500400300wavelength / nm

0.6

0.4

0.2

0.0

Flu

o. In

ten

sity

Open-ring

Closed-ring

Fluo.

Fluorescent

UV(Φoc= 0.43)

Closed-formOpen-form

S S CH2OHHOH2C

FF

F F FF

Et

EtO O O O

Vis. (Φco= 1.6×10-4)

ΦF =0.88non-Fluorescent

S S CH2OHHOH2C

FF

F F FF

Et

EtO O O O

Super-resolution by using photo-switchable fluorescent molecule

Page 12: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

PSF

Objective

Dye (DAE1)

Principle

Visible position is shifted.

UV

Vis.

Effective fluorescent spot size is changed by modulating a overlap of UV and Visible light.

UV

Vis.

Closed-formOpen-form

Fluorescent

Page 13: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

1.0x1016

0.8

0.6

0.4

0.2

0.0

EF

S p

hoto

n nu

mbe

r

-400 -200 0 200 400position / nm

EFS

1.2x1014

1.0

0.8

0.6

0.4

0.2

0.0

EF

S p

hoto

n nu

mbe

r

-400 -200 0 200 400position / nm

EFS

250

200

150

100

50

FW

HM

/ n

m

6004002000Inter-spot dist. / nm

Relation between Inter-spot distance & FWHM

Vis. position = 0 nm

Vis. position= - 550 nm

FWHM = 230 nm

FWHM = 40 nm

※FWHM : 半値全幅

Simulation Laser & Fluorescence Intensity Distribution

parameterΦ : Ring reaction yieldI : IntensityC : Concentration

Laser

Dyes

PMMAcover glass

Page 14: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

600

550

500

450

400

FW

HM

/ n

m

600400200Inter-spot dist. / nm

260

250

240

230 290280270260250240230220210200190180

250

200

150

100

50

Int.

coun

t

141210864Position / µm

Fluorescent intensity

EFS by Simulation1.2x10

14

1.0

0.8

0.6

0.4

0.2

0.0

EF

S p

ho

ton n

um

ber

-400 -200 0 200 400position / nm

EFS

Experimental resultGuestDE1

HostPMMA

※ Position of visible light was shifted to left.

1μm

ParameterSample preparationIntensity ( UV & Vis.)Irradiated position (Vis.)

Relation between Inter-spot distance & FWHM

Page 15: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

Stage scan imaging with APD

3.0x1016

2.5

2.0

1.5

1.0

0.5

0.0-400 -200 0 200 400position

ph

oto

n n

um

ber

A

B

C

D

E

Measure photon number

※ Depended on the distribution of laser intensity

single molecule

PMMA cover glass

Condition

Principle

APD

Laser

A B C D E

Distribution of laser intensity

Objective

Stage

・ a few dye in several micrometers square

・ only a dye in laser light

・ Laser intensity is measured.・ A fluorescence spot which is smaller than diffraction limit can be got.・ The resolution is depended on the laser spot size and the step length of a stage.

Optical setup

Lens

Lens

DM

Pinhole

Objective

Stage

Page 16: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

3020

100

3020100

3020

100

3020100

1200

1000

800

600

400

200

Inte

nsity

12008004000position / nm

FWHM = 772 nm

UV & Vis. completely overlaped.

300nm

3000

2000

1000

Inte

nsity

12008004000position / nm

FWHM = 241 nm

UV

Vis.

Vis.

UV

300nm

Stage scan imaging with APD

UV & Vis. partly overlaped.

Laser spot model Stage scan imaging Distribution of photon number

Page 17: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

Summary

・ I explained about super-resolution microscopes such as STED, STORM, and PALM.

・ We observed that the smaller UV & Visible light overlap was, the smaller a fluorescence spot size became.

UV

Vis.

Page 18: Miyasaka Lab. Ikegami Takahiro 100nm Ke Xu, H. P. Babcock, X. Zhuang, Nature Methods, 2012, 9, 185–188. Sub-diffraction limited point spread function achieved.

UV beam Visible donuts beam EFS

Future work

・ Smaller spots than diffraction limit are made.

・ The visible donuts beam is used, and isotropic fluorescent spots is made.

・ Biological tissues or structures of polymer are modified by DE1, and they are observed.