MANUALTOX.. (1)

111
Laboratorio de Toxicología PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 1

Transcript of MANUALTOX.. (1)

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 1

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 2

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 3

Manual de guiones experimentales para

la enseñanza y aprendizaje del laboratorio

de Toxicología (clave 1614)

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 4

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 5

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

DEPARTAMENTO DE FARMACIA

Manual de guiones experimentales para

la enseñanza y aprendizaje del laboratorio

de Toxicología (clave 1614)

Facultad de Química, UNAM México, D.F. 2012

María Elena Bravo Gómez Jorge Cornejo Garrido

Francisco Hernández Luis Juan Francisco Palacios Espinosa

Araceli Pérez Vásquez Francisco Sánchez Bartez

Perla Carolina Castañeda López Manuel Gutiérrez Aguilar

Bernardo Lucas Florentino Carlos Pérez Muñoz

Alejandra Quijano Mateos

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 6

Primera edición: 2012 Fecha de edición: 15 de enero de 2012

D. R. 2012 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México, Distrito Federal. ISBN: 978-607-02-3094-3 Tamaño: 1.75 MB Tipo de impresión: PDF Tiraje: 300 unidades “Prohibida la reproducción total o parcial por cualquier medio, sin la autorización escrita del titular de los derechos patrimoniales”. Impreso y hecho en México

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 7

ÍNDICE

Prólogo

8

Reglamento de Higiene y Seguridad para los Laboratorios de la Facultad

de Química

11

Reglamento Interno de Higiene y Seguridad para los Laboratorios

del Departamento de Farmacia

13

Reporte de Seguridad e Higiene 15

Extracción y cuantificación de tóxicos no volátiles

en una muestra problema

16

Cuantificación de cianuro de hidrógeno, como tóxico volátil,

a partir de glucósidos cianogénicos

29

Produccion de metahemoglobina por nitritos y efecto protector

del azul de metileno in vivo

40

Determinación de malatión residual

49

Determinación de la actividad antioxidante de la quercetina

y el ácido nordihidroguayarético

58

Evaluación de la actividad genotóxica de la ciclofosfamida utilizando

la técnica de micronúcleos en médula ósea

65

Efectos tóxicos de la administración de plomo en ratas

77

Efecto del pH en la liberación de plomo por utensilios de barro vidriado

90

Determinación de etanol en una muestra problema

96

Identificación de alcaloides y barbitúricos en muestras problema

104

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 8

PRÓLOGO En noviembre de 2004, el H. Consejo Técnico de la Facultad aprobó las modificaciones al plan de

estudios de la carrera de Química Farmacéutico Biológica (QFB), y en junio de 2005 fue aprobado

por el Consejo Académico del Área de las Ciencias Biológicas y de la Salud (CAABYS). De tal

manera, que a partir del semestre 06-I se inició la implantación gradual del mapa curricular del plan

de estudios 2005.

En este nuevo mapa curricular, la asignatura teórico-experimental de Toxicología, con clave 1614,

quedó ubicada en el 6° semestre para la carrera de QFB. El diseño del actual contenido

programático de la asignatura fue pensado para revisar los conocimientos básicos de Toxicología

como: citotoxicidad, bioactivación tóxica, estrés oxidante, mutagénesis, carcinogénesis y

teratogénesis, para integrarlos a las etapas de estudio sobre el riesgo de exposición, toxocinética

y toxodinamia de las reacciones adversas ocasionadas por xenobióticos —fármacos, metales

pesados y sustancias de abuso. A través del aprendizaje de esta asignatura, se pretende contribuir al

perfil del egresado en el diseño, evaluación y producción de medicamentos, producción de reactivos

para diagnóstico, diagnóstico de laboratorio, investigación biomédica y conservación del medio

ambiente.

En consecuencia, el grupo de profesores de Toxicología, en forma colegiada, decidió realizar la

actualización y modificación del curso práctico, incluyendo algunos temas de interés actual en esta

asignatura y rediseñando los existentes, de acuerdo con la reforma a la enseñanza experimental

(Hernández y Llano, 1994). Siguiendo estos criterios, se implementaron dos nuevas prácticas con el

apoyo del proyecto PE202006 a través del Programa de Apoyo a Proyectos para la Innovación y

Mejoramiento de la Enseñanza (PAPIME), lo cual permitió la adquisición de equipos, materiales

y reactivos para la enseñanza experimental de esta asignatura.

Con base en lo anterior, los autores presentamos este Manual de guiones experimentales para la

enseñanza y aprendizaje del laboratorio de Toxicología, el cual está constituido por diez prácticas

que cubren las unidades temáticas del curso (Tabla 1) y que permiten integrar, aplicar y relacionar

los conocimientos teóricos adquiridos en la asignatura. Asimismo, los guiones propician la

integración de algunos de los conocimientos adquiridos previamente en asignaturas como

Bioquímica, Farmacología, Química Analítica, y Química Orgánica, así como su correspondiente

aplicación en la resolución de problemas de esta área.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 9

Curso laboratorio

Guión experimental

Curso teórico

Unidad temática

Extracción y cuantificación de tóxicos no

volátiles en una muestra problema Introducción a la Toxicología

Cuantificación de cianuro de hidrógeno, como

tóxico volátil, a partir de glucósidos cianogénicos

La biotransformación de xenobióticos

y su importancia toxicológica

Producción de metahemoglobina por nitritos y

efecto protector del azul de metileno in vivo

La biotransformación de xenobióticos

y su importancia toxicológica

Determinación de malatión residual La biotransformación de xenobióticos

y su importancia toxicológica

Determinación de la actividad antioxidante de la

quercetina y el ácido nordihidroguayarético El estrés oxidante

Evaluación de la actividad genotóxica de la

ciclofosfamida utilizando la técnica de

micronúcleos en médula ósea

Mutagénesis, carcinogénesis y teratogénesis

Efectos tóxicos de plomo en ratas Toxicidad de metales pesados

Efecto del pH en la liberación de plomo por

utensilios de barro vidriado Toxicidad de metales pesados

Determinación de etanol en una muestra

problema Toxicidad de sustancias de abuso

Identificación de alcaloides y barbitúricos en

muestras problema Toxicidad de sustancias de abuso

Tabla 1. Relación entre las unidades temáticas del curso teórico y los guiones experimentales.

Los guiones experimentales se elaboraron siguiendo los criterios establecidos por la Reforma de la

Enseñanza Experimental, donde la adquisición del conocimiento se da a la luz de las evidencias

observables o medibles de los fenómenos que ocurren en el laboratorio. El estudiante es enfrentado

a los mismos a través de un problema bien definido, el cual debe ser resuelto encontrando las

relaciones causa-efecto de éstos a través del trabajo experimental.

Cada uno de los guiones está estructurado de la siguiente manera:

OBJETIVO ACADÉMICO

Se establece para reforzar y enriquecer los conocimientos adquiridos en las clases teóricas, así como

el desarrollo de habilidades para el manejo de materiales y técnicas analíticas empleadas

comúnmente para determinar y/o identificar la presencia de xenobióticos.

PROBLEMA

Se plantea con la intención de enfrentar al estudiante con fenómenos relacionados con el área,

que le permita adquirir los conocimientos planteados en el OBJETIVO ACADÉMICO a través

del trabajo experimental; encontrando las relaciones causa-efecto y relacionando estos

hallazgos con el riesgo de intoxicación y/o el potencial toxicológico.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 10

DESARROLLO EXPERIMENTAL

Describe el procedimiento y técnicas utilizadas para el desarrollo y obtención de resultados que

permitan resolver el PROBLEMA.

CUESTIONARIO

Se incluye con la intención de dirigir al estudiante hacia la resolución del PROBLEMA,

resaltando los aspectos vivenciales de la experiencia en el laboratorio y, de esta forma, reforzar

el proceso cognoscitivo.

APÉNDICE I

CONOCIMIENTOS PREVIOS

Este apéndice contiene un listado de los conceptos indispensables para que el estudiante

comprenda el guión y sea capaz de resolver el PROBLEMA planteado.

APÉNDICE II

PREPARACIÓN DE REACTIVOS

En este apéndice se indican las cantidades necesarias para la preparación de los reactivos

a emplear en el DESARROLLO EXPERIMENTAL.

APÉNDICE III

DISPOSICIÓN DE RESIDUOS

Considerando que en cada sesión de laboratorio se generan un número importante de residuos,

se contempló la necesidad de indicar puntualmente cada uno de ellos, así como la manera en

que deberán ser confinados y etiquetados para su posterior tratamiento.

Los autores consideramos importante también incluir en el presente material el Reglamento de

Higiene y Seguridad de la Facultad y del Departamento de Farmacia, para concientizar a los

alumnos de la relevancia y carácter obligatorio de ambos, promoviendo de esta forma el desarrollo

de actitudes apropiadas para un profesionista en el área de las ciencias biológicas y de la salud.

Finalmente, los autores agradecemos el apoyo brindado a través del proyecto PAPIME No.

PE202006 de la Dirección General de Asuntos del Personal Académico (DGAPA) de la UNAM.

Hernández Luna, M. y Llano Lomas, M. (1994) “Propuesta de Reforma de la Enseñanza Experimental” en Revista

del IMIQ, Año XXV, vol. 07, pp. 5-7.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 11

Reglamento de Higiene y Seguridad para los Laboratorios de la Facultad de Química

ARTÍCULO 1. El presente Reglamento es aplicable en todos aquellos espacios de la Facultad de Química en donde se realice trabajo experimental, sea de docencia o de investigación. Estos sitios, para efectos del presente Reglamento, serán denominados laboratorios. Su observancia es obligatoria para el personal académico, alumnos y trabajadores administrativos y no excluye otra reglamentación que resulte aplicable. Deberá exhibirse visiblemente en cada laboratorio de la Facultad de Química. ARTÍCULO 2. Es necesario que el personal que trabaja en cada laboratorio conozca el sistema de alertamiento, las zonas de seguridad, las rutas de evacuación, el equipo para combatir siniestros y las medidas de seguridad establecidas en cada laboratorio. ARTÍCULO 3. Los laboratorios deberán estar acondicionados, como mínimo, con lo siguiente:

a) Un control maestro para energía eléctrica b) Un botiquín de primeros auxilios c) Extintores d) Un sistema de ventilación adecuado e) Agua corriente f) Drenaje g) Un control maestro para suministro de gas h) Señalamientos de Protección Civil i) Regadera j) Lavaojos

ARTÍCULO 4. Todas las actividades que se realicen en los laboratorios deberán estar supervisadas por un responsable, nombrado por los departamentos académicos en sus áreas correspondientes. ARTÍCULO 5. Al realizar actividades experimentales, nunca deberá estar una persona sola en los laboratorios. El mínimo de personas deberá ser, invariablemente, de dos y al menos una de ellas deberá ser parte del personal académico de la Facultad. ARTÍCULO 6. Los usuarios deberán abstenerse de dejar, en el lugar de trabajo, cosas de valor a la vista; además deberán cerrar las puertas de cubículos y laboratorios, así como cajones y archiveros, siempre que se ausenten del laboratorio. ARTÍCULO 7. Para trabajar en los laboratorios es obligatorio que los estudiantes usen bata y lentes de seguridad. En el caso del personal académico y administrativo, el equipo de protección personal, lo dictaminará la Comisión Mixta de Higiene y Seguridad. Este equipo será de uso obligatorio. El alumno que no tenga protección no podrá permanecer en el laboratorio; será su responsabilidad contar con el equipo mencionado. Asimismo, no podrá trabajar ni permanecer dentro de los laboratorios, si no se encuentra su profesor o alguien responsable que lo sustituya. ARTÍCULO 8. En los laboratorios queda prohibido: fumar, consumir alimentos o bebidas, el uso de lentes de contacto y de zapatos abiertos (tipo huarache o sandalia). ARTÍCULO 9. Para realizar trabajos con material radiactivo es obligatorio aprobar el curso de su manejo, así como la obtención del dosímetro correspondiente. ARTÍCULO 10. Todas las sustancias, equipos, materiales, etc., deberán ser manejados con el máximo cuidado, atendiendo a las indicaciones de los manuales de uso o de los de seguridad, según el caso. ARTÍCULO 11. Las puertas de acceso y salidas de emergencias deberán estar siempre libres de obstáculos, accesibles y en posibilidad de ser utilizadas ante cualquier eventualidad. El responsable del área deberá verificar esto al menos una vez cada semana. ARTÍCULO 12. Las regaderas deberán contar con el drenaje correspondiente, funcionar correctamente, estar lo más alejadas que sea posible de instalaciones o controles eléctricos y libres de todo obstáculo que impida su uso correcto. El responsable del área deberá verificar esto por lo menos una vez cada semana. ARTÍCULO 13. Los controles maestros de energía eléctrica y suministros de gas para cada laboratorio deberán estar señalados adecuadamente, de manera tal que sean identificados fácilmente. Las tuberías de cada laboratorio deberán estar pintadas de acuerdo con la norma correspondiente.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 12

ARTÍCULO 14. En cada laboratorio deberá existir un botiquín de primeros auxilios al alcance de todas las personas que en él trabajen. El responsable del área deberá verificar, al menos una vez cada semana, el contenido del botiquín, para reponer los faltantes. ARTÍCULO 15. Los extintores de incendios deberán ser de CO2 y de polvo químico seco, según lo determine la Subcomisión Mixta de Higiene y Seguridad y/o el Departamento de Bomberos de la Universidad; deberán recargarse cuando sea necesario, de conformidad con los resultados de la revisión o por haber sido utilizados. ARTÍCULO 16. En caso de emergencias, con incendios, derrames o personas accidentadas, dirigirse a la zona de seguridad establecida y/o activar el servicio de Emergencias 55 (red digital UNAM). Al activarlo:

- Identifíquese: Nombre y Puesto. - Ubicación: Dé el mayor número de referencias físicas posibles y las vías de acceso. - Tipo de siniestro. - Número de lesionados. - Apoyo: Especifique si requiere apoyo adicional de vigilancia. - Avisar de inmediato al encargado de la Seguridad del área y a la Coordinación de Seguridad.

ARTÍCULO 17. Los sistemas de extracción de gases deberán mantenerse siempre sin obstáculos que impidan que cumplan con su función, evaluarse al menos una vez cada mes y recibir el mantenimiento preventivo o correctivo que los responsables de cada área soliciten. ARTÍCULO 18. Tanto los sistemas de suministro de agua corriente como de drenaje, deberán recibir el mantenimiento preventivo o correctivo que los responsables de cada área soliciten. ARTÍCULO 19. Los lugares en que se almacenen reactivos, disolventes, equipos, materiales, medios de cultivo, y todo aquello relacionado o necesario para que el trabajo en los laboratorios se lleve a cabo, estarán sujetos a este Reglamento en su totalidad; los anaqueles y áreas de almacenamiento deberán contar con la protección adecuada para prevenir accidentes. ARTÍCULO 20. Queda prohibido desechar sustancias al drenaje o por cualquier otro medio. Los manuales de prácticas correspondientes deberán incluir la forma correcta de la disposición de los residuos. ARTÍCULO 21. Para transferir líquidos con pipetas, deberá utilizarse la llenadora correspondiente. Queda prohibido pipetear con la boca. ARTÍCULO 22. Al finalizar las actividades en el laboratorio, el responsable del área deberá verificar que queden cerradas las llaves de gas, agua, vacío, tanques de gases y aire, según sea el caso; apagadas las bombas de vacío, circuitos eléctricos, luces, etc. En caso de requerir que algún equipo trabaje de manera continua, deberá dejarse, tanto en el interior como en el exterior del laboratorio correspondiente, en forma claramente visible y legible, la información acerca del tipo de reacción o proceso en desarrollo, las posibilidades fuentes de problema, la manera de controlar los eventuales accidentes, y la forma de localizar al responsable del equipo. ARTÍCULO 23. Cuando se trabaje con sustancias tóxicas, deberá identificarse plenamente el área respectiva. Además, se deberá trabajar en área con sistema de extracción y equipo de protección personal (según el manual correspondiente). ARTÍCULO 24. En cada laboratorio de la Facultad deberá existir, en forma clara, visible y legible, la información acerca de los teléfonos de emergencia a los cuales llamar en caso de requerirlo. ARTÍCULO 25. Los anaqueles, libreros, estantes, archiveros, tanques de gas y, en general, accesorios y muebles de oficina y laboratorio, deberán estar sujetos a la pared para prevenir accidentes. ARTÍCULO 26. Queda prohibido que menores de edad permanezcan en el laboratorio sin la autorización por escrito del responsable del área.

ARTÍCULO 27. El personal (académicos, administrativos o estudiantes) que trabaje en los laboratorios debe

informar al responsable del área o a su jefe inmediato, si padece enfermedades que requieran atención especial y puedan generar incidentes dentro del área. ARTÍCULO 28. Todas aquellas cuestiones que no estén específicamente señaladas en el presente Reglamento deberán ser resueltas por la Dirección de la Facultad, con la opinión de la Coordinación de Seguridad, Prevención de Riesgos y Protección Civil. ARTÍCULO 29. Cualquier alteración en las condiciones de seguridad, o en el cumplimiento del presente reglamento, deberá ser reportado al responsable correspondiente.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 13

ARTÍCULO 30. Las personas a quienes se sorprenda haciendo mal uso de equipos, materiales, instalaciones, etc. propias de los laboratorios, de todo aquello mencionado en el Artículo 2 del presente Reglamento, o de las señalizaciones instaladas para Protección Civil, serán sancionadas conforme a la Legislación Universitaria, según la gravedad de la falta cometida. ARTÍCULO 31. En el caso de los alumnos, las sanciones aplicables serán las que decida el H. Consejo Técnico de la Facultad, conforme a las disposiciones de la Legislación Universitaria. ARTÍCULO 32. Si se trata de personal académico o administrativo, se levantarán las actas correspondientes y se dictarán las sanciones conforme a las disposiciones de la Ley Federal del Trabajo. ARTÍCULO 33. Cada área académica deberá tener un Reglamento Interno de Higiene y Seguridad que será de observancia obligatoria y complementario al presente Reglamento, en tanto no lo contravengan. ARTÍCULO TRANSITORIO ÚNICO. El presente Reglamento, una vez aprobado por el Consejo Técnico, entrará en vigor el día siguiente de su publicación en la Gaceta de la Facultad de Química. Aprobado por el H. Consejo Técnico en su sesión del 15 de junio de 2006.

Reglamento Interno de Higiene y Seguridad para

los Laboratorios del Departamento de Farmacia

ARTÍCULO 1. El presente Reglamento es complementario del Reglamento de Higiene y Seguridad para los Laboratorios de la Facultad de Química de la UNAM. Es aplicable en todos aquellos lugares del Departamento de Farmacia de la Facultad de Química donde se realice trabajo experimental, sea de docencia o de investigación; estos sitios, para efectos del presente Reglamento, serán denominados laboratorios. Se considerarán también como áreas de laboratorio aquellos anexos donde se lleven a cabo experimentos. Su observancia es obligatoria para el personal académico, alumnos y trabajadores administrativos y no excluye otra reglamentación que resulte aplicable. ARTÍCULO 2. Los laboratorios deberán estar acondicionados de acuerdo con lo establecido en el ARTÍCULO 3 del Reglamento de Higiene y Seguridad para los Laboratorios de la Facultad de Química de la UNAM. ARTÍCULO 3. Todas las actividades que se realicen en los laboratorios deberán estar supervisadas por un responsable.

a) En los laboratorios de docencia, el o los responsables de cada grupo serán cada uno de los profesores de dicho grupo. b) En los laboratorios de investigación, los responsables serán los técnicos académicos adscritos a los mismos o el profesor encargado del laboratorio.

ARTÍCULO 4. Al realizar actividades experimentales, nunca deberá estar una persona sola en los laboratorios. En el caso de que una de ellas sea alumno, deberá haber siempre un profesor como segunda persona. ARTÍCULO 5. En general, deberá usarse el cabello recogido cuando se utilice mechero; además, el equipo de protección personal que será usado en los laboratorios y anexos del laboratorio donde se lleven a cabo trabajos de experimentación será, para alumnos y profesores: 1. Bata de algodón 100% y zapato cerrado.

2. Lentes de seguridad (durante el tiempo que dure el experimento). En caso de lentes graduados, deberán ser de vidrios endurecidos e inastillables, de preferencia. 3. Guantes, en caso de que el experimento lo exija.

Para laboratoristas

1. Bata de algodón 100% y zapato cerrado. 2. Lentes de seguridad (durante el tiempo que estén en contacto con los reactivos). En caso de lentes graduados deberán ser de vidrio endurecido e inastillables, de preferencia. 3. Guantes, cuando se encuentre en contacto con los reactivos.

ARTÍCULO 6. Los residuos sólidos generados durante los trabajos experimentales deberán colocarse en los contenedores identificados para este fin y mantenerse alejados del área de trabajo.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 14

ARTÍCULO 7. Los restos de desechos biológicos (animales de laboratorio), generados durante las sesiones experimentales, deberán ser colocados en bolsas de plástico y enviados al Bioterio de la Facultad. No deberán ser desechados directamente en la basura. ARTÍCULO 8. Las sustancias tóxicas, volátiles o inflamables deberán ser utilizadas dentro de las campanas de extracción. ARTÍCULO 9. Cualquier muestra que se guarde en los refrigeradores deberá estar etiquetada con la siguiente información:

a) Nombre completo del alumno. b) Fecha y periodo que se mantendrá almacenada. c) Tipo de muestra. d) Nombre de la asignatura o proyecto de tesis. e) Profesor responsable de la asignatura o proyecto.

ARTÍCULO 10. No se admitirá a nadie que llegue extraoficialmente de visita. ARTÍCULO 11. Los sistemas de extracción de gases y campanas deberán mantenerse siempre sin obstáculos que impidan el cumplimiento de su función. ARTÍCULO 12. Cuando un extintor esté vacío por haber sido utilizado, deberá ser removido de su lugar para evitar confusiones en caso de necesitarlo. El responsable del área deberá hacer la solicitud de recarga o reemplazo a la brevedad posible, para que se cumpla con lo establecido en los Artículos 3 y 15 del Reglamento de Higiene y Seguridad para los Laboratorios de la Facultad de Química. ARTÍCULO 13. Al finalizar las actividades en el laboratorio, el responsable del área, el profesor o el laboratorista (el último en salir del laboratorio), deberá verificar que se cumpla el Artículo 22 del Reglamento de Higiene y Seguridad para los Laboratorios de la Facultad de Química. ARTÍCULO 14. Este Reglamento se dará a conocer a todos los alumnos al inicio del semestre lectivo y se recabarán sus firmas de enterados. Asimismo, deberá estar en un lugar visible en el laboratorio, al igual que el Reglamento de Higiene y Seguridad para los Laboratorios de la Facultad de Química de la UNAM. Artículo Transitorio Único El presente Reglamento, una vez aprobado por el Consejo Técnico, entrará en vigor el día siguiente de su publicación en la Gaceta de la Facultad de Química. Aprobado por el H. Consejo Técnico en su sesión del 5 de octubre de 2006.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 15

REPORTE DE SEGURIDAD E HIGIENE

GRUPO: _____________ FECHA: ___________________

PRÁCTICA: ______________________________________________________________

INTEGRANTES: __________________________________________________________

UTILIZACIÓN DE REACTIVOS

Reactivo Cantidad empleada Observaciones

VIGILANCIA DE EQUIPO

Equipo Hora de inicio Hora final Observaciones

MEDIDAS DE SEGURIDAD

Tratamiento de residuos Observaciones

Firma del responsable: ________________________________________

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 16

EXTRACCIÓN Y CUANTIFICACIÓN DE TÓXICOS

NO VOLÁTILES EN UNA MUESTRA PROBLEMA

OBJETIVO ACADÉMICO

Que el alumno emplee métodos de extracción ácida y básica para obtener eficientemente

tóxicos no volátiles de naturaleza ácida y básica en una muestra problema, y concluya qué

método de extracción es el más eficiente.

PROBLEMA

Establecer las condiciones más adecuadas para realizar una extracción mayor o igual al 90%

de los tóxicos no volátiles ácidos y básicos (ácido acetilsalicílico [AAS] y cafeína) presentes

en una muestra problema. La muestra deberá trabajarla en medio ácido y medio básico.

Reactivos

- Ácido tartárico - Cafeína

- Hidróxido de sodio (NaOH) - Cloroformo (CHCl3)

- Nitrato férrico (Fe(NO3)3) - Salicilato de sodio

- Ácido clorhídrico (HCl) - Cloruro mercúrico (HgCl2)

- Bicarbonato de sodio (NaHCO3) - Sulfato de sodio anhidro (Na2SO4)

Equipo

- Espectrofotómetro - Balanza analítica

- Rotaevaporador - Vórtex

Material

Material por equipo

- Gradilla 1 - Piseta con agua destilada 1

- Tubos de ensayo 13 x 100 4 - Matraz de bola de 50 mL 2

- Matraz aforado de 10 mL 2 - Pipeta Pasteur 2

- Matraz aforado de 25 mL 2 - Probeta de 25 mL 1

- Embudo de separación de 250 mL 2 - Espátula 1

- Matraz Erlenmeyer de 250 mL 1 - Pipeta graduada de 10 mL 2

- Matraz Erlenmeyer de 50 mL 2 - Pipeta graduada de 5 mL 2

- Anillo metálico 2 - Pipeta graduada de 1 mL 1

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 17

Material para la curva patrón

- Gradilla 1

- Matraz volumétrico de 10 mL 5

- Matraz volumétrico de 25 mL 5

- Tubos de ensayo 10

- Vaso de precipitado de 100 mL 1

- Pipeta graduada de 1 mL 1

- Pipeta graduada de 10 mL 1

NOTA: El profesor proporcionará las celdas a los alumnos.

DESARROLLO EXPERIMENTAL

El profesor proporcionará 30 mL de muestra problema, la cual deberá dividirse en dos

porciones de 15 mL para realizar a una de ellas la extracción en medio ácido; y a la otra, la

extracción en medio básico. La cuantificación de ácido acetilsalicílico (AAS) y cafeína se

determinará siguiendo los apéndices correspondientes.

A) Proceso de extracción en medio ácido para tóxicos no volátiles

1. Agregar ácido tartárico hasta un pH = 2.

2. La solución ácida se extrae con 2 porciones de 15 mL de CHCl3, separando las fases

orgánicas y reuniéndolas en un matraz.

3. La fase acuosa se guarda, etiquetándola como fracción A.

4. La fase orgánica se extrae con dos porciones de 10 mL de agua destilada y se reúnen las

fases acuosas con la fracción A.

5. Tratamiento de la fase orgánica. Esta fase se trata con 5 mL de una solución saturada de

NaHCO3, se separan las fases. Etiquetar la fase acuosa como fracción B. Tratar esta

fracción como se indica en el inciso C.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 18

5.1. Extraer la fase orgánica con 5 mL de NaOH 0.1 N. La fase acuosa resultante,

etiquetarla como fracción C y trabajarla como se indica en el inciso C. La fase orgánica

resultante marcarla como R1.

6. Tratamiento de la fracción A. La fase acuosa obtenida del inciso 4 se alcaliniza hasta pH = 10

con NaOH 2.5 N.

6.1. Extraer con dos porciones de CHCl3 de 10 mL (2 x 10 mL CHCl3) y separar las fases.

Desechar la fase acuosa resultante en el contenedor etiquetado como R2.

6.2. Concentrar la fase orgánica hasta sequedad en el rotaevaporador. Etiquetar como

fracción D y tratarlo como se indica en el inciso D. El disolvente orgánico resultante que se

encuentra en el matraz de condensación debe ser desechado en el contenedor etiquetado

como R1.

B) Proceso de extracción en medio básico para tóxicos no volátiles

1. La muestra se ajusta a pH = 10 con NaOH 2.5 N.

2. Realizar la extracción con dos porciones de CHCl3 de 15 mL, separando las fases.

3. La fase orgánica se concentra hasta sequedad y el residuo se etiqueta como fracción E y

se trata como se indica en el inciso D.

4. La fase acuosa se etiqueta como fracción F y se trata según el inciso C.

C) Cuantificación de ácido acetilsalicílico

Tratamiento de la muestra (fracciones B, C y F)

1. Colocar 1 mL de las fracciones B, C y F en tubos de forma separada y adicionar a cada

una 5 mL del reactivo para desarrollar color (apéndice II), agitar, esperar 2 min.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 19

2. Determinar la absorbancia a 540 nm. Si la lectura de absorbancia no cumple con la ley

de Lambert y Beer, realice las diluciones necesarias, repita el procedimiento y vuelva a

realizar la lectura.

3. Calcular la concentración de AAS presente en su muestra, interpolando la lectura de

absorbancia en la curva patrón.

4. Después de haber realizado la lectura y una vez obtenidos los resultados, las fracciones

B, C y F se reúnen y desechan en el contenedor etiquetado como R3.

Curva patrón del AAS

1. Solución patrón de salicilato de sodio (1000 µg/mL). Pesar 25 mg de salicilato de sodio

y disolverlo. Llevar hasta 25 mL con agua destilada.

2. A partir de la solución patrón de salicilato de sodio (1000 µg/mL), preparar la curva

patrón como se describe a continuación (realizar dos curvas patrón por grupo).

Alícuota de la

solución patrón

(mL)

Aforo con agua

destilada

Concentración

(µg/mL)

0.5 10 50

1 10 100

3 10 300

5 10 500

7 10 700

En un tubo de ensaye colocar 1 mL de las soluciones recién preparadas y adicionar 5 mL

del reactivo para desarrollar color (apéndice II), agitar la muestra en un vórtex durante

1 min, esperar 2 min y determinar la absorbancia a una longitud de onda de 540 nm,

ajustando a cero con un blanco (1 mL de agua y 5 mL del reactivo para desarrollar color).

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 20

D) Cuantificación de cafeína

Tratamiento de la muestra (fracciones D y E)

1. Disolver por separado los residuos de las fracciones D y E en 5 mL de NaOH 0.1 N.

Transferirlo a un matraz volumétrico de 25 mL y aforar con NaOH 0.1 N.

2. Determinar la absorbancia de la solución anterior a 275 nm utilizando NaOH 0.1 N

como blanco. Si la lectura de absorbancia obtenida no cumple con la ley de Lambert y

Beer, realice las diluciones necesarias con NaOH 0.1N.

3. Calcular la concentración de cafeína presente en su muestra, interpolando la lectura de

absorbancia en la curva patrón.

4. Después de haber realizado la lectura y una vez obtenidos los resultados, las fracciones

D y E se reúnen y desechan en el contenedor etiquetado como R2.

Curva patrón

1. Solución patrón de cafeína (100 µg/mL). Disolver 10 mg de cafeína anhidra en 10 mL

de NaOH 0.1 N y aforar con la misma solución a 100 mL.

2. A partir de la solución patrón de cafeína (100 µg/mL) preparar la curva patrón como se

describe a continuación. Por grupo realizar dos curvas patrón.

Alícuota de la

solución patrón

(mL)

Aforo con NaOH

0.1 N

Concentración

(µg/mL)

1 25 4

2 25 8

3 25 12

4 25 16

5 25 20

3. Determinar la absorbancia de la curva patrón a una longitud de 275 nm, ajustando a cero

con un blanco (NaOH 0.1 N).

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 21

CUESTIONARIO

1. En el caso de emplear una muestra biológica indique cuál es el objetivo de adicionar

ácido tartárico además de ajustar el pH.

2. Una vez desarrollado el guión para una eficiente extracción de un xenobiótico, ¿qué

puntos del proceso y propiedades fisicoquímicas considera que son críticos?

3. Complete la siguiente tabla e indique los datos de la regresión lineal de cada curva.

AAS

[μg/mL]

Abs*

curva

1

Abs*

curva

2

cafeína

[μg/mL]

Abs*

curva

1

Abs*

curva

2

50 4

100 8

300 12

500 16

700 20

Pendiente (m) Pendiente (m)

Ordenada al origen (b) Ordenada al origen (b)

Coeficiente de

correlación lineal (r)

Coeficiente de

correlación lineal (r)

*Abs: Absorbancia.

Tabla 1. Curva patrón.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 22

Tabla 2. Lecturas de muestras.

4. Interpole los datos de absorbancia de cada una de sus fracciones y calcule la

concentración de AAS y/o cafeína en su muestra, indicando el procedimiento que siguió

para realizarlo.

5. ¿Es necesario considerar el factor de dilución para calcular la concentración inicial de

los xenobióticos en su muestra? Justifique su respuesta.

6. Complete las siguientes tablas y, de acuerdo con los resultados grupales, concluya cuál

es el mejor método de extracción analizado para los xenobióticos.

Equipo

Ácido acetilsalicílico

Extracción en medio ácido Extracción en medio básico

Concentración

(µg/mL)

Rendimiento

(%)

Concentración

(µg/mL)

Rendimiento

(%)

1

2

3

Tabla 3. Resultados grupales AAS.

Equipo Absorbancia de las fracciones

B C F D E

1

2

3

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 23

Tabla 4. Resultados grupales cafeína.

7. En caso de no haber obtenido un rendimiento superior al 90%, analice a qué puede

atribuirse el hecho.

Equipo

Cafeína

Extracción en medio ácido Extracción en medio básico

Concentración

(µg/mL)

Rendimiento

(%)

Concentración

(µg/mL)

Rendimiento

(%)

1

2

3

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 24

Referencias bibliográficas

Casarett, L.J. “Caffeine biotransformation” en Casarett & Doull’s Toxicology: The basic

science of poisons. McGraw Hill, New York, 2001, p. 1071.

____________“Salicylic acid, biotransformation” en Casarett & Doull’s, Toxicology: The

basic science of poisons. McGraw Hill, New York, 2001, p. 203.

Clarke, E.G.C. “Screening Tests for Common Drugs” en Isolation and identification of

drugs in pharmaceuticals body fluids and post-mortem material. Vol. 1,

Pharmaceutical Press, London, 1974, pp. 3-15.

____________“Extraction Methods in Toxicology” en Isolation and identification of drugs

in pharmaceuticals body fluids and post-mortem material.” Vol. 1, Pharmaceutical

Press, London, 1974, pp. 16-30.

____________“Colour Tests” en Isolation and identification of drugs in pharmaceuticals

body fluids and post-mortem material. Vol. 1. Pharmaceutical Press, London, 1974,

pp. 123-134.

Florey, K. “Aspirine” en Analytical Profiles of drug substances. Vol. 8, Florey, K. (Ed.).

Academic Press Inc., London, 1991, pp. 1-11.

Goodman & Gilman. Las bases farmacológicas de la terapéutica. Vol. I, (9ª ed.) McGraw-

Hill, Mexico, 1996, pp. 669-677 y 721-727.

Klaassen, C.D., “Analytic Toxicology” en Toxicology the basic science of poisons. (5ª ed.)

McGraw-Hill, 1996, pp. 952 y 953.

Zubair, M.C., Hassan, M.A. y Al-Meshal, I.A. “Caffeine” en Analytical Profiles of drug

substances, Vol. 15. Florey, K. (Ed.). Academic Press Inc., London, 1991, pp. 71-150.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 25

APÉNDICE I

CONOCIMIENTOS PREVIOS

1. Efectos tóxicos del ácido acetilsalicílico (AAS) y de la cafeína.

2. Relación entre el pKa de una sustancia con el pH del medio en el que se encuentra

disuelto.

3. Estructura de la forma iónica y no iónica del AAS y de la cafeína.

4. Reacción de hidrólisis del AAS.

5. Valores de pKa del AAS, ácido salicílico, ácido tartárico, ácido acético y de la cafeína.

6. Solubilidad de una sustancia iónica en medio acuoso y disolvente orgánico.

7. Densidad de los disolventes a emplear.

8. Fundamento de una extracción múltiple y selectiva.

9. Sustancias que pueden precipitar proteínas.

10. Esquema de los procesos de separación empleados tanto en medio ácido como en medio

básico, especificando qué especies químicas se encuentran en cada una de las fases.

11. Propósito de lavar la fase orgánica con dos porciones de agua destilada en la extracción

en medio ácido.

12. Propósito de juntar las facciones acuosas obtenidas de la partición con CHCl3 con la

fracción A en el proceso de extracción en medio ácido.

13. Objetivo de adicionar NaHCO3 y NaOH 0.1N en el proceso de extracción ácida.

14. Naturaleza de los compuestos obtenidos en cada una de las fracciones.

15. Dibujo de la reacción de identificación y cuantificación del AAS.

16. Rango de absorbancia en el cual se cumple la ley de Lambert y Beer.

17. Razón por la cual se determinan la cafeína y el AAS a diferentes longitudes de onda.

18. Forma de obtener el rendimiento de la extracción de una sustancia.

19. El análisis de una muestra biológica de 20 mL para determinar la presencia de

salicilatos y/o cafeína arrojó las siguientes lecturas de absorbancia:

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 26

Absorbancia a

= 540 nm

Volumen

(mL) Absorbancia a

= 275 nm

Volumen

(mL)

fracción B = 0.613 15 fracción D = 0.785 6

fracción C = 0.456 7

Tabla 1. Absorbancia y volumen final de las fracciones B, C y D.

Para la realización de los cálculos considere el proceso de extracción en medio ácido

descrito en el guión experimental y tome en cuenta las diluciones necesarias.

Las lecturas de absorbancia de las curvas patrón para AAS y cafeína son las que se

muestran a continuación:

AAS Cafeína

Concentración

[µg/mL]

A= 540 nm Concentración

[µg/mL]

A = 275 nm

50 0.060 4 0.184

100 0.133 8 0.484

300 0.421 12 0.684

500 0.713 16 0.885

700 0.970 18 1.000

b = 5.8 x 10-3

m = 1.409 x 10-3

r= 0.999

b = 9.2 x 10-3

m = 0.0566

r =0.996

Tabla 2. Curva patrón.

Calcule la concentración de AAS y cafeína en la muestra inicial.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 27

APÉNDICE II

PREPARACIÓN DE REACTIVOS

Reactivo para desarrollar color:

Pesar 4 g de HgCl2 y disolverlo en 12 mL de HCl 1N. Adicionar 4 g de Fe(NO3)3 y agitar

hasta su total disolución. Diluir con agua destilada a 100 mL (considerar cantidades

adicionales para el blanco y curva patrón).

Solución de hidróxido de sodio 2.5 N

Disolver 10 g de NaOH en 25 mL de agua destilada y aforar a 100 mL.

Solución de hidróxido de sodio 0.1 N

Disolver 0.4 g de NaOH en 25 mL de agua destilada y aforar a 100 mL.

Solución de ácido clorhídrico 1 M

Colocar 83 mL de HCl concentrado en un matraz aforado y adicionar agua destilada hasta 1 L.

Solución de ácido tartárico al 10%

Colocar 10 g en 100 mL de agua destilada.

Solución saturada de bicarbonato de sodio.

Colocar una cantidad aproximada de bicarbonato de sodio R.A., en 10 mL de agua

destilada, hasta que no se pueda disolver en frío.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 28

APÉNDICE III

DISPOSICIÓN DE RESIDUOS

R1: Cloroformo (restos de ácido acetilsalicílico y cafeína).

R2: Solución acuosa básica de NaOH (pH = 10), tartrato de sodio y restos de cafeína

ionizada, ácido acetilsalicílico y ácido salicílico.

R3: Solución acuosa con HgCl2 y Fe(NO3)3.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 29

CUANTIFICACIÓN DE CIANURO DE HIDRÓGENO, COMO

TÓXICO VOLÁTIL, A PARTIR DE GLUCÓSIDOS CIANOGÉNICOS

OBJETIVO ACADÉMICO

Que el alumno determine la cantidad de cianuro de hidrógeno liberado a partir de

glucósidos cianogénicos presentes en muestras que forman parte de la dieta de humanos y

animales, y relacione la concentración con su potencial toxicológico.

PROBLEMA

Que el alumno cuantifique la concentración de cianuro de hidrógeno presente en una serie

de 2 muestras de semillas o plantas, y concluya cuál de estas muestras presentan riesgo de

toxicidad para el humano, con base en la cantidad de HCN que está presente en el consumo

de 100 g de muestra.

Reactivos

- Reactivo de Guignard *

- Cianuro de potasio * (KCN)

- Carbonato de sodio (Na2CO3)

- Ácido clorhídrico * (HCl)

- Cloroformo (CHCl3)

- Ácido pícrico

* Ver apéndice II.

Equipo

- Espectrofotómetro

- Termómetro

- Estufa

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 30

Material por equipo

- Tubos de ensaye 20 x 150 con

tapón de hule

3 - Tijeras 1

- Cajas Petri 1 - Pinzas 1

- Mortero con pistilo 1 - Navaja (traer por equipo) 1

- Tiras de papel filtro cualitativo

(filtración rápida) de 2 x 10 cm

3

- Matraz Erlenmeyer de 250 mL con tapón de

hule

3

- Pipeta volumétrica de 25 mL 1 - Pipeta graduada de 1 mL 1

- Probeta de 50 mL 1 - Embudo de cola corta 3

- Vaso de precipitado de 100 mL 3 - Hielo (proporcionado por laboratorista)

Material para la curva

- Matraces Erlenmeyer de 250 mL con tapón de hule 6

- Matraces volumétricos de 25 mL 6

- Pipeta graduada de 1 mL 1

- Tubos de ensaye 20 x 150 con tapón de hule 6

- Papel filtro (tiras de 2 x 10 cm) 6

NOTA: El profesor proporcionará las celdas para las lecturas.

Material de estudio

Traer por equipo aproximadamente 1g de una de las siguientes muestras: almendra de

durazno, semillas de manzana roja, almendra de ciruela pasa, semillas de lima, almendra

de capulín, almendra de cereza.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 31

DESARROLLO EXPERIMENTAL

Cada equipo trabajará con 2 muestras problema de plantas o semillas según la lista

mencionada, una de las cuales será proporcionada por el profesor.

NOTA: La solución patrón de cianuro de potasio, el ácido clorhídrico 0.5 N y el agua destilada

deben estar en baño de hielo antes de realizar la parte experimental.

Preparación de la tira reactiva

1. Cortar 2 tiras de papel filtro de 2 x 10 cm. El equipo que prepare curva patrón de HCN

deberá preparar 6 tiras adicionales.

2. Sumergir las tiras de papel filtro en el reactivo de Guignard y escurrirlas, colocándolas

para su secado sobre una caja de Petri.

3. Introducir las tiras en una estufa que se encuentre estable a una temperatura entre 50 y

55oC, dejándolas aproximadamente 10 min, cuidando que estén humedecidas.

Preparación de las muestras

NOTA: Antes de comenzar a triturar y pesar su muestra deberán tener todos los reactivos

necesarios dentro del matraz, así como lista la tira reactiva, tanto para su muestra como para la

curva patrón.

A cada una de las muestras se le realizará el siguiente procedimiento:

1. Medir 25 mL de agua destilada con pipeta volumétrica y agregarlos a un matraz

Erlenmeyer de 250 mL, colocar el matraz en baño de hielo.

2. Adicionar al matraz del inciso anterior 1 mL de solución de HCl 0.5N y dos gotas de CHCl3.

3. Poner con cuidado la tira reactiva de papel en el matraz como se indica en la Figura 1.

4. Tapar inmediatamente cada uno de los matraces Erlenmeyer con su tapón después de

concluir este procedimiento.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 32

5. Pesar la cantidad de cada muestra de acuerdo con el siguiente cuadro y colocarla en el

mortero, cortarla con la ayuda de las pinzas de disección y navaja, y macerarla lo más

rápido posible.

Semilla o almendra Peso en mg

Manzana 250

Durazno 200

Perón 150

Capulín y cereza 30

Mamey 200

Tabla 1. Pesos recomendados para la determinación de cianuro en semilla o almendra.

6. Colocar rápidamente la muestra fragmentada en el matraz Erlenmeyer de 250 mL y

tapar de inmediato.

7. Introducir simultáneamente en la estufa a 40ºC los matraces con las muestras problema y

con los correspondientes de la curva estándar de HCN durante 1 hr.

Figura 1. Preparación de la muestra en el matraz y colocación de la tira reactiva.

TAPÓN DE HULE

PAPEL FILTRO

(TIRA ACTIVA)

MUESTRA

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 33

Preparación de la curva patrón de ácido cianhídrico

La curva patrón de HCN se prepara colocando en matraces volumétricos de 25 mL los

volúmenes de la solución patrón de KCN indicados en la siguiente tabla y llevando al aforo

con agua destilada:

Alícuota de la solución

patrón de KCN (mL)

Concentración de HCN

(µg/mL)

0.0 Blanco

0.1 0.4

0.2 0.8

0.3 1.2

0.4 1.6

0.5 2

Tabla 2. Curva patrón de HCN.

1. Preparar 6 matraces Erlenmeyer de 250 mL agregando 1 mL de la solución de HCl 0.5 N

y dos gotas de CHCl3. Posteriormente, colocar con cuidado la tira reactiva en el interior

del matraz, cuidando de no mojarla con el contenido, y sujetarla en la boca del matraz

con un tapón, como se indica en la Figura 1.

2. Una vez preparadas las soluciones de la curva patrón, pasarlas de inmediato a los matraces

Erlenmeyer, debidamente etiquetados, y taparlos inmediatamente con su tapón después de

concluir este procedimiento. Finalmente, colocar los matraces en baño de hielo.

3. Introducir simultáneamente en la estufa a 40ºC los matraces con las muestras problema y

con los correspondientes de la curva estándar de HCN durante 1 h.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 34

Tratamiento de las muestras problema, curva patrón y blanco

1. Transcurrido el tiempo de incubación, los matraces se sacan de la estufa y se dejan

enfriar. Decantar el contenido del matraz y colocar el residuo líquido en un contenedor

etiquetado como R1. El material vegetal se deja secar en la campana sobre papel

periódico para ser desechado posteriormente.

2. Introducir en un tubo de ensaye la tira reactiva positiva (procedente de muestra

problema, curva estándar o blanco), adicionar al tubo 20 mL de agua destilada, tapar el

tubo y agitar vigorosamente. Filtrar la solución con papel filtro para eliminar residuos de

la tira de papel.

3. Determinar la absorbancia de la muestra y de la curva patrón en el espectrofotómetro a

520 nm, utilizando como blanco el primer punto de la curva.

4. Después de haber realizado la lectura y una vez obtenido resultados, la mezcla se coloca

en un contenedor etiquetado como R2.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 35

CUESTIONARIO

1. Reporte, en la siguiente tabla, los valores de absorbancia obtenidos e indique los valores

de la regresión lineal.

HCN

[μg/mL] Absorbancia

0.4

0.8

1.2

1.6

2

Pendiente (m)

Ordenada al origen (b)

Coeficiente de correlación lineal (r)

Tabla 1. Absorbancias de la curva patrón.

2. Interpole sus valores de absorbancia en la curva y calcule la concentración de HCN en

mg/100g de muestra, indicando el procedimiento realizado para esta determinación.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 36

3. Reporte los resultados obtenidos en su grupo y llene la siguiente tabla:

Equipo Material

vegetal

Concentración de HCN

(µg/mL)

mg HCN/100 g

de muestra

Riesgo de

toxicidad*

1

2

3

* alto ≥ 10 mg/100g de muestra; bajo < 10 mg/100g de muestra.

Tabla 2. Resultados grupales.

4. Indique cuáles muestras representan un riesgo potencial en caso de su consumo.

5. ¿Cómo podría eliminar la presencia de glucósidos cianogénicos de sus muestras?

6. Proponga un método para extraer tóxicos volátiles a partir de una muestra.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 37

Referencias bibliográficas

Conn, E.E. (1969). “Cyanogenic glucosides” en Journal of Agricultural and Food

Chemistry 17, pp. 519-526.

__________________“Cyanogenic glucosides” en Toxicants ocurring naturally in foods.

(2ª ed). National Academy of Sciences, Washington, D.C., 1973, pp. 290-308.

Eyjolfsson, R. (1970). “Recent Advances in chemistry of cyanogenic glucosides” en Fortschritte der Chemie Organischer Naturstoffe 28, 74-108.

Fabre, R. y Truhaht, R. Tratado de toxicología. Vol. I. Paraninfo, S.A., Madrid, 1976,

pp. 311-332.

Francisco, I.A. y Pimenta-Pinotti, M.H. (2000). “Cyanogenic Glycosides in Plants” en

Brazilian Archives of Biology and Technology 43, 487-492.

Harborne, J.B. “Cyanogenic glucosides and their function” en Phytochemical ecology,

Academic Press, London, 1972, 104-123.

Linder, E. Toxicología de los alimentos. Ed. Acribia, Zaragoza, 1978, pp. 15-19.

Lucas, B., Sotelo, A. (1984). “A simplified test for the quantitation of cianogenic

glucosides in wild and cultivated seeds” en Nutrition Reports International 29,

pp. 711-719.

Montgomery, R.D. “Cyanogens” en Toxic constituent of plant foodstuff, Liener, I.E., (Ed.)

Academic Press, New York, 1980, pp. 143-160.

Speijers, G.J. y Egmoad, H.P. “Natural Toxins III. Inherent Plant Toxins” en International

Food Safety Handbook: Science, International Regulation, and Control. Younes,

M., Fishbein, L., Miller, S., (Eds.). Marcel Dekker, Inc, New York, 1999, pp. 368-

380.

Vetter, J. (2000). “Plant cyanogenic glycosides” en Toxicon 38, 11-36.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 38

APÉNDICE I

CONOCIMIENTOS PREVIOS

1. Estructura de un glucósido cianogénico.

2. Hidrólisis enzimática de un glucósido cianogénico.

3. Importancia toxicológica de los glucósidos cianogénicos.

4. Reacción de Guignard para la detección de HCN.

5. Importancia que tiene que, durante la práctica, la trituración de la muestra se realice

rápidamente y sea colocada en baño de hielo.

6. Argumento por el cual la tira reactiva no debe tocar la solución en que se encuentra la

muestra.

7. Razón por la que se da una reacción positiva sin que la tira reactiva esté en contacto

con la muestra.

8. Causa por la cual es necesario colocar en baño de hielo las soluciones de cianuro de

potasio y el HCl 0.5N empleadas en la preparación de la curva patrón.

9. Finalidad de agregar HCl y CHCl3 a la muestra y a la curva patrón.

10. Propósito de calentar la muestra a 40C en la estufa.

APÉNDICE II

PREPARACIÓN DE REACTIVOS

Reactivo de Guignard

Colocar 2.5 g de ácido pícrico en un matraz Erlenmeyer de 250 mL y disolver con 200 mL

de agua destilada. Enseguida agregar 12.5 g de carbonato de sodio (Na2CO3) y agitar

cuidadosamente para disolverlo. Llevar la solución a un volumen de 500 mL con agua

destilada.

NOTA: Manejar con cuidado el ácido pícrico, ya que esta sustancia es cancerígena y se absorbe

fácilmente por la piel.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 39

Solución patrón de cianuro de potasio (KCN)

Se pesan exactamente 12.05 mg de KCN. Transferir la pesada cuidadosamente a un matraz

aforado de 50 mL, disolver y aforar con agua destilada.

NOTA: A pesar de que la concentración utilizada de KCN en este guión es de aproximadamente

0.24 mg/mL y esta concentración está por debajo de la DL50 en ratones, no deberá descuidar las

medidas de seguridad para su trabajo.

Solución ácido clorhídrico 0.5 N (HCl)

Medir 42.5 mL de HCl concentrado (densidad: 36.46g/100mL) y vaciar a un matraz

volumétrico de 1000 mL que contiene aproximadamente 500 mL de agua destilada, aforar

enseguida con agua destilada.

APÉNDICE III

DISPOSICIÓN DE RESIDUOS

R1: Solución acuosa de HCl (0.5 N), KCl, KCN.

R2: Solución de ácido pícrico, Na2CO3, restos de isopurpurina.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 40

PRODUCCIÓN DE METAHEMOGLOBINA POR NITRITOS Y

EFECTO PROTECTOR DEL AZUL DE METILENO IN VIVO

OBJETIVO ACADÉMICO

Que el alumno observe la formación de metahemoglobina (MHb) como consecuencia de la

administración de nitrito de sodio y el efecto protector del azul de metileno.

PROBLEMA

Determinar cuantitativamente, en ratas tratadas con NaNO2, la reducción en el porcentaje

de MHb debida a la administración de azul de metileno.

Reactivos

- Heparina 1000 UI o EDTA al 10% - Solución amortiguadora de fosfatos*

- Cianuro de potasio* (KCN) - Ferricianuro de potasio* (K3[Fe(CN)6])

- Solución salina isotónica (SSI) - Nuevo azul de metileno*

- Ácido acético glacial (CH3COOH) - Nitrito de sodio* (NaNO2)

- Hidróxido de amonio (NH4OH) - Éter dietílico

*Ver apéndice II.

Equipo

- Espectrofotómetros UV-Vis

- Centrífugas

- Balanza para pesar animales

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 41

Material

- Jeringa de insulina (traer por equipo) 3 - Jeringa de 3 mL (traer por equipo) 3

- Tubos de ensaye 13x100 1 - Tijeras de disección 1

- Pinzas de disección 1 - Tabla de disección 1

- Caja de contención 1 - Rejilla 1

- Pipeta graduada de 5 mL 2 - Pipeta graduada de 1 mL 1

- Pipeta graduada de 0.1 mL 1 - Tubos de ensaye 16 x 150 3

Animales de experimentación

3 Ratas Wistar macho de 200-250 g (por equipo).

DESARROLLO EXPERIMENTAL

1. Pesar a cada uno de los animales e identificarlos como I, II y III.

2. Administrar a la rata III, por vía intraperitoneal (i.p.) una dosis de 2 mg/Kg de la

solución de azul de metileno y, 15 minutos después, administrar por la misma vía, 50

mg/Kg de la solución de nitrito de sodio.

3. Administrar a la rata I, por vía i.p., 1 mL/Kg de SSI.

4. Administrar a la rata II, por vía i.p., 50 mg/Kg de la solución de nitrito de sodio.

5. Dejar transcurrir 30 min después de la administración.

6. Preparar 3 jeringas con 0.1 mL de solución de heparina o EDTA y 3 tubos de ensaye

con 0.3 mL del mismo anticoagulante e identificarlos de acuerdo con el número de rata

correspondiente.

7. Anestesiar a cada rata con éter, colocarla en la tabla de disección y extraer de cada una,

por punción cardiaca, 1 mL de sangre.

8. Colocar la muestra sanguínea en el tubo correspondiente. Quitar la aguja de la

jeringa para evitar hemolizar la muestra sanguínea. Mezclar los tubos

perfectamente por inversión, para evitar la coagulación de las muestras.

9. Depositar las jeringas y las agujas en el contenedor para residuos peligrosos biológico-

infecciosos (RPBI). Envolver los restos de los animales de experimentación en una

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 42

hoja de papel periódico y colocarlos en la caja de contención para su posterior

incineración.

10. Determinar el contenido de metahemoglobina y hemoglobina total de cada muestra

como se indica a continuación:

a) Colocar 4.9 mL de solución amortiguadora de fosfatos pH 6.6 en un tubo de ensaye.

b) Agregar 0.1 mL de sangre. Conservar el resto de la muestra hasta el final de la

determinación y después desactivar con hipoclorito de sodio (NaClO).

c) Mezclar y dejar reposar durante 5 minutos.

d) Centrifugar a 2500 rpm durante 10 minutos.

e) Separar el sobrenadante.

f) Medir la absorbancia del sobrenadante a 630 nm (lectura A1), contra un blanco de

solución amortiguadora de fosfatos.

g) Pasar la solución a un tubo limpio.

h) Agregar una gota de la solución neutralizada de KCN al sobrenadante y al blanco.

i) Mezclar y dejar reposar 2 minutos.

j) Determinar nuevamente la absorbancia a 630 nm (lectura A2). Recuperar la

solución en el mismo tubo.

k) Agregar una gota de NH4OH concentrado al tubo del inciso i, y mezclar.

l) Transferir 2 mL de la solución del tubo del inciso k, a otro tubo y agregar 8 mL de

la solución amortiguadora y 0.1 mL de la solución de K3[Fe(CN)6] al 20% en

solución acuosa. Desechar el sobrante de la solución proveniente del inciso k en el

contenedor etiquetado como R1.

m) Preparar un blanco empleando 2 mL de agua destilada, 8 mL de solución

amortiguadora y 0.1 mL de la solución de K3[Fe(CN)6] al 20% en solución acuosa.

n) Después de 2 minutos agregar una gota de la solución neutralizada de KCN a cada

tubo (blanco y problema).

o) Mezclar, esperar 10 minutos y determinar la absorbancia a 540 nm, contra su

respectivo blanco (lectura A3). Después de haber realizado la lectura y, una vez

obtenidos los cálculos, desechar el contenido de la celda y el resto de la solución

del inciso n en el contenedor etiquetado como R1.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 43

NOTA: Todo material de vidrio que estuvo en contacto con muestras sanguíneas deberá ser

inactivado con NaClO previamente a su lavado.

11. Cálculos:

Hemoglobina total (Hbt) en g/100 mL = A3 x 37.4

Metahemoglobina total (MHbt) en g/100 mL = (A1 - A2) 23.4

Porcentaje de MHb en sangre total (%MHbt) = (MHbt) x 100/Hbt

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 44

CUESTIONARIO

1. Reporte los resultados grupales en las siguientes tablas:

Equipo SSI NaNO2

Azul de metileno

+ NaNO2

A1 A2 A3 A1 A2 A3 A1 A2 A3

1

2

3

Tabla 1. Lecturas espectrofotométricas.

Eq

SSI NaNO2 Azul de metileno +

NaNO2

Hbt

(g/100 mL)

MHbt

(g/100mL)

Hbt

(g/100 mL)

MHbt

(g/100mL)

Hbt

(g/100 mL)

MHbt

(g/100mL)

1

2

3

Prom

SD

%CV

Tabla 2. Determinaciones de Hb y MHb totales.

Equipo SSI NaNO2 Azul de metileno + NaNO2

%MHbt %MHbt %MHbt

1

2

3

Prom

SD

%CV

Tabla 3. Comparación del porcentaje de MHb en los diferentes tratamientos.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 45

2. Graficar los resultados promedio de Hbt y MHbt para cada tratamiento.

3. Graficar los resultados porcentuales de MHbt para cada tratamiento.

4. ¿Qué efecto observó en el %MHbt en la rata II? ¿A qué lo atribuye?

5. ¿Qué efecto observó en el %MHbt en la rata III? ¿A qué lo atribuye?

6. ¿Observó algún cambio en la cantidad de Hbt en función de los xenobióticos

administrados? ¿Por qué?

7. ¿Por qué es necesario comparar la cantidad de MHbt en valores porcentuales?

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 46

Referencias bibliográficas

Dreisbach, R.H. y Robertson, W.O. “Tratamiento de los envenenamientos” en Manual de

toxicología clínica, prevención diagnóstico y tratamiento, Editorial El Manual

Moderno (6ª ed.), México, D.F., 1988, pp. 68-70.

Hall, R.; Malia, R.G. “Investigation of hemolitic anaemias” en Medical Laboratory

Hematology. Ed. Butterworths, Gran Bretaña, 1984, pp. 327-333.

Klassen, C.D.; Watkins, J.B; Casarett & Doull, Manual de Toxicología. Ed. McGraw-Hill

Interamericana (5ª ed.), México, 2001, pp. 394 y 395.

Stahr, H.M. “Inorganic and other Analisis” en Analitical Methods in toxicology. Ed. John

Wiley and sons, inc., USA, 1991, pp. 5-7.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 47

APÉNDICE I

CONOCIMIENTOS PREVIOS

1. Efectos tóxicos de una intoxicación por nitritos.

2. Efectos tóxicos de una intoxicación con azul de metileno.

3. Esquema que explique el efecto protector del azul de metileno en una intoxicación por

nitritos.

4. Fundamento de los métodos analíticos para determinar hemoglobina total y

metahemoglobina en sangre.

5. Especies que se determinan en A1, A2 y A3.

6. Propósito de agregar la solución amortiguadora de fosfatos pH 6.6, NH4OH en el paso

“k” de su técnica, K3[Fe(CN)6] y KCN.

APÉNDICE II

PREPARACIÓN DE REACTIVOS

Solución amortiguadora de fosfatos pH = 6.6.

Realizar una primera solución amortiguadora de fosfatos, disolviendo 3.8 g de fosfato

disódico anhidro (Na2HPO4) y 5.44 g de fosfato monopotásico anhidro (KH2PO4) en 1000 mL

de agua destilada. Mezclar una parte de la solución anterior con tres partes de agua

destilada y ajustar el pH a 6.6.

Solución de cianuro de potasio neutralizada. (KCN)

Mezclar una parte de una solución de cianuro al 10% y otra parte de ácido acético glacial al

12% (v/v).

NOTA: Tanto el cianuro de hidrógeno como los cianuros sólidos o en disolución son tóxicos por

absorción por la piel, ingestión e inhalación.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 48

Solución de ferricianuro de potasio al 20%. (K3[Fe(CN)6])

Preparar 10 mL de esta solución.

Solución Salina Isotónica (SSI)

Preparar 50 mL de esta solución o comprar una presentación comercial.

EDTA al 10%. (Preparar sólo en caso de no haber heparina, consultar con el laboratorista

o el profesor)

Pesar 1 g de EDTA y disolver en agua destilada, aforar a 10 mL.

Solución de nuevo azul de metileno en SSI (4 mg/mL)

Preparar 10 mL de esta solución, pesando 40 mg de nuevo azul de metileno y disolviendo

en 10 mL de SSI.

Solución de nitrito de sodio (NaNO2) en SSI (100 mg/mL)

Preparar 10 mL de esta solución, pesando 1 g de NaNO2 y disolviéndolos en 10 mL de

solución salina isotónica.

APÉNDICE III

DISPOSICIÓN DE RESIDUOS

R1: Solución amortiguadora de fosfatos pH 6.6, KCN, NH4OH, K3[Fe(CN)6] y residuos de

sangre.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 49

DETERMINACIÓN DE MALATIÓN RESIDUAL

OBJETIVO ACADÉMICO

Que el alumno sea capaz de extraer y cuantificar un xenobiótico empleando sus

propiedades ácido-base y reacciones de degradación.

PROBLEMA

Cuantificar malatión residual en la superficie de vegetales comestibles y reportar un

porcentaje de recuperación mayor o igual al 75% en la muestra control. Relacionar la

cantidad de insecticida presente en ambas muestras con el riesgo toxicológico de su

consumo.

Material

Material vegetal

Traer por equipo 50 g de cáscara de limón, calabaza o chayote; o bien 50 g de hojas

externas de col o coliflor.

Material por equipo

- Frasco de vidrio de boca ancha

con tapa (traer por equipo)

2

- Probeta graduada de 25 mL

1

- Pipeta volumétrica de 10 mL 1 - Tubo de ensaye de 16 x 150 2

- Pipeta graduada de 1 mL 3 - Vasos de precipitado de 100 mL 2

- Pipeta graduada de 5 mL 2 - Propipeta 1

- Pipeta graduada de 10 mL 2 - Soporte universal c on anillos de fierro 2

- Embudo de filtración rápida 2 - Embudo de separación de 125 mL 2

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 50

Material para la curva

- Embudo de separación de 125 mL 3 - Pipeta graduada de 5 mL 1

- Tubo de ensaye de 16 x 150 3 - Vasos de precipitado de 100 mL 3

- Embudo de filtración rápida 3

Reactivos

- Sulfato de sodio* (Na2SO4) - Malatión al 50%

- Hidróxido de sodio* (NaOH) - Fenolftaleína*

- Cloruro férrico* (FeCl3) - Etanol (EtOH)

- Sulfato cúprico* (CuSO4) - Tetracloruro de carbono (CCl4)

- Acetona - Disulfuro de carbono (CS2)

* Ver apéndice II.

DESARROLLO EXPERIMENTAL

1. Colocar 25 g del material de estudio (únicamente la cáscara o superficie del vegetal) en

un frasco de vidrio de boca ancha y añadir 30 mL de CCl4, tapar y agitar

vigorosamente durante 5 minutos.

2. Filtrar y recolectar cuando menos 20 mL. Medir el volumen exacto con una probeta.

3. Desechar el material vegetal tratado con CCl4 colocándolo sobre un papel periódico,

identificar como R1 y colocar en la campana. Al finalizar la sesión, los responsables de

seguridad e higiene deberán colocar R1 en una bolsa de plástico y cerrarla.

4. Preparar un tubo problema con 10 mL del extracto filtrado, midiendo con pipeta

volumétrica. Adicionar a cada tubo 0.2 mL de solución de CS2 al 0.5% y 5 mL de

etanol. Pasar esta mezcla a un embudo de separación y agitar suavemente.

5. Adicionar 15 mL de solución ácida de Na2SO4 al 9% y agitar cuidadosamente el

embudo por 1 minuto.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 51

6. Colectar la fase orgánica en un vaso de precipitado y filtrarla, transfiriéndola nuevamente al

embudo de separación enjuagado previamente con acetona. Etiquetar la fase acuosa como R2.

7. Añadir 5 mL de etanol, agitar y añadir 0.2 mL de NaOH 6N. Agitar nuevamente por 5

minutos, dejar reposar durante 1 minuto y adicionar 15 mL de solución de Na2SO4 al 9%.

Mezclar, separar las fases, recolectar la fase acuosa y desechar la fase orgánica

etiquetándola como R3.

8. Añadir 5 mL de CCl4 a la fase acuosa y una gota de indicador fenolftaleína al 1%.

Neutralizar gota a gota con HCl 6N con agitación continua hasta la desaparición del

color azul violeta.

9. Agregar 0.2 mL de solución de FeCl3, agitar y desechar la fase orgánica en el

recipiente etiquetado como R3.

10. Añadir a la fase acuosa 5 mL de CCl4 y 0.3 mL de solución de CuSO4 al 3.5% y agitar.

Colectar la fase orgánica y desechar la fase acuosa etiquetándola como R4.

11. Leer la fase orgánica en el espectrofotómetro a 416 nm, ajustando previamente a 100%

de transmitancia con CCl4.

12. Una vez que se obtengan los resultados finales, desechar la fase orgánica, etiquetándola

como R5.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 52

Procedimiento para la curva patrón

Preparar la curva patrón de la siguiente forma:

Tubo Reactivos Concentración

1 1 mL de solución patrón de malatión + 4 mL de etanol 8 µg/mL

2 2.5 mL de solución patrón de malatión + 2.5 mL de etanol 20 µg/mL

3 5.0 mL de solución patrón de malatión 40 µg/mL

Tabla 1. Procedimiento para la curva patrón de malatión.

Colocar el contenido de cada tubo en un embudo de separación. Adicionar 10 mL de CCl4 y

0.2 mL de solución de CS2 al 0.5%. Agitar suavemente y continuar el procedimiento como

en la muestra a partir del inciso 5.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 53

Referencias bibliográficas

Adrien, A. Selective Toxicity: the physicochemical basis of therapy. Ed. Chapman and Hall

(6a ed.), London, 1979, pp. 455-463.

CremLyn, C. Pesticides and mode of action, John Wiley & Sons, New York, 1978.

Katzung, B. Farmacología Básica y Clínica. Ed. El Manual Moderno (7ª ed.), México,

1999, pp. 119-121.

Klassen, C.D.; Watkins, J.B. Casarette & Doull, Manual de Toxicología. Ed. McGraw-Hill

Interamericana, México, 2001, pp. 615-618, 624-634, 937.

Morifusa, E. Organophosphorus pesticides: Organic and Biological Chemistry. CRC Press,

Cleveland, 1979, pp. 62-77, 103, 196-199.

Negherban, O.W. Handbook of toxicology: Insecticides. W.B. Saunders Comp., E.U.A.,

1959, pp. 451-464.

Norris, M.V.; Voil, W.A.; Averall, P.R. “Colorimetric estimation of malation residues” en

Journal of Agricultural and Food Chemistry, 1954, 2, p. 570.

Robertson, W.O., Dreishbad, R.H. Manual de Toxicología Clínica. Prevención,

Diagnóstico y Tratamiento. El Manual Moderno (6ª ed.), México, 1987, pp. 95-104.

White-Stevens, R. Pesticides in the Environment, Part I and II, Marcel Dekker, Inc., New

York, 1971.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 54

CUESTIONARIO

1. Reporte sus resultados en la siguiente tabla:

Malatión (µg/mL) %Transmitancia Absorbancia

8

20

40

Muestra 1

Muestra 2

Pendiente (m)

Ordenada al origen (b)

Coeficiente de correlación lineal (r)

Tabla 1. Resultados.

2. Explique por qué se determinan las lecturas en transmitancia.

3. Indique el procedimiento que siguió para realizar los cálculos de concentración de

malatión en sus muestras.

4. Reporte los resultados grupales en la siguiente tabla:

Equipo Material

vegetal

Malatión

(µg/mL)

Rendimiento Malatión en la

muestra (ppm)

Riesgo

tóxico*

1

---

2

---

3

---

* Alto ≥ 8 ppm; bajo < 8 ppm

Tabla 2. Resultados grupales.

5. De acuerdo con los resultados obtenidos, concluya si existe un riesgo toxicológico por el

consumo del material vegetal analizado.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 55

6. En caso de encontrar una baja concentración en alguna de las muestras, comente cómo

influiría cada uno de estos factores en el resultado del análisis: A) estabilidad del

compuesto, B) el desarrollo experimental realizado, C) cumplimiento de las normas de

aplicación del pesticida en cuestión.

APÉNDICE I

CONOCIMIENTOS PREVIOS

1. Usos y propiedades biológicas del malatión.

2. Ventajas que presentan los pesticidas organofosforados con relación a los

organoclorados.

3. Mecanismo de toxicidad del malatión en el insecto.

4. Mecanismo de potenciación del efecto tóxico del malatión en insectos.

5. Enzimas involucradas en la destoxificación del malatión en insectos y en mamíferos.

6. Comparación de los valores de DL50 para mamíferos y para insectos.

7. Propósito de adicionar los siguientes reactivos: CCl4, CS2, EtOH, solución ácida Na2SO4

al 9%, NaOH, solución Na2SO4 al 9%, fenolftaleína, HCl, FeCl3 y CuSO4.

8. Dibuje la reacción que se lleva a cabo con el malatión en medio básico y presencia de

etanol.

9. Estructura del compuesto de coordinación que se forma durante la práctica con los

productos de la reacción anterior y el catión Cu2+

. Relación matemática entre

absorbancia y transmitancia.

10. Límites permitidos de acuerdo con la NOM vigente para el malatión.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 56

APÉNDICE II

PREPARACIÓN DE REACTIVOS

Solución patrón de malatión 40 µg/mL

Medir 0.1 mL de malatión al 50% y aforar con etanol a 100 mL. De esta solución medir

8 mL y aforar a 100 mL con etanol.

Nota: El malatión es inhibidor de la colinesterasa y se absorbe fácilmente por piel y vías

respiratorias, se debe extremar cuidado con su contacto directo. Sus efectos agudos incluyen

convulsiones, coma y fallo respiratorio.

Disulfuro de carbono al 0.5% (CS2)

Para preparar 100 mL, medir 0.5 mL de CS2 y aforar a 100 mL con CCl4.

Nota: El CS2 es altamente tóxico, se absorbe por piel y vías respiratorias. Sus efectos tóxicos

incluyen irritación de membranas, náusea, vómito, pérdida de conocimiento y convulsiones.

Sulfato de sodio al 9% (Na2SO4)

Para preparar 100 mL, pesar 9 g de Na2SO4 y aforar a 100 mL con agua destilada.

Solución ácida de sulfato de sodio

A 100 mL de solución de Na2SO4 al 9% adicionar 3 mL de HCl concentrado.

Hidróxido de sodio 6N (NaOH)

Para preparar 100 mL, pesar 24 g de NaOH y aforar a 100 mL con agua destilada.

Ácido clorhídrico 6N (HCl)

Para preparar 100 mL, medir 48.5 mL de HCl concentrado y aforar a 100 mL con agua

destilada.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 57

Cloruro férrico al 5% (FeCl3)

Para preparar 100 mL, pesar 5 g de FeCl3 y disolver en 1 mL de HCl 6N, aforar a 100 mL

con agua destilada.

Sulfato cúprico al 3.5% (CuSO4)

Para preparar 100 mL, pesar 3.5 g de CuSO4 y aforar a 100 mL con agua destilada.

Fenolftaleína al 1%

Para preparar 100 mL, pesar 1 g y aforar a 100 mL con EtOH.

APÉNDICE III

DISPOSICIÓN DE RESIDUOS

R1: Material vegetal con CCl4.

R2: Solución ácida de Na2SO4 al 9% y EtOH.

R3: CCl4 y subproductos orgánicos de hidrólisis ácida.

R4: CuSO4, FeCl3, Na2SO4, fenolftaleína, H2O.

R5: CCl4 y compuesto de coordinación de cobre.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 58

DETERMINACIÓN DE LA ACTIVIDAD ANTIOXIDANTE

DE LA QUERCETINA Y EL ÁCIDO NORDIHIDROGUAYARÉTICO

OBJETIVO ACADÉMICO

Que el alumno sea capaz de determinar la capacidad antioxidante de sustancias químicas.

PROBLEMA

Determinar la capacidad antioxidante de la quercetina y el ácido nordihidroguayarético

mediante la reducción en la producción de anión superóxido, utilizando el sistema xantina-

xantina oxidasa-nitroazul de tetrazolio.

Reactivos

- Xantina (Xan) - Carbonato de sodio (Na2CO3)

- Xantina oxidasa (XO) - Bicarbonato de sodio (NaHCO3)

- Nitroazul de tetrazolio (NAT) - EDTA

- Quercetina - Nitrato de cobre (Cu(NO3)2)

- Ácido nordihidroguayarético (ANDG)

Equipo

- Balanza analítica - Potenciómetro

- Espectrofotómetro

Material por equipo

- Tubos Eppendorf 1.5 mL 4 - Gradilla 1

- Micropipeta de 100-1000 µl 1 - Espátula de cromo níquel 1

- Micropipeta de 10-100 µl 1 - Nave de pesado 1

- Celda 1 - Matraces de 250 mL 2

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 59

DESARROLLO EXPERIMENTAL

1. Todo el material de vidrio deberá ser enjuagado previamente con EDTA.

2. Marcar 4 tubos Eppendorf como control positivo (C+), control negativo (C-), quercetina

y ANDG.

3. Preparar los tubos de acuerdo con la siguiente tabla, siguiendo el orden de adición

indicado en la columna reactivo.

Tubo

Reactivo

Control

positivo

(µL)

Control

negativo

(µL)

Antioxidante 0.25 µM

quercetina (µL) ANDG (µL)

a. Xantina 100 100 100 100

b. EDTA 100 100 100 100

c. Solución

amortiguadora 300 600 200 200

d. NBT 300 300 300 300

e. Antioxidante - - 100 100

f. XO* 300 - 300 300

g. Agitar e Incubar ** 1h 1h 1h 1h

h. Cu(NO3)2 200 200 200 200

* Una vez adicionada, se empieza a contar el tiempo.

** Cerrar el tubo, agitar la mezcla por inversión e incubar a 24-30°C.

Tabla 1. Preparación de los tubos problema y control.

4. Transcurrido el tiempo de incubación, leer las diferentes muestras a 560 nm, empleando

como blanco una solución amortiguadora de carbonatos pH 10.2.

5. Interpretar los resultados obtenidos considerando que el control positivo representa el

100% de formazán en el sistema Xan-XO-NAT de acuerdo con la siguiente fórmula.

% atrapamiento= 100 - [(AM) x100/A C+]

En donde:

AM= absorbancia de la quercetina y/o ANDG

AC+= absorbancia del control positivo

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 60

6. Una vez obtenidos los resultados, desechar el contenido de los tubos en un frasco

etiquetado como R1.

7. Depositar las puntas y los tubos Eppendorf en un contenedor proporcionado por el profesor.

CUESTIONARIO

1. Reporte sus resultados en la siguiente tabla:

Control positivo (C+) Quercetina ANDG

Absorbancia

% Atrapamiento 0 %

Tabla 1. Resultados por equipo.

2. ¿Cuál de los dos antioxidantes muestra una mayor capacidad atrapadora del radical O2•-?

3. ¿Considera que el consumo habitual de estos antioxidantes contribuiría a disminuir el

estrés oxidante? Justifique su respuesta.

4. Reporte los resultados grupales en la siguiente tabla:

Equipo % de Atrapamiento

Quercetina ANDG

1

2

3

4

Promedio

Desviación estándar

Tabla 2. Resultados grupales.

5. En caso de que los resultados grupales muestren una elevada variabilidad, discutan a qué

factores se podría atribuir dicho comportamiento.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 61

Referencias bibliográficas

Cadenas, E.; Packer, L. Handbook of Antioxidants. Marcel Dekker, Inc., New York, 2002.

Klaassen, C.D., Watkins, J.B. Manual de Toxicología de Casarett & Doull: la ciencia

básica de los tóxicos, (5ª ed.), McGraw-Hill, México, 2001.

Klassen, C.D. Casarett and Doull’s Toxicología: la ciencia de los venenos, (6a ed.), Ed.

Mc Graw-Hill, Interamericana, 2001.

Martínez-Flórez, S.; González-Gallego, J.; Culebras, J.M., y Tuñón, M.J. (2002). “Los

flavonoides: propiedades y acciones antioxidantes” en Nutrición Hospitalaria. XVII,

271-278.

Owena, P.L.; Johns, T. (1999). “Xanthine oxidase inhibitory activity of northeastern north

American plant remedies used for gout” en Journal of Ethnopharmacology 64, 149-160.

Tsutomu, K.; Susumu, T.; Hidetaka, N., et al. (2003). “A novel and potent biological

antioxidant, kinobeon A, from cell culture off sunflower” en Life Sciences 74, 87-97.

Wardman, P., (2007). “Fluorescent and luminescent probes for measurement of oxidative

and nitrosactive species in cells and tissues: Progress, pitfalls, and prospects” en

Free Radical Biology & Medicine 43, 995-1022.

World Health Organization monographs on selected medicinal plants, Volume 1, 1999,

Geneva, pp. 16-32.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 62

APÉNDICE I

CONOCIMIENTOS PREVIOS

1. Definición del proceso de estrés oxidante.

2. Reacción catalizada por la XO.

3. Noción de radical libre y especies reactivas.

4. Concepto de antioxidante.

5. Reacción de Fenton.

6. Propósito de la adición secuencial de: xantina, EDTA, solución amortiguadora de

carbonatos pH 10.2, nitroazul de tetrazolio, XO y Cu(NO3)2.

7. Completar los productos en el siguiente diagrama.

+

8. Especie química que absorbe a 560 nm.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 63

APÉNDICE II

PREPARACIÓN DE REACTIVOS

Xantina 1.5 mM

Pesar 22.7 mg de xantina, agregar Na2CO3 0.4 M hasta solubilizar y aforar a 50 mL con

solución amortiguadora de carbonatos.

Solución amortiguadora de bicarbonato de sodio-carbonato de sodio 84 mM, pH 10.2

Pesar 970 mg de NaHCO3 y 1.01 g de Na2CO3, disolverlos con agua destilada. Ajustar pH a

10.2 y aforar a 250 mL.

Nitroazul de tetrazolio 0.1 M

Pesar 41 mg de nitroazul de tetrazolio y aforar a 50 mL con agua destilada. Guardar la

solución en un frasco ámbar en el refrigerador.

EDTA 0.1 mM

Pesar 33.6 mg de EDTA, disolver con agua destilada, aforar a 1 L.

Xantina oxidasa

La enzima se preparará durante la sesión de laboratorio de acuerdo con la indicación de los

profesores.

Nitrato de cobre 0.2 mM (Cu(NO3)2)

Pesar 4 mg de Cu(NO3)2 y aforar a 100 mL con agua destilada.

Quercetina 0.25 µM

Pesar 1.4 mg de quercetina y aforar a 250 mL con solución amortiguadora de carbonatos

pH 10.2 (solución stock).

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 64

ANDG 0.25 µM

Pesar 1.3 mg de ANDG y aforar a 250 mL con solución amortiguadora de carbonatos pH

10.2 (solución stock).

APÉNDICE III

DISPOSICIÓN DE RESIDUOS

R1: xantina, xantina oxidasa, EDTA, solución amortiguadora de carbonatos pH 10.2,

nitroazul de tetrazolio, quercetina, ácido nordihidroguayarético, Cu(NO3)2, formazán, ácido

úrico, H2O2.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 65

EVALUACIÓN DE LA ACTIVIDAD GENOTÓXICA DE LA

CICLOFOSFAMIDA UTILIZANDO LA TÉCNICA DE

MICRONÚCLEOS EN MÉDULA ÓSEA

OBJETIVO ACADÉMICO

Que el alumno sea capaz de determinar la actividad genotóxica de un xenobiótico

empleando la técnica de cuantificación de micronúcleos en médula ósea de ratón.

PROBLEMA

Identificar la presencia de micronúcleos, inducidos por ciclofosfamida, en eritrocitos

policromáticos de médula ósea murina.

Animales de experimentación

Un ratón ICR por equipo, administrado 24 horas antes con ciclofosfamida con una dosis de

40 mg/Kg i.p. o un ratón ICR control negativo no tratado.

Material por equipo

- Tijeras de disección 2 - Portaobjetos 6

- Pinzas de disección 2 - Pipeta Pasteur 4

- Bulbo para pipeta Pasteur 4 - Contador de células 1

- Microscopio óptico 2

Reactivos

- Solución salina isotónica (SSI) - Colorante de Giemsa 2 %

- Aceite de inmersión. - Etanol (EtOH)

- Solución amortiguadora de fosfatos pH=6.8

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 66

DESARROLLO EXPERIMENTAL

NOTA: El siguiente protocolo requiere que no pasen más de 30 minutos entre los pasos 1 y 9.

1. Sacrificar al ratón por dislocación cervical.

2. Una vez muerto el animal de experimentación, fijarlo a la mesa de trabajo.

3. Dislocar la articulación del fémur con la cadera, estirando las patas traseras del animal.

4. Diseccionar y extraer el fémur cortando por arriba de la cresta iliaca (en la cadera) y por

debajo de la rodilla.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 67

5. Limpiar cuidadosamente cada fémur con papel hasta eliminar totalmente todo el tejido

muscular. Para facilitar la eliminación del tejido muscular, tomar la parte que queda

debajo de la rodilla y rotarla al lado contrario del movimiento natural de la articulación

de la rodilla y el fémur.

6. Una vez limpio, cortar cuidadosamente ambas epífisis y lavar el interior del fémur con 3

mL de SSI empleando una jeringa de 3 mL con aguja del número 21. Recolectar y reunir

en un mismo tubo de 13 x 100, la médula de cada fémur.

7. Envolver los restos del animal de experimentación en una hoja de papel periódico,

colocarlos en la caja de contención para incinerarlo posteriormente.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 68

8. Centrifugar a 3000 rpm durante 5 min el tubo que contiene la médula (tubo del inciso 6),

extraer el sobrenadante cuidadosamente con una pipeta Pasteur, y resuspender el botón

en una gota de SSI. Depositar el sobrenadante en una solución de hipoclorito de sodio.

9. Realizar 4 extendidos de la siguiente manera: colocar en la orilla de un portaobjetos una

gota de la suspensión de médula ósea y un segundo portaobjetos justo atrás de la gota en

ángulo de 45°. Dejar que la muestra se distribuya por capilaridad y deslizar suavemente

para formar una delgada capa de células.

10. Secar completamente los extendidos al aire.

11. Adicionar por goteo EtOH a las laminillas, hasta cubrir la superficie y secar al aire.

Repetir esta operación durante 5 minutos.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 69

12. A cada laminilla adicionar dos o tres gotas de colorante de Giemsa 2% y cubrir con un

cubreobjetos. Dejar reposar durante 10 minutos.

13. Retirar cuidadosamente el cubreobjetos, y enjuagar la laminilla con agua destilada.

14. Cubrir la laminilla con solución amortiguadora de fosfatos pH 6.8 durante 5 minutos.

15. Enjuagar la laminilla una vez más con agua destilada y secar al aire.

16. Observar al microscopio con aceite de inmersión, y registrar los siguientes datos:

- El número de eritrocitos policromáticos por cada 200 eritrocitos totales.

- El número de eritrocitos policromáticos micronucleados por cada 1000 eritrocitos

policromáticos.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 70

NOTA: Debido a que el conteo de los micronúcleos se debe realizar al ciego, el alumno no sabrá

hasta el final de la práctica si el animal de experimentación proporcionado ha sido tratado o no

con ciclofosfamida.

CUESTIONARIO

1. Con base en la experiencia adquirida, indique dos características que le permitan

identificar un micronúcleo y diferenciarlo de un artefacto producto de la tinción.

2. Reporte sus resultados en la siguiente tabla:

EPCa/ ET

b EPCMN

c/ EPC

Laminilla 1

Laminilla 2

Laminilla 3

Laminilla 4

Sumatoria /200 ET /1000 EPC

*EPC: Eritrocitos policromáticos, b ET: Eritrocitos totales,

c EPCMN: Eritrocitos policromáticos micronucleados.

Tabla 1. Resultados por equipo.

Eritrocito

policromático

micronucleado

Eritrocito

normocromático

Eritrocito

policromático

Eritrocito normocromático

micronucleado

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 71

3. Reporte los resultados grupales en la siguiente tabla:

Ciclofosfamida EPCa/ ET

b EPCMN

c/ EPC

Promedio /200 ET /1000 EPC

Datos teóricos de los individuos control

Control (-) n=3

Promedio 116/200 ET 5/1000 EPC

cociente 0.58 0.005

SD 0.0006 0.0006

*EPC: Eritrocitos policromáticos, b ET: Eritrocitos totales,

c EPCMN: Eritrocitos policromáticos micronucleados.

Tabla 2. Resultados grupales.

4. Realice una comparación estadística mediante (t-Student) entre los dos grupos y

concluya si existen diferencias significativas como para considerar un daño genotóxico.

5. Con el protocolo empleado y los resultados obtenidos, ¿podría establecer si el daño

genotóxico ocasionado por la ciclofosfamida fue clastogénico o aneuploidógeno? Explique

su respuesta.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 72

Referencias bibliográficas

Andreoli, C.; Gigante, D.; Nunziata, A. (2003). “A review of in vitro methods to assess the

biological activity of tobacco smoke with the aim of reducing the toxicity of smoke”

en Toxicology in Vitro 17, 587-594. EPA (US Environmental Protection Agency), Health Effects Test Guidelines OPPTS

870.5395, Mammalian Erythrocyte Micronucleus Test, Office of Prevention,

Pesticides and Toxic Substances (7101) EPA 712-C-98-226, August 1998. Hessel, H.; Radon, K.; Pethran, A.; Maisch, B.; Gröbmair, S.; Sautter, I.; Fruhmann, G.

(2001). “The genotoxic risk of hospital, pharmacy and medical personnel

occupationally exposed to cytostatic drugs — evaluation by the micronucleus

assay” en Mutation Research/Genetic Toxicology and Environmental Mutagenesis

497, 101-109.

Kirsch-Voldersa, M.; Elhajoujia, A.; Cundaria, E., Hummelenb, P.V. (1997). “The in vitro

micronucleos test: a multi-endpoint assay to detect simultaneously mitotic delay,

apoptosis, chromosome breakage, chromosome loss and non-disjunction” en

Mutation Research 392, 19-30.

Konopacka, M. (1994). “Evaluation of frequency of micronuclei in exfoliated cells from

bladder of mice treated with benzo(a)pyrene, 2-acetylaminofluorene and

cyclophosphamide” en Cell Biology International 18, 669-672.

Krishna, G.; Hayashi, M. (2000). “In vivo Rodent Micronucleus Assay: Protocol, Conduct

And Data Interpretation” en Mutation Research 455, 155-166.

Pastor, S.; Gutiérrez, S.; Creus, A.; Cebulska-Wasilewska, A.; Marcos, R. (2001).

“Micronuclei in peripheral blood lymphocytes and buccal epithelial cells of Polish

farmers exposed to pesticides” en Mutation Research/Genetic Toxicology and

Environmental Mutagenesis 495, 147-156.

Proudlock, R.J.; Statham, J.; Howard, W. (1997). “Evaluation of the rat bone marrow and

peripheral blood micronucleus test using monocrotaline” en Mutation

Research/Genetic Toxicology and Environmental Mutagenesis 392, 243-249.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 73

APÉNDICE I

CONOCIMIENTOS PREVIOS

1. Definición de eritropoyesis.

2. Concepto de micronúcleo y proceso de formación.

3. Diferencia entre daño clastogénico y aneuploidógeno, y cómo se pueden diferenciar con

la técnica de micronúcleos.

4. Fundamento de la tinción de Giemsa.

5. Coloración que adquieren los eritrocitos maduros, inmaduros y micronucleados con el

colorante de Giemsa.

6. Mecanismo de acción genotóxica de la ciclofosfamida.

7. Usos clínicos de la ciclofosfamida.

8. Propósito de adicionar EtOH y solución amortiguadora de fosfatos pH=6.8.

9. Se determinó la actividad genotóxica de la daunorrubicina y la apigenina en sangre

periférica de ratón, administrando grupos de 15 animales para cada tratamiento. Los

xenobióticos en estudio se administraron a 2.5 mg/kg, mientras que el grupo control fue

administrado con SSI, obteniendo los siguientes resultados:

Grupo Micronúcleos/1000 células

SSI 0.5 ± 0.33

Daunorrubicina 18.6 ± 0.62

Apigenina 1.6 ± 0.80

Tabla 1. Promedio de número de micronúcleos por cada tratamiento.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 74

Realice una comparación estadística (t-Student) de los grupos tratados con especto al

control, y concluya si existen diferencias significativas que sean indicativas de daño

genotóxico.

(n1 - 1)S1

2 + (n2 – 1)S22

n1 + n2 - 2

Sp =

2

Sp *

y1 – y2

n1 + n2

t0 =

2 1 + 1

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 75

Grados

de

libertad

0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005

1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106

12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055

13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012

14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977

15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947

16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921

17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898

18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878

19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861

20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845

21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831

22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819

23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807

24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797

25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779

27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771

28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763

29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756

30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750

40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704

60 0.679 0.848 1.046 1.296 1.671 2.000 2.390 2.660

120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617

0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576

Tabla 2. t-Student.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 76

APÉNDICE II

PREPARACIÓN DE REACTIVOS

Solución salina isotónica (SSI)

Para preparar 100 mL, se pesan 0.9 g de NaCl y se disuelven en 100 mL de agua destilada;

o bien, puede utilizarse la solución comercial.

Solución amortiguadora de fosfatos

Na2 HPO4 .....................2.56 g

KH2 PO4........................6.63 g

Agua destilada (cuanto baste para un litro)

Giemsa al 2%

Tomar 2 mL de Giemsa comercial y diluir en 100 mL de agua destilada.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 77

EFECTOS TÓXICOS

DE LA ADMINISTRACIÓN DE PLOMO EN RATAS

OBJETIVO ACADÉMICO

Que el alumno visualice el daño macroscópico ocasionado en hígado y bazo de ratas

administradas de forma sub-aguda con diferentes dosis de acetato de plomo por vía i.p.

Relacionar dicho daño con las alteraciones que se presentan en la morfología de los eritrocitos y

en los valores del hematocrito (Hto), hemoglobina total (Hbt) y hemoglobina libre (Hbl).

PROBLEMA

Identificar cuál de las dos soluciones de acetato de plomo causa mayor daño en las ratas, al

relacionar los resultados encontrados macroscópicamente en el hígado y bazo, con los

encontrados microscópicamente en los eritrocitos y en la cuantificación del Hto, Hbt, y Hbl.

DESARROLLO EXPERIMENTAL

El trabajo experimental se desarrollará por equipos en 4 sesiones de laboratorio.

Animales de experimentación (por equipo para las cuatro sesiones)

3 ratas del mismo sexo y peso entre 180 y 300 g.

Material por equipo

- Balanza para animales - 3 jeringas para INSULINA (traer por cada sesión)

- Caja de contención - Traer marcadores de tinta permanente color rojo, negro y azul

- Algodón - Perforador (primera sesión)

Reactivos

- Acetato de plomo (Pb(CH3COO)2) - Éter etílico

- Solución salina isotónica (SSI) - Etanol (EtOH)

- Hipoclorito de sodio al 6% (NaClO)

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 78

Procedimiento Sesión I (primera administración)

1. Cada equipo contará con 3 ratas.

2. Pesar e identificar mediante tinción en la cola y perforaciones en la oreja, previa

anestesia con éter, a cada una de las ratas.

Nota: El profesor indicará el color con el que se deberá marcar las colas de las ratas en cada

equipo y qué numeración se asignará a cada una de las ratas, de acuerdo con el siguiente código.

1 2 3 4 5

6 7 8 9 10

3. A cada equipo se le proporcionará 3 soluciones etiquetadas como solución A, B, y SSI.

4. A cada rata se le administrará, por vía intraperitoneal, un volumen de 0.5 mL de la

solución que le corresponda.

Procedimiento para la Sesión II y III (segunda y tercera administración)

1. Pesar a cada una de las ratas.

2. A cada rata se le administrará un volumen de 0.5 mL de la solución que le corresponda

por vía intraperitoneal.

Unidades = Oreja derecha Decenas = Oreja izquierda

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 79

Procedimiento para la Sesión IV

Material por equipo

- Navaja para bisturí con porta bisturí 1 - Pinza de disección 1

- Gradilla 1 - Tubos de ensayo de 13 x 100 15

- Tijeras de disección 1 - Tabla de disección 1

- Caja de contención 1 - Pipetas graduadas de 10 mL 2

- Jeringas de 5 mL 5 - Tubos de ensayo de 16 x 150 5

- Tubos capilares 8 - Vasos de precipitados de 100 mL 2

- Portaobjetos 16 - Algodón

- Pipetas volumétricas de 5 mL 2 - Celdas de vidrio 2

- Vaso de precipitados de 250 mL 1 - Cajas de Petri 4

- Micropipeta 1 - Pipeta graduada de 1 mL 1

Reactivos

- Nuevo azul de metileno - Reactivo de Drabkin

- Solución de heparina 1000 UI o EDTA al 10% - Éter etílico

- Colorante de Wrigth - Etanol (EtOH)

- Solución patrón de cianometahemoglobina

(CNMHb)

- Bencidina al 1%

- Peróxido de hidrógeno al 1% (H2O2) -Solución salina isotónica

(SSI)

Equipo

- Centrífuga para microhematocrito - Espectrofotómetro

- Microscopio de óptico(s) con objetivo de inmersión - Centrífuga

DESARROLLO EXPERIMENTAL

1. Preparar 3 jeringas con 0.1 mL de solución de heparina o EDTA al 10%.

2. Marcar 3 tubos de ensayo de 13 x 100 con el número de la rata que corresponda y

agregar 0.1 mL de heparina o 0.5 mL de EDTA al 10 % como anticoagulante.

3. Anestesiar las ratas con éter etílico y, mediante punción cardiaca, obtener un volumen

de 3 mL de sangre de cada una de las ratas.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 80

4. Quitar la aguja de la jeringa y transferir la sangre inmediatamente al tubo de 13 x 100

correspondiente. Mezclar perfectamente con el anticoagulante por inversión del tubo.

5. Sacrificar la rata por dislocación cervical.

6. Llenar dos capilares con la sangre obtenida en el inciso 4 para calcular el hematocrito

de acuerdo con lo indicado en la sección de técnicas experimentales.

7. Realizar dos frotis de cada una de las muestras sanguíneas con colorante de Wright de

acuerdo con la sección de técnicas experimentales.

8. Realizar dos frotis de cada una de las muestras sanguíneas con colorante nuevo azul de

metileno (NAM) de acuerdo con la sección de técnicas experimentales.

9. Realizar la cuantificación de hemoglobina total de acuerdo con la sección de técnicas

experimentales. Una vez realizadas las determinaciones anteriores, centrifugar cada

uno de los tubos con la sangre restante a 2500 rpm x 5 min y separar el plasma del

paquete celular. Determinar hemoglobina libre en plasma según la sección de técnicas

experimentales. Colocar el tubo con el paquete celular residual en un contenedor con

hipoclorito de sodio.

10. Hacer una incisión en la parte media del abdomen y extraer el bazo y el hígado de cada

rata. Colocar los órganos en cajas de Petri con SSI, para evitar su deshidratación.

Observar y comparar los órganos con respecto a la rata control.

11. Envolver los restos de los animales de experimentación en una hoja de papel periódico

y colocarlos en la caja de contención para su posterior incineración.

12. Los animales que no fueron empleados deberán ser devueltos al bioterio.

Técnicas experimentales

Técnica de microhematocrito

1. Llenar con sangre las 2/3 partes de un tubo capilar para cada muestra. Realizar esta

operación por duplicado.

2. El extremo vacío se cierra con calor.

3. Colocar los capilares con el extremo cerrado hacia fuera en los surcos radiales de la

centrífuga para microhematocrito y centrifugar a 11000 rpm x 10 min.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 81

4. Calcular el hematocrito midiendo la altura del paquete globular (M2) en relación con la

altura total de la muestra (M1) y expresarla en %.

5. Una vez obtenido los resultados, depositar los capilares en el contenedor para residuos

peligrosos biológico-infecciosos (RPBI).

Tinción de Wright

1. Hacer un frotis de cada muestra, de la siguiente forma:

Muestra de sangre

1

2

1

2

1

A. Poner una pequeña

gota de sangre sobre el

portaobjetos 1 y colocar

el portaobjetos 2 en

frente de la muestra.

B. Mediante un

movimiento uniforme

deslizar el portaobjetos

2 sobre el 1.

C. Para formar una

monocapa uniforme

de células.

M1 _________ 100 %

M2_________ X%

M

2

_

_

_

_

_

_

_

_

_

X

%

M

2

_

_

_

_

_

_

_

_

_

X

M1

M2

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 82

2. Dejar que los extendidos sequen al aire.

3. Adicionar por goteo EtOH a las laminillas hasta cubrir la superficie y secar al aire.

Repetir esta operación durante 5 minutos.

4. Cubrir el portaobjetos por completo con el colorante de Wright. Transcurridos 5

minutos, enjuagar con agua destilada y dejar secar. Depositar los residuos de la tinción

en un frasco etiquetado como R1.

5. Observar los frotis al microscopio con el objetivo 100x, usando aceite de inmersión.

Tinción con nuevo azul de metileno

1. Agregar con una pipeta Pasteur 3 gotas de sangre y 3 de colorante a un tubo de 13 x 100 y

mezclar. Dejar reposar a temperatura ambiente durante 5 min.

2. Colocar una gota de la mezcla anterior en un portaobjetos y hacer un frotis siguiendo la

técnica descrita (la metodología de la tinción de Wright). Dejar secar al aire.

3. Observar los frotis al microscopio con el objetivo 100x, usando aceite de inmersión.

4. Colocar los tubos en el contenedor con hipoclorito de sodio y lavar.

Cuantificación de hemoglobina total

1. Preparar 5 tubos de acuerdo con la siguiente tabla, agitando cuidadosamente después

de la adición de cada reactivo y dejar reposar 10 min.

Tubo

REACTIVO (mL)

Blanco Referencia* A B SSI

SOLUCIÓN DE REFERENCIA ---- 0.02 ---- ---- ----

MUESTRA ----- ---- 0.02 0.02 0.02

DRABKIN 5 5 5 5 5

*Consultar la concentración de la solución de referencia en la etiqueta del frasco.

Tabla 1. Cuantificación de Hbt

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 83

2. Ajustar la absorbancia a cero con el blanco y leer a 540 nm.

3. Calcular la concentración de Hbt en g/dL empleando la siguiente fórmula:

Hbt = Aprob*(Cref./Aref.)

Donde:

Cref. = concentración de la solución de referencia (g/dL)

Aprob = absorbancia del problema

Aref. = absorbancia de la solución de referencia

4. Una vez leídos, colocar el contenido de los tubos en un contenedor etiquetado como R2.

Cuantificación de hemoglobina libre en plasma

1. Marcar 6 tubos de 16 x 150 y trabajar según la siguiente tabla:

A B SSI Solución

Estándar*

Blanco

Bencidina 1% 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL

Plasma 0.02 mL 0.02 mL 0.02 mL ------ ------

Estándar ------ ------ ------ 0.02 mL ------

Agua destilada ------ ------ ------ ------ 0.02 mL

H2O2 1% 1.0 mL 1.0 mL 1.0 mL 1.0 mL 1.0 mL

Mantener los tubos a temperatura ambiente durante 20 minutos

Ácido acético

10%

10.0 mL 10.0 mL 10.0 mL 10.0 mL 10.0 mL

*Preparar una solución estándar de hemoglobina con una concentración de 150 mg/L a partir de la solución

estándar de hemoglobina total.

Tabla 2. Cuantificación de Hbl.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 84

2. Mezclar y dejar reposar 10 min a temperatura ambiente, leer a 515 nm.

Abs. del problema

Cálculos: mg de Hbl = ----------------------------- * concentración del estándar (mg/L)

Abs. del estándar

3. Una vez leídos, colocar el contenido de los tubos en un contenedor etiquetado como R3.

CUESTIONARIO

1. Reporte sus resultados en la siguiente tabla:

Rata Absorbancia Hbt Absorbancia Hbl

Hematocrito* (cm)

M1

M2

M1

M2

SSI

A

B

*M1 = altura total de las muestras, M2 = altura del paquete globular.

2. Con los datos de la tabla anterior, calcule según la sección de técnicas experimentales:

Hto, Hbt, Hbl y reporte sus resultados en la siguiente tabla:

Rata Órganos* Frotis* Hto

%

Hbt

g/dL

Hbl

mg/L

Efecto*

Tóxico Hígado Bazo Wrigth NAM

A

B

SSI

*En los espacios para hígado, bazo, frotis Wrigth, NAM y efecto tóxico, calificar con cruces el efecto tóxico,

siendo (++) para el de mayor efecto, (+) para el menor y (-) para la ausencia de efecto.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 85

3. ¿Cuáles fueron las diferencias en las alteraciones morfológicas en hígado y bazo para

cada tratamiento?

4. ¿Cuáles fueron las diferencias observadas en las células sanguíneas, con respecto al

control utilizando las tinciones de Wright y NAM?

5. ¿Qué relación observó entre las alteraciones morfológicas de las células sanguíneas y

la proporción de reticulocitos?

6. ¿Qué relación observó entre las alteraciones morfológicas de las células sanguíneas y

los valores de hematocrito encontrados en cada una de las ratas? ¿Qué relación observó

entre la proporción de reticulocitos, los valores de Hbl y Hbt?

7. ¿Qué relación observó entre la proporción de reticulocitos con los valores obtenidos de

Hto? ¿Cómo afectó la dosis de la solución A y B al valor de Hbl y Hbt con respecto al

control?

8. ¿Qué relación observó entre los valores de Hbt y Hbl con el Hto en cada una de las ratas?

9. Concluya qué solución provocó mayor efecto tóxico.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 86

Referencias bibliográficas

Blanke, R.V.; Decker, W.J. “Analysis of toxic substances” en Textbook of clinical

chemistry. Ed. Saunders. Philadelphia. 1986, pp. 1670-744.

Clark, E.E. Isolation and Identification of Drugs. Vol. I y II. Ed. Pharmaceutical Press,

London. 1972

Klaassen, C.D. Casarett y Doull’s Toxicology. The Basic Science of Poisons. (6a ed.).

McGraw Hill, New York. 2001, pp. 827-834.

NORMA OFICIAL MEXICANA NOM- 009- SSA1- 1993.

Public information office and Bureau of consumer health. Los peligros del plomo.

www.kdhe.state.ks.us

Torres-Sánchez, L.; López-Carrillo, L.; Ríos, C. (1999). “Eliminación del plomo por curado

casero” en Salud Pública, México 41, 5106-5108.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 87

APÉNDICE I

CONOCIMIENTOS PREVIOS

1. Fundamento de la determinación de hemoglobina total, por el método de la

cianometahemoglobina y el de la hemoglobina libre, por el método de la bencidina.

2. Fundamento de la determinación del hematocrito, por la técnica del microhematocrito.

3. Fundamento de la tinción de Wrigth y del Nuevo Azul de Metileno.

4. Influencia de la edad del individuo en la absorción gastrointestinal del plomo.

5. Tejidos principales de distribución y depósito del plomo en el organismo.

6. Efectos que ocurren en los eritrocitos cuando la concentración de plomo rebasa el valor

de 80µg/dL y qué es lo que provoca esta manifestación.

7. Manifestación principal en una intoxicación por plomo en el sistema nervioso central.

8. Síntomas principales de intoxicación por plomo en el tracto gastrointestinal.

9. Influencia de la edad y el sexo en los niveles de plomo en sangre en los seres humanos.

10. Efectos que producen la anemia que se manifiesta por la intoxicación por plomo.

11. Vida media del plomo en sangre y huesos. Papel que juegan los eritrocitos en la

relación de concentración plasma/orina en la eliminación del mismo.

12. Características en una intoxicación crónica (30-50 µg/dL) por plomo en los niños.

13. Papel que juega la sal Na2CaEDTA, en dosis de 40 mg/Kg en el diagnóstico por

intoxicación por plomo.

14. Medidas terapéuticas que se toman en una intoxicación por plomo y que concentración

plasmática del mismo debe de estar presente para que se aplique a los niños.

APÉNDICE II

PREPARACIÓN DE REACTIVOS

Solución salina isotónica (SSI)

Puede utilizarse la solución comercial o preparar una solución de cloruro de sodio al 0.9 %.

Para preparar 100 mL, se pesan 0.9 g de cloruro de sodio y se disuelven en 100 mL de agua

destilada.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 88

Reactivo de Drabkin. (preguntar al profesor si ya está preparado)

Bicarbonato de sodio (NaHCO3) 1.0 g

Ferricianuro de potasio (K3[Fe(CN)6]) 0.20 g

Cianuro de potasio (KCN) 0.05 g

Saponina 0.1 g

Agua destilada c.b.p. 1000 mL

Nota: El reactivo de Drabkin y la solución estándar de CNMHb. Contienen derivados de

CIANURO, los cuales son tóxicos, sin embargo las concentraciones de éstos están por debajo

de la dosis letal referida a un litro de solución.

Nuevo azul de metileno: (preguntar al profesor si ya está preparado)

Nuevo azul de metileno 0.5 g

Oxalato de potasio 1.40 g

Cloruro de sodio 0.80 g

Agua destilada c.b.p. 100 mL

Filtrar antes de usar.

Solución de bencidina al 1%

Solubilizar 1 g de bencidina en 100 mL de ácido acético al 10%.

Nota: La bencidina es un reactivo considerado como carcinogénico, por lo que se deben

extremar precauciones en su manejo.

Peróxido de hidrógeno al 1%

Ácido acético al 10%

Colorante de Wright (preguntar al profesor si ya está preparado)

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 89

Utilizar colorante de Wright comercial. Agregar alcohol poco a poco, unos cuantos

mililitros cada vez, y mezclar bien con la ayuda de 10 a 20 esferillas de vidrio. Conservar

bien tapado para evitar la evaporación, guardar en un sitio oscuro durante dos o tres

semanas, mezclar con frecuencia. Filtrar antes de usarlo.

APÉNDICE III

DISPOSICIÓN DE RESIDUOS

R1: Colorante de Wright, sangre de rata, EtOH.

R2: Sangre de rata, NaHCO3, K3[Fe(CN)6], KCN, saponina.

R3: Plasma de rata, bencidina, H2O2, ácido acético.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 90

EFECTO DEL pH EN LA LIBERACIÓN DE METALES PESADOS

POR UTENSILIOS DE BARRO VIDRIADO

OBJETIVO ACADÉMICO

Que el alumno determine cualitativamente la presencia de plomo en recipientes de cerámica

a diferentes valores de pH.

PROBLEMA

Realizar un análisis cualitativo comparativo de varios tratamientos de curado para vasijas

de barro vidriado y sugerir cuál de ellos presenta mejores resultados para reducir el

contenido de plomo en estos recipientes. Discutir el riesgo de exposición al plomo liberado

por recipientes de barro vidriado en los seres humanos.

Materiales

- Vasija de barro vidriado* 6 - Mechero 3

- Tubos de ensayo 13x100 10 - Rejilla de asbestos 3

- Anillo metálico 3 - Gradilla 1

- Papel pH 3 - Pipetas de 1 mL 3

- Probeta de 100 mL 1 - Pinza para tubos 1

*Este material debe ser nuevo y del mismo lote, se requiere la cantidad de 6 por cada dos equipos

con una capacidad máxima aproximada de 250 mL.

REACTIVOS

- Agua destilada - Ácido clorhídrico (HCl)

- Hidróxido de sodio 1 N (NaOH) - Ácido nítrico (HNO3)

- Yoduro de potasio (KI)

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 91

DESARROLLO EXPERIMENTAL

1. Previo a la sesión, el profesor indicará a los alumnos los tratamientos de curado a

realizar a 3 de las 6 vasijas:

Vasija 1 - Ajo: Untar ajo suficiente para cubrir la superficie del interior de la vasija

de barro y dejar reposar por un día antes de lavarla con jabón eliminando cualquier

residuo que se haya formado, secar.

Vasija 2 - Vinagre: Llenar ¾ partes de la vasija con vinagre blanco y hervir durante

1 hora, reponiendo el volumen perdido durante esta operación. Lavar y secar.

Vasija 3 - Cal: Agregar una cucharada sopera de CaCO3 comercial por cada 100

mL de agua y hervir durante 1 hora, reponiendo el volumen perdido durante esta

operación. Lavar y secar.

2. Marcar las vasijas no curadas como A, B y C y reunirlas con las vasijas curadas 1, 2 y 3

3. Colocar el volumen necesario en cada una según el diseño de la siguiente tabla.

A B C 1 2 3

Solución HCL, pH 2 X X X X

Solución NaOH, pH 10 X

Agua destilada X

Tabla 1. Diseño experimental.

4. Calentar las vasijas a ebullición y dejarlas hervir 30 minutos. En caso de que el

contenido de agua disminuya considerablemente, reponer el volumen perdido con agua.

5. Agitar y raspar ligeramente las paredes de cada vasija con una espátula.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 92

6. Colocar por separado 0.5 mL de solución de cada vasija en tubos de ensayos.

7. Enfriar los tubos con ayuda del agua de la llave por la parte exterior, y medir el pH.

8. Agregar a cada tubo tres gotas de HNO3 concentrado.

9. Agregar a cada tubo, 1 mL de la solución de yoduro de potasio procurando que la

solución caiga directamente en el contenido del tubo. Agitar por unos segundos, dejar

reposar en su gradilla y observar.

10. Una solución o precipitado amarillo indica la presencia de plomo. Emplee un control

negativo con agua destilada y proceda de la misma forma como se indica en los pasos 6 y 7.

11. Una vez obtenidos los resultados, vaciar el contenido de los tubos en un contenedor

etiquetado como R1.

12. Reunir el contenido de las vasijas con tratamiento ácido (A, 1, 2 y 3) en el contenedor

etiquetado como R1.

13. Reunir el contenido de las vasijas con tratamiento neutro (C) y básico (B) en un

contenedor etiquetado como R2.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 93

CUESTIONARIO

1. Reporte sus resultados en la siguiente tabla, indicando la presencia de plomo con cruces:

negativo (-), bajo (+), medio (++), alto (+++). Utilice el control negativo como referencia.

Vasija pH inicial pH final Presencia de plomo

A HCl

B NaOH

C agua destilada

1 ajo

2 vinagre

3 cal

Tabla 1. Resultados.

2. Compare los resultados obtenidos entre las vasijas A, B y C. Concluya qué método de

extracción fue más eficiente.

3. Compare los resultados obtenidos en las vasijas 1, 2 y 3 con la vasija A e indique si hay

alguna diferencia. ¿A qué la atribuye?

4. Compare los resultados obtenidos entre las vasijas 1, 2 y 3. Concluya qué método de

curado fue más eficiente.

5. ¿Considera usted que los alimentos contenidos en vasijas de barro podrían ser una fuente

de exposición a plomo?

6. ¿Considera que el proceso de curado es suficiente para evitar la exposición a plomo?

Justifique su respuesta.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 94

Referencias bibliográficas

Blanke, R.V.; Decker, W.J. “Analysis of toxic substances” en Textbook of clinical

chemistry. Philadelphia, Saunders. pp. 1670-1744. 1986.

Klaassen, C.D. PhD. Casarett y Doull’s. Toxicology. The basic science of poisons.

6th

edition. McGraw Hill 2001. pp. 827-834.

Clark, E.E. Isolation and Identification of Drugs. Pharmaceutical Press, London, 1972. Vol.

I y II.

Torres-Sánchez, L.; López-Carrillo, L. y Ríos, C. “Eliminación del plomo por curado

casero” en Salud Pública, México. 41:5106 – 5108 (1999).

NORMA OFICIAL MEXICANA NOM- 009- SSA1- 1993.

Public information office and Bureau of consumer health. Los peligros del plomo.

www.kdhe.state.ks.us

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 95

APÉNDICE I

CONOCIMIENTOS PREVIOS

1. Proceso de vidriado de utensilios de barro.

2. Reacciones que se llevan a cabo en las vasijas de barro vidriado A y B durante el

proceso de extracción e identificación.

3. Precauciones que se pueden aplicar en casa para reducir el riesgo de exposición a plomo

por consumo de alimentos.

4. Cinco alimentos de naturaleza ácida y cinco de naturaleza alcalina.

5. Límite máximo permitido de plomo en utensilios de barro vidriado por la NOM vigente.

APÉNDICE II

PREPARACIÓN DE REACTIVOS

Solución de HCl pH 2 y solución de NaOH pH 10

Calcular la cantidad adecuada para preparar la solución de pH = 2 con HCl y la solución de

pH 10 con NaOH.

Solución de yoduro de potasio 16.5% (KI)

Pesar 16.5 g de KI y colocarlos en un matraz aforado de 100 mL, disolver en

aproximadamente 25 mL de agua mezclar y aforar. Esta solución es sensible a la luz.

APÉNDICE III

DISPOSICIÓN DE RESIDUOS

R1: HCl, HNO3, PbI2, KI

R2: NaOH, PbI2

NOTA: El responsable de residuos reunirá el contenido de R1 y R2 al finalizar la sesión,

tomando las precauciones necesarias y etiquetando el recipiente final.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 96

DETERMINACIÓN DE LA CONCENTRACIÓN DE ETANOL EN

UNA MUESTRA PROBLEMA

OBJETIVO ACADÉMICO

Que el alumno realice la determinación presuntiva y cuantitativa de etanol en muestras

problemas mediante un método indirecto.

PROBLEMA

Cuantificar al menos el 80% de la concentración de etanol en mg/dL en dos muestras

problema y mediante los resultados obtenidos indicar el grado de intoxicación de los

sujetos de los cuales provienen las muestras analizadas.

Reactivos

- Dicromato de potasio* (K2Cr2O7) - Carbonato de potasio* (K2CO3)

- Ácido sulfúrico (H2SO4) - Etanol (EtOH)

* Ver Apéndice II.

Equipo

- Espectrofotómetro

- Estufa

- Balanza analítica

Material

- Caja de Petri con centro de vidrio 2 - Matraz volumétrico de 10 mL 3

- Pipeta volumétrica de 2 mL 3 - Pinzas para tubo de ensayo 3

- Pipeta volumétrica de 1 mL 4 - Papel filtro (2 x 5 cm) 1

- Tubo de ensayo 16 x 150 6 - Pipeta graduada de 5 mL 3

- Pipeta volumétrica de 5 mL 2 - Pipeta graduada de 1 mL 3

- Celda de vidrio para

espectrofotómetro

5

- Pipeta Pasteur con globo 4

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 97

DESARROLLO EXPERIMENTAL

A cada alumno se le proporcionarán 2 muestras problema a las cuales se les realizará la

determinación presuntiva y cuantitativa de etanol.

I. Determinación presuntiva de etanol

1. Rotular 4 tubos como control positivo, control negativo, muestra 1 y muestra 2.

2. Al tubo control positivo agregarle 5 gotas de etanol.

3. Al tubo control negativo agregarle 5 gotas de agua destilada.

4. A los tubos muestra 1 y 2 agregarles 1 mL de cada una de las muestras problema

respectivamente.

5. A cada uno de los tubos, adicionarles 0.5 mL de solución de K2Cr2O7 (Solución A).

6. Incubar 10 minutos a temperatura ambiente y observar la coloración de los tubos.

7. Reunir el contenido de los 4 tubos y confinarlos en un recipiente etiquetado como R1.

II. Determinación cuantitativa de etanol

Centro de vidrio

Esquema 1. Cámara de Conway.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 98

Cada una de las muestras se tratará de acuerdo con el siguiente procedimiento:

1. Colocar 2 mL de la solución B de K2Cr2O7 en el recipiente B.

2. Adicionar 1 mL de solución saturada de K2CO3 en el recipiente B, agitando suavemente.

3. Colocar 1 mL de la muestra problema en el recipiente A y tapar inmediatamente con el

recipiente C, como se muestra en el esquema 1.

4. Colocar la cámara de Conway en una estufa a 40ºC, durante 45 minutos.

5. Una vez transcurrido el tiempo indicado, transferir el contenido del recipiente B a un

matraz volumétrico de 10 mL, lavando perfectamente dicho recipiente y la parte

externa del recipiente A con un volumen máximo de 5 mL de agua destilada para

ambos recipientes. Finalmente, aforar a 10 mL con agua destilada (en ocasiones puede

aparecer un precipitado que desaparece al aforar).

6. Determinar la absorbancia a 450 nm, utilizando como blanco agua destilada.

7. Determinar la absorbancia de la solución B de dicromato de potasio diluida 1 a 10, a

450 nm, utilizando como blanco agua destilada. Esta solución se utilizará como

referencia para realizar los cálculos pertinentes.

8. Confinar el contenido del recipiente B y la solución de referencia en el frasco

etiquetado como R1.

CUESTIONARIO

1. Reporte en la siguiente tabla sus resultados de la prueba presuntiva para cada muestra.

Muestra Coloración Resultado (+/-)

1

2

Control negativo

Control positivo

Tabla 1. Resultados presuntivos.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 99

2. ¿Considera que la intensidad de color en la prueba presuntiva es un indicador de la

concentración de EtOH en sus muestras?

3. Proponga una modificación a la técnica presuntiva que le permita emplearla como prueba

cuantitativa.

4. Indique las lecturas de absorbancia obtenidas para cada muestra. Calcular la concentración

de etanol en la muestra en mg/dL, desglosando los cálculos realizados para cada una de las

muestras tomando en cuenta la lectura de absorbancia de la solución de referencia. Considere

todas las diluciones realizadas tanto de su muestra biológica como de la solución de referencia.

Muestra Absorbancia Dilución* Concentración

(mg/dL)

1

2

Solución de

referencia

*En caso de haberse realizado.

Tabla 2. Resultados de la prueba cuantitativa.

5. Con los valores obtenidos en sus muestras, relacione la sintomatología en la siguiente

tabla y concluya si los valores se encuentran por encima del límite legal establecido.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 100

Concentración

(mg/dL)

Observaciones clínicas

50 a 150 Falta de coordinación, tiempo de reacción lento, y visión

borrosa.

150 a 300 Deterioro visual, tambaleo y lenguaje cercenado,

hipoglucemia intensa, sobre todo en niños.

300 a 500 Falta notoria de coordinación, estupor, hipoglucemia y

convulsiones.

≥ 500 Coma y muerte, excepto en individuos tolerantes.

Tabla 3. Observaciones clínicas según el grado de intoxicación.

6. ¿Cuál es la concentración máxima de EtOH que se puede determinar con este protocolo?

7. ¿Qué resultados esperaría si la concentración de EtOH en la muestra es mayor a la

concentración máxima que puede determinar el protocolo?

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 101

Referencias bibliográficas

Fister, H.J. Ethyl alcohol. Manual of standardized procedures for spectrophotometric

chemistry. E-10a.1-E-10b.3 (1950) U.S.A. Standard scientific supply corporation. U.S.A.

Hobbs, W.H.; Rall, T.W.; Verdoorn, T.A. “Hipnóticos y sedantes: etanol” en Goodman &

Gilman. Las bases farmacológícas de la terapéutica. 1. 9a ed. Ed. McGraw-Hill

Interamericana, México D.F., 1996, pp. 411419.

Klassen, C.D.; Watkins, J.B. “Efectos de los solventes y vapores en Toxicología Clínica”

en Casarett & Doull, Manual de Toxicología, la ciencia básica de los tóxicos. (5ª ed.)

McGraw-Hill Interamericana, México D.F. 2001, pp. 739-744, 934-935.

Pesce, A.J., y Kaplan, L.A. Alcohol por Schroeder, T.J. Methods in clinical chemistry.

The C.V. Mosby Company. U.S.A., 1987, pp. 324-329.

Sunshine, I. “Ethanol” en Methodology for Analitical Toxicology. CRC Press, Inc., 1978,

pp. 145-154.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 102

APÉNDICE I

CONOCIMIENTOS PREVIOS

1. Balanceo de la siguiente ecuación:

CH3OH + K2Cr2O7 Cr3+

+ R-COO -

2. Color de las soluciones que contienen cromo (VI) y cromo (III).

3. Especificidad de la prueba, tipo de sustancias que pueden dar un resultado falso positivo.

4. Longitud máxima de absorción del K2Cr2O7 en el visible.

5. Fundamento de la prueba presuntiva.

6. Fundamento de la prueba cuantitativa.

7. Propósito de adicionar solución saturada de K2CO3 e incubar.

8. Límite máximo de EtOH en sangre legalmente establecido para conductores.

9. Calcular la concentración de etanol en sangre de la siguiente muestra problema:

Solución de referencia: 2 mL de una solución 0.01 M de dicromato de potasio se

diluyeron a 10 mL, de esta solución se tomaron 5 mL y se diluyeron a 10 mL. La

lectura de absorbancia para la última solución, a 450 nm, fue de 0.205.

Muestra: 2 mL de la solución 0.01 M de dicromato de potasio se colocaron en la

celdilla B y se hicieron reaccionar con 1 mL de muestra problema (celdilla A). Al

término de 45 minutos de calentamiento, el contenido de la celdilla B se diluyó a 10 mL

y se leyó a 450 nm, dando una absorbancia de 0.23.

Respuesta: 60.72 mg de etanol/100 mL de sangre.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 103

APÉNDICE II

PREPARACIÓN DE REACTIVOS

Solución A: Solución de dicromato de potasio (K2Cr2O7)

Pesar 2.5 g de K2Cr2O7 y solubilizarlo en 20 mL de H2SO4 al 50 %, aforar a 100 mL con

H2SO4 al 50 %.

Solución B: Solución de dicromato de potasio (K2Cr2O7)

Disolver 0.5 g de K2Cr2O7 en 25 mL de agua destilada y agregar cuidadosamente 40 mL de

H2SO4 concentrado, dejar enfriar y diluir con agua destilada a 100 mL.

NOTA: El contacto con altas concentraciones de dicromato de potasio puede resultar en

ulceración de manos, destrucción de membranas mucosas y perforación del tabique

nasal.

Solución saturada de carbonato de potasio (K2CO3)

Con agitación, agregar la cantidad necesaria de K2CO3 en el volumen de agua destilada

a preparar hasta su saturación (se observa que ya no se disuelve). Posteriormente filtrar.

PM del etanol: 46 g/mol

PM del K2Cr2O7: 294.7 g/mol

Densidad del etanol: 0.7893 a 20°C

APÉNDICE III

DISPOSICIÓN DE RESIDUOS

R1: EtOH, K2Cr2O7, H2SO4, CH3COOH, Cr(SO4)3, K2SO4, K2CO3

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 104

IDENTIFICACIÓN DE ALCALOIDES Y BARBITÚRICOS EN

MUESTRAS PROBLEMA

OBJETIVO ACADÉMICO

Con base en los conocimientos adquiridos en los guiones anteriores, que el alumno

proponga un proceso de extracción e identificación para alcaloides y barbitúricos.

PROBLEMA

Aislar e identificar escopolamina y/o ácido barbitúrico de una muestra problema.

Reactivos

- Hidróxido de amonio (NH4OH) - Cromatofolios de aluminio

- Metanol (MeOH) - Yoduro se sodio (NaI)

- Ácido acético glacial - Acetato de etilo

- Carbonato de bismuto (Bi2(CO3)3) - Isopropilamina

- Acetato de cobalto tetrahidratado - Escopolamina

- Ácido barbitúrico

Equipo

- Rotaevaporador - Bomba de aspersión

- Lámpara de luz ultravioleta

Material

- Embudo de separación de 250 mL 2 - Agitador de vidrio 1

- Embudo de cola corta 2 - Probeta de 10 mL 1

- Matraz Erlenmeyer de 125 mL 3 - Pipeta graduada de 10 mL 2

- Matraz de bola de 50 mL 2 - Anillo metálico 1

- Vaso de precipitado de 250 mL 3 - Tubos de ensayo 4

- Vaso de precipitados de 100 mL 4 - Anillos de corcho 2

- Pipeta Pasteur 3 - Tubo capilar 2

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 105

DESARROLLO EXPERIMENTAL

1. El profesor proporcionará una muestra que contiene escopolamina y/o ácido barbitúrico.

El alumno desarrollará el procedimiento que proponga para aislar la forma no ionizada de

los compuestos antes mencionados.

2. Una vez obtenida la forma no ionizada de las sustancias, evaporar a sequedad en un

rotaevaporador. Dejar enfriar y reconstituir cada uno de los residuos con 0.5 mL (3 o 4

gotas) de metanol. Etiquetar cada uno de ellos con el nombre de la sustancia que espera que

contenga.

3. Para el proceso de identificación, solicitar a los profesores dos placas para cromatografía

en placa fina. En una de ellas (placa 1) del lado izquierdo tendrá aplicada previamente la

referencia de escopolamina, y en la otra (placa 2) la de ácido barbitúrico. Una muestra del

residuo reconstituido previamente será aplicada del lado derecho de cada una de las placas

de acuerdo con el siguiente esquema.

Esquema 1. Placa cromatográfica.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 106

4. Para la identificación de la escopolamina emplear como sistema de elución una mezcla

CHCl3/MeOH (9:1) + 3 gotas de NH4OH.

5. Para la identificación del ácido barbitúrico emplear como sistema de elución una

CHCl3/Acetona (9:1) + 3 gotas de ácido acético.

6. Saturar las cámaras durante 10 minutos antes de eluir las muestras en las placas

cromatográficas.

7. Eluir hasta la línea “límite de elución” indicada en el Esquema 1.

8. Visualizar la presencia de escopolamina y/o ácido barbitúrico con una lámpara de luz

U.V. y posteriormente, revelar las cromatoplacas utilizando la solución etiquetada como

solución reveladora de reactivo de Dragendorff para el caso del alcaloide, y con yodo

para el otro compuesto. Calcular el Rf para cada sustancia de acuerdo al esquema 1 y

comparar el valor obtenido con el de la referencia proporcionada.

9. Con el residuo reconstituido excedente realizar el siguiente procedimiento de identificación.

Alcaloides

a) Colocar 2 gotas del residuo reconstituido correspondiente, y agregar 2 gotas de HCl

1N más 2 gotas de “solución stock del reactivo de Dragendorff”.

b) Realizar un control positivo con las muestras de referencia y un control negativo (con

agua) para esta reacción.

Barbitúricos

a) Colocar tres gotas del residuo reconstituido correspondiente y agregar tres gotas del

reactivo A y tres gotas del reactivo B (Dille-Koppanyi).

b) Realizar un control positivo con las muestras de referencia y un control negativo (con

agua) para esta reacción.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 107

CUESTIONARIO

1. Reporte el diagrama de separación que utilizó para esta práctica y justifique los

cambios, si los hubo, con relación al diagrama diseñado en los conocimientos previos.

2. Reporte en la siguiente tabla los resultados que obtuvo en las pruebas de

identificación. Marque con una cruz si la reacción fue positiva.

Referencia

escopolamina

Residuo

reconstituido de

escopolamina

Referencia

de ácido

barbitúrico

Residuo

reconstituido

de ácido

barbitúrico

Dille-Koppanyi

Dragendorff

Rf

Tabla 1. Resultados de las pruebas de identificación.

3. Indique si su muestra contenía ácido barbitúrico. Explique su respuesta.

4. Indique si su muestra contenía escopolamina. Explique su respuesta.

5. ¿Cuáles son los puntos que considera críticos para la adecuada separación e

identificación de la muestra?

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 108

Referencias bibliográficas

Benko, A. (1985). “Toxicological Analysis of Amobarbital and Glutethimide from Bone

Tissue” en Journal of Forensic Sciences 30, 708-714.

Blanke, R.V.; Decker, W.J. “Analysis of Toxic substances” en Textbook of clinical

chemistry. Saunders, Philadelphia, 1986, pp. 1670-1744.

Bowman y Rand. Farmacología. Bases Bioquímicas y Patológicas. (2ª ed). Editorial

Interamericana, México, 1984. 42.25-42.32.

Bruneton, J. “Alcaloides, Generalidades” en Farmacognosia. Fitoquímica. Plantas

Medicinales. Ed. Acribia, Zaragoza, España, 2001, pp. 775-792.

Clark, E.E. Isolation and Identification of Drugs. Vol. I y II. Pharmaceutical Press,

London, 1972.

Cochin, J.; Daly, J.W. (1963). “The Use of Thin-Layer Chromatography for the Analysis of

Drugs. Isolation and Identification of Barbiturates and Nonbarbiturates Hypnotics

from Urine, Blood and Tissues” en Journal of Pharmacology and Experimental

Therapeutics 139, 154-159.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 109

APÉNDICE I

CONOCIMIENTOS PREVIOS

1. Propiedades ácido-base (pKa) de la escopolamina y el ácido barbitúrico.

2. Forma ionizada y no ionizada de cada uno de ellos.

3. Diagrama de separación para aislar escopolamina y ácido barbitúrico presentes en

una muestra problema, justificando en cada etapa el uso de los reactivos sugeridos.

4. Indicar en el diagrama anterior la recolección y almacenamiento de los desechos

generados.

5. Fundamento de la reacción de Dragendorff.

6. Bases de la reacción de Dille-Koppanyi.

7. Fundamento de la cromatografía en capa fina como herramienta de identificación de

sustancias químicas utilizando luz UV, Yodo y reactivo de Dragendorff como

reveladores.

APÉNDICE II

PREPARACIÓN DE REACTIVOS

Reactivo de Dragendorff (solución patrón)

Solubilizar 2.6 g de Bi2(CO3)3 y 7.0 g de NaI en 25 mL de ácido acético glacial, calentar por

10 minutos a 40oC para solubilizar el reactivo. Dejar reposar por 12 horas y posteriormente filtrar la

solución. Mezclar 20 mL del filtrado (solución rojo-café) con 8 mL de acetato de etilo, la solución

anterior se guarda en un frasco ámbar (la cual es estable por 6 meses).

Reactivo de Dragendorff (solución reveladora)

Mezclar 10 mL de la solución patrón con 25 mL de ácido acético glacial y 60 mL de

acetato de etilo.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 110

Reactivo A (Dille-Koppanyi)

Solubilizar 0.1 g de acetato de cobalto tetrahidratado en 100 mL de MeOH absoluto y

agregar 0.2 mL de ácido acético glacial.

Reactivo B (Dille-Koppanyi)

Mezclar 5.0 mL de isopropilamina con 25 mL de MeOH absoluto.

NOTA: El reactivo A y el reactivo B son estables por 2 días.

Laboratorio de Toxicología

PROGRAMA DE APOYO A PROYECTOS PARA LA INNOVACIÓN Y MEJORAMIENTO DE LA ENSEÑANZA 111

Manual de guiones experimentales para la enseñanza

y aprendizaje del laboratorio de Toxicología (clave 1614)

Editado por la Facultad de Química

Se utilizaron en la composición tipo

Times New Roman puntaje 11 y 12

Tipo de impresión PDF

El cuidado de la edición estuvo a cargo de

Brenda Álvarez Carreño.

La formación estuvo a cargo del departamento de Diseño y Medios Audiovisuales.

Diseño de interiores y portada: LDG. Daniel José María Ramírez Olvera

Publicación aprobada por el Comité Editorial de la Facultad de Química.

Abril 2012