LysarkKaasa2008

36
8/13/2019 LysarkKaasa2008 http://slidepdf.com/reader/full/lysarkkaasa2008 1/36 Classification: Internal Status: Draft Glycol injection and processing Course: TPG 4140 NATURGASS Date: 16.10.2008 Baard Kaasa, StatoilHydro

Transcript of LysarkKaasa2008

Page 1: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 1/36

Classification: Internal Status: Draft

Glycol injection and processing

Course: TPG 4140 NATURGASS

Date: 16.10.2008

Baard Kaasa, StatoilHydro

Page 2: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 2/36

2

Introduction – flow assurance

PipelineHigh temp Low temp

Water condensation

Low T high P

Hydrates

Page 3: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 3/36

3

Introduction – flow assurance

Snøhvit pipelineHigh temp Low temp

MEG injection – prevents hydrates

CO2 Low pH ~4

Corrosion

NaOH/NaHCO3

High pH ~6-7

Formation water?

3

2

3

2CaCOCOCa   =+

  −+

SCALE

Page 4: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 4/36

4

 A typical MEG loop

Pipeline

MEG injection l ine

Lean MEG

MEG: 90 wt%Rate: 150-200 m3/d

Rich MEG

MEG: 60 wt%

Rate: 220-300 m3/d

Water 

Condensed water: 70-100 m3/d

Formation water: 0-10 m3/d

Process plant withMEG regeneration

Water and waste

Rate: 70-110 m3/d

Wells

Page 5: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 5/36

5

Introduction – MEG processing• Separation/filtration/centrifuges/settling

 – MEG is viscous, slow settling, clogs filters

 – Particles may be very small. (Especially corrosion products)

• Scale/plugging

 – Scaling in heat exchangers (typical carbonates)

 – Sedimentation – salt will settle and may plug of flow is low

• Hydrocarbons - Dissolve in rich MEG

 – Hydrocarbons in reflux water 

 – Hydrocarbons in reflux drum and other vessels

 – Extra load on vacuum system

• Corrosion

 – A lot of CO2 is released – low pH in vacuum system

Page 6: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 6/36

6

Overview• Flow assurance

 – Hydrate

 – Water equilibria

 – Corrosion

 – Scale

 – Thermodynamics of MEG mixtures

• Glycol processing

 – Pre treatment

 – Water removal (regeneration)

 – Salt removal (reclamation)

 – Waste handling

Page 7: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 7/36

7

Hydrates• Hydrate is water in a solid structure with small gas molecules in cavities

 – Forms at low temperature and high pressure

• Water will form hydrates if the chemical potential of water in the hydrate form is

lower than that of free water • Requirements for hydrate formation

 – Free water 

 – Small gas molecules (N2, CO2, CH4, C2,C3,…)

 – Low temperature – High pressure

Page 8: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 8/36

8

Hydrate phase diagramHydrate equilibrium curve

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25

Temperature (°C)

   P  r  e  s  s  u

  r  e   (   b  a  r   )

Hydrats can form

Hydrats can NOT form

Equilbrium curve

Page 9: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 9/36

9

Hydrate prevention• Hydrate formation reaction (simplified)

• Chemical potential

 – If reaction will go

• Chemical potential of gas is mainly given by pressure and temperature and cannormally not be changed

• Chemical potential of hydrate can not be changed

• Chemical potential of water 

 – If we dilute water to get xH2O lower, the chemical potential of water will belower and the reaction is shiftet to the left -> no hydrates

( ) ( )hyd O H gaslO H 22

  ↔+

2 2

hyd l

 H O H O gas

μ μ μ μ  Δ = − −0μ Δ <

2 2 2 2 2 2

ln lnl

 H O H O H O H O H O H O RT a RT xμ μ μ γ    = + = +o o

Page 10: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 10/36

10

Hydrate prevention – diluting the water • Hydrates can be prevented with “anything” that reduces the molefraction of

water Hydrate inhibition effect

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6

Molefraction inhibitor 

   D  e  c  r  e  a  s  e   i  n   H  y   d  r  a

   t  e   t  e  m  p  e  r  a   t  u  r  e   (   C   )

dT MeOH

dT Ethylene Glycol

dT Diethylene Glycol

Nielsen and Bucklin

( )72 ln 1  InhibT xΔ = − −

Page 11: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 11/36

11

Lean MEG injection rate - Example• A pipeline transports gas and water condenses: 100 m3/d

• How much lean MEG (90 wt%) must be injected to keep MEG concentrationabove 60 wt%?

•  Assumption: Density of water and MEG = 1000 kg/m3

 – We want:

 – Inserting lean MEG

 – Rearranging

 – Rich MEG volume

2

0.6  MEG

 MEG H O

V V =

+

0.90.60.9 0.1

 LM 

 LM Cond LM 

V V V V 

=+ +

( )

0.62

0.9 0.6

Cond  LM Cond 

V V V = =

Total water:Condensed water + water in lean MEG

3 RM Cond V V =

Lean MEG:

Lean in water – 90 wt%

Rich MEG:

Rich in water – 40-70 wt%

Page 12: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 12/36

12

Water vapour pressure• Injection of MEG will “dry” the gas phase

 – Addition of MEG reduces molefraction of water in the aqueous phase• Water has less tendency to go to other phases – same as for hydrate inhibition

 – Question: How much is the water content of the gas reduced if MEG

concentration is 60 wt%: MwH2O=18 mole, MwMEG=62 g/mole

 –  Answer : Assume 1 kg, 600 gram MEG, 400 gram water 

MEG: 600/62=9.68 molesH2O: 400/18=22.2 moles

Vapour pressure of water is reduced with 30%

2 2 2 2 H O tot H O H O H o y P P x P= =

  o

2

2

2

22.2

0.7022.2 9.68

 H O

 H O

 H O MEG

n

 x n n= = =+ +

Page 13: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 13/36

13

Corrosion• Long pipelines: Carbon steel

• Condensed water has no buffer capacity

 – CO2 in gas -> pH=3.5 - 4.5

• After startup on Kollsnes they produced about 20 tonns of iron!

 – Plugged: Heat exchangers, separators, filters, centrifuges etc.

Corrosion

Page 14: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 14/36

14

pH stabilization

• Increase pH in pipeline

 – Add NaOH or NaHCO3 to lean MEG

 – Higher pH – less corrosive – Formation of FeCO3 protective film

2 3 NaOH CO NaHCO+ =

Kollsnes pH stabilization

Page 15: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 15/36

15

Scale

• Scale means precipitation of salt onto a surface

• Main types of scale:

 – Sulphates• BaSO4, CaSO4 ,CaSO4*2H2O, SrSO4

 – Carbonates• CaCO3, FeCO3

 – Other 

• NaCl, NaHCO3, FeS, HgS

• Scale will:

 – Block pipelines and heat exchangers

 – Fill separators – Reduce heat transfer in exchangers

 – Valves etc. can get stuck

Page 16: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 16/36

16

Scale formation mechanisms

• Sulphate, chloride

• Mainly dependent on: – Ion concentrations

 – Temperature

• Forms typically

 – When formation water and seawaterare mixed

 – Formation water: Ca2+, Ba2+, Sr 2+

 – Seawater: SO42-

• Carbonates, sulphides

• Mainly dependent on: – pH

 – Ion concentration

 – Temperature

• Forms typically

 – Pressure reduction• CO2 evaporates, pH increases

 – Temperature increase• Lower solubil ity, CO2 goes off 

2 2

4 4 Ba SO BaSO+ −

+ =  2 2

3 3Ca CO CaCO+ −

+ =

2

2 3 3CO H HCO H CO

+ − + −

→ + → +Increasing pH

Page 17: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 17/36

17

Saturation ratio

• Reaction:

• Equilibrium:

 – Solubility product. At equilibrium, the product of the ion concentrations is aconstant

• Ksp is a funct ion of temperature and pressure (and non-ideal behaviour)

• Saturation ratio

 – Tells if a salt is supersaturated and can precipitate

( )( )

 Na Cl

sp

m mSR NaCl

K NaCl

+ −

=

 Na Cl NaCl+ −

+ =

( )sp  Na ClK NaCl m m+ −=

SR>1 Precipitation can occur SR=1 EquilibriumSR<1 Undersaturated, salt may dissolve

Page 18: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 18/36

18

Salt solubility in MEG systems

• MEG and water mix completely at all ratios

• The mixture is then the solvent – and it has different properties than water 

 – Salt solubility is lower in MEG

 – Many salts have a low-point at about 70-80 wt% MEG

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

w t% MEG

   S   o   l   u   b   i   l   i   t   y

   [   m

   ]

Model-NaCl

Literature-NaCl

model-KCl

Literature-KCl

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

molfract ion MEG

   C   a

   l   c   i   t   e

   S   o   l   u   b   i   l   i   t   y

   [   m

   m

   o   l   /   K   g

   ]

25C

60C

80C

Page 19: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 19/36

19

Gas solubil ity in MEG

• Solubility of CO2 and CH4 in MEG. PCO2=PCH4=1 bar, T=20°C

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

MEG (w t%)

   C   O   2  s  o   l  u   b   i   l   i   t  y   (  m  m  o   l   /   k  g   )

0

0.5

1

1.5

2

2.5

   C   H   4  s  o   l  u   b   i   l   i   t  y   (  m  m  o   l   /   k  g

CO2

CH4

Page 20: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 20/36

20

pH in the MEG solutions

• pH in MEG solutions is difficult to measure because

 – The pH scale in MEG is different from water 

 – MEG has effect on the pH electrode – changes the measured pH

 – Calibration buffers does not contain MEG• Solution

 – Calibrate as normal

 – Apply correction

3.5

4.0

4.5

5.0

5.5

6.0

0 20 40 60 80 100

wt % MEG

   p   H

Buffer-pH*

Measured-pH

 pH  pH  pH   Meas  Δ+=*

True pH = Measured + Correction

Page 21: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 21/36

21

Overview

• Flow assurance

 – Hydrate

 – Water equilibria

 – Corrosion – Scale

 – Thermodynamics of MEG mixtures

• Glycol processing

 – Pre treatment

 – Water removal (regeneration)

 – Salt removal (reclamation)

 – Waste handling

Page 22: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 22/36

22

MEG regeneration

Rich MEG MEG regeneration Lean MEG

MEG 50-70 wt%Water 

pH stabilizer SaltsCorrosion productsProduction chemicals CI, SIHydrocarbons

MEG 90 wt%

pH stabilizer Production chemicals CI, SI

Water & Waste

Page 23: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 23/36

23

Pre treatment

• Purpose

 – Stabilize MEG

 – Remove HC

 – Buffer between production and regen – Removal of impurities

• Filtration

• Centrifuges

• Precipitation

• Sedimentation

• Man challenges

 – Scale in heat exchanger 

 – Separation (MEG in condensate, condensate in MEG)

Inlet separator 

Degasser 

Heater 

Rich MEG storage

Gas

Condensate

Condensate

Gas

Page 24: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 24/36

24

Water removal (regeneration)

Kollsnes Snøhvit

Pressure: 1.1-1.3 bar 

Temperature: 140-150°C

Page 25: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 25/36

25

Salt removal (reclamation)

Snøhvit

Pressure: 0.1-25 bar 

Temperature: 110-130°C

Flash

separator 

Salt freevapour 

Saltfeed

Circulation pump

Heatexchanger 

Vacumreciever 

Water 

Vacumpump

Solids removal

Lean MEG

Page 26: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 26/36

26

Pre treatment heat exchanger 

Page 27: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 27/36

27

Reclaimer bottom section

Page 28: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 28/36

28

Cooling water Heat exchanger  

Page 29: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 29/36

29

Sediment tanks

Page 30: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 30/36

30

Process combinations

• Only regeneration (Kollsnes)

 – Removes only water, no salt

 – pH stabilizer is conserved

• Full reclamation (Åsgard B, Vega/Gjøa)

 – Removes all salt and water 

• Partial reclamation (Snøhvit, Ormen Lange)

 – A fraction of the MEG is reclaimer 

 – Upstream (60wt%) or downstream (90wt%)

Salt removal

Reclamation

Water removal

Regeneration

Salt removal

Reclamation

Water removal

Regeneration

Flash

separator 

Salt freevapour 

Saltfeed

Circulation pump

Heatexchanger 

Vacumreciever 

Water 

Vacumpump

Solids removal

Lean MEG

Page 31: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 31/36

31

VLE for water-Glycol systems

• Water-Glycol behaves close to ideal – Raults law can be used (within 5%)

2 2 2 H O H O H o

 MEG MEG MEG

P x P

P x P

=

=

o

o

Vapour pressure of w ater and MEG

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200

Temperatur e (°C)

   P  v  a  p   (   b  a  r   )

PH2O

PMEG

T-functions   ln ln *a

P b c T d T  T 

= + + +o

Comp H2O MEG

a -7875.17 -7878.1

b 86.9198 0.143701

c -11.783 3.72897

d 0.010658 -0.0133992

32

Page 32: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 32/36

32

Regeneration temperature

• Regeneration

 – Liquid composition is known• 90wt% MEG=> xMEG=0.723

 – Iterate on temperature

2 2

0.277 0.723tot H O MEG H o MEGP P P P P= + = +

o o

138

140

142

144

146

148

150

152

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Reboile r pressure (bar)

   B  o   i   l   i  n  g   t  e  m  p  e  r  a   t  u  r  e   (   °   C

   )

ln ln *

aP b c T d T  

T = + + +

o

33

Page 33: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 33/36

33

Reclamation temperature

• Reclamation

 – Vapour composition is known (same as feed)• 60 wt% MEG => yMEG=0.3

• Pressure is 0.15 bara (vacuum)• What is temperature?

2

2

0.3

0.7

 MEG MEG

tot 

 H O

 H O

tot 

P y

P

P yP

= =

= =   ( )2 2 2 2

0.3

0.7 1

 MEG tot MEG MEG

 H O tot H O H O MEG H O

P P x P

P P x P x P

= =

= = = −

o

o o

2

2

0.3 0.7

 MEG H O

calc

 H O MEG

P PP

P P

=+

o o

o o

2

2

0.3

0.7

tot  MEG

 MEG

tot  H O

 H O

P x

P

P x

P

=

=

o

oIterate on temperatureuntil Pcalc=Ptot

=> Eliminate x

34

Page 34: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 34/36

34

MEG reclamation P-T diagram

20

30

40

50

60

70

80

90

100

1   0   0  

1   0  2  

1   0  4  

1   0   6  

1   0   8  

1  1   0  

1  1  2  

1  1  4  

1  1   6  

1  1   8  

1  2   0  

1  2  2  

1  2  4  

1  2   6  

1  2   8  

1   3   0  

Temperature (°C)

  w   t   %    M

   E   G

   i  n   F  e  e   d  a  n   d   V  a  p  o  u

  r

88

90

92

94

96

98

100

  w   t   %    M

   E   G

   i  n   F   l  a  s   h   S  e  p   L   i  q  u   i   d

Gas or Feed P=0.1Gas or Feed P=0.12Gas or Feed P=0.14Gas or Feed P=0.16Gas or Feed P=0.18Gas or Feed P=0.2Liq P=0.1Liq P=0.12Liq P=0.14Liq P=0.16Liq P=0.18

Liq P=0.2

Flash sep l iq

Vapour or Feed

35

Page 35: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 35/36

35

Energy consumption - reclamation

• In a reclaimer, both MEG and water is evaporated

 – Example:• Feed: 300 m3/d 60 wt% MEG

• Feed temp: 30°C, boi ling temp, 120°C

 – Answer:• MEG 180 m3/d=180 000 kg/d

• H2O 120 m3/d=120 000 kg/d

 – Heating from 30 to 120°C• MEG 180 000*3.10*90=5.02*107 kJ/d = 580 kW

• H2O 120 000*4.16*90=4.49*107 kJ/d = 520 kW 1 100 kW

 – Vaporization• MEG 180 000*968 =1.74*108 kJ/d = 2 016 kW

• H2O 120 000*2603=3.12*108 kJ/d = 3 615 kW 5 631 kW 6.7 MW

Water MEG

Heat capacity (kJ/kg K) 4.16 3.1Heat of vaporization (kJ/kg) 2603 968

36

Page 36: LysarkKaasa2008

8/13/2019 LysarkKaasa2008

http://slidepdf.com/reader/full/lysarkkaasa2008 36/36

36

Waste handling

• Water from distillation

 – Onshore: Sent to water treatment and then disposed

 – Offshore: Disposed

• Salt

 – Up to 1.5 tons/d is possible

 – Onshore: No good solution, treated as special waste

 – Offshore: Dissolved in water from distillation and then disposed

• Problem: High content of heavy and polar hydrocarbons