Luật mạnh số lớn trong đại số von Neumann.

download Luật mạnh số lớn trong đại số von Neumann.

of 74

Transcript of Luật mạnh số lớn trong đại số von Neumann.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    1/74

    Mc lcLi m u 1

    1 Kin thc chun b 41.1 i s von Neumann v vt . . . . . . . . . . . . . . . . 4

    1.1.1 i s Banach . . . . . . . . . . . . . . . . . . . . 41.1.2 Php tnh lin hp . . . . . . . . . . . . . . . . . 51.1.3 i s von Neumann . . . . . . . . . . . . . . . . 61.1.4 Phim hm tuyn tnh dng v biu din . . . . 6

    1.2 Ton t o c theo mt vt . . . . . . . . . . . . . . . 71.2.1 Cc tnh cht c bn ca ph . . . . . . . . . . . 71.2.2 Khi nim v ton t khng b chn . . . . . . . 91.2.3 M u v php chiu . . . . . . . . . . . . . . . 111.2.4 L thuyt v ton t o c . . . . . . . . . 12

    1.3 Khng gian Lp theo mt vt . . . . . . . . . . . . . . . . 211.3.1 Hi t hu u trong i s von Neumann . . . . 241.3.2 Cc kiu hi t hu chc chn trong i s von

    Neumann . . . . . . . . . . . . . . . . . . . . . . 261.3.3 Dng khng giao hon ca nh l Egoroff . . . . 281.3.4 Khi nim v lut s ln . . . . . . . . . . . . . . 29

    2 Lut mnh s ln trong i s von Neumann 312.1 Tnh c lp . . . . . . . . . . . . . . . . . . . . . . . . . 32

    2.2 Hi t hu y trong i s von Neumann . . . . . . 322.3 nh l gii hn mnh cho dy trc giao . . . . . . . . . 342.4 M rng khng giao hon ca nh l Glivenko-Cantelli . 412.5 Bt ng thc Kolmogorov i vi vt v mt s h qu 442.6 Lut mnh s ln i vi vt . . . . . . . . . . . . . . . . 47

    i

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    2/74

    1

    2.7 Tc hi t trong lut mnh s ln . . . . . . . . . . . 622.8 Ch v ch thch . . . . . . . . . . . . . . . . . . . . . 68

    Kt lun 70

    Ti liu tham kho 72

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    3/74

    Li ni uCc ti liu khoa hc hin ti a ra nhiu bng chng rng cc

    phng php i s vn cch mng ha ton hc thun thy th nayli ang gy nh hng tng t i vi khoa hc vt l. Tip cn is i vi c hc thng k v l thuyt trng lng t l mt v dcho nh hng mi ny.

    Gn y nhiu tc gi m rng cc nh l hi t im c bntrong l thuyt xc sut v l thuyt ergodic sang (ng cnh) i svon Neumann.H cung cp mt s cng c mi cho vt l ton vng thi to ra nhiu k thut hp dn cho l thuyt i s ton t.

    Mc ch chnh ca ti l trnh by bn cht ca mt s tngv kt qu t lnh vc ni trn,chuyn cc kt qu c in bit trongl thuyt xc sut n cc phin bn khng giao hon ca chng, avo cc ng dng trong l thuyt trng lng t.

    i s von Neumann l mt s tng qut ha khng giao hon rt

    t nhin ca i s L v nhng cu trc tt ca n em li kh nngthu c cc phin bn hu chc chn ca cc nh l gii hn.Trong i s von Neumann, ta c th a ra khi nim hi t huu tng ng vi khi nim hi t hu chc chn trong i sL.Kiu hi t ny s l nn tng cho ton b ti.

    Ni dung ca ti gm hai chng :Chng 1 Trnh by mt s kin thc chun b cho vic nghin

    cu chng 2 bao gm cc kin thc nn tng v gii tch v xc

    sut.Mt s tnh cht ca hi t

    hu u

    trong i s von Neumann.Chng 2 Ni dung chnh ca ti: Lut mnh s ln trongi s von Neumann

    Trnh by cc kt qu ca Batty ,cng mt s kt qu khc. Nu nhtrong xc sut c in cc dng hi t theo xc sut ,hi t hu chcchn v hi t trung bnh ca dy bin nhin ng vai tr then cht

    2

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    4/74

    Li ni u 3

    trong Lut s ln th y chng ta c tip cn vi 1 kiu hi thon ton mi hi t hu u .Cc nh l c chng minh i vitrng thi , i vi vt. V mt trng thi th khng cng tnh di trndn cc php chiu nn cc qui tc v cc k thut i vi trng thikhng vt khc nhiu v kh khn hn nhiu so vi cc qui tc i vivt. ng ch y l cc lp lun cn dng i vi vt thng rt

    ging trng hp c in. Nhng trong mt s thng hp th chng tacn hng tim cn mi .Hu ht cc kt qu c trnh by trong ti l kt qu mi.

    Mt s ni dung ca ti l mt trong s cc bi ging ti iHc Tenessee Knoxville v ti Trung Tm Qu Trnh Ngu Nhin(Centerfor Stochastic Processes) ti i hc North Carolina ChapelHill (bi R.Jajte)

    Ni dung ca ti vn ang l hng quan tm ca nhiu nhton hc v vt l hc trong cc lnh vc i s ton t v cc ngdng ca chng nh Lance 1976-1978 ; Goldstein 1981; Watanabe 1979;Yeadon 1975-1980; Kiinrinerre 1978;.......

    Trong qu trnh tm hiu , nghin cu ni dung cc cng trnh cangi khc chng ti h thng , gii thiu nhm phc ha trin vngng dng cc kt qu nghin cu ca mnh trong tng lai.

    Tc gi xin c gi li cm n su sc n ngi thy, ngi hngdn khoa hc ca mnh l PGS. TS. Phan Vit Th, ngi a ra

    ti v hng dn tn tnh trong sut qu trnh nghin cu bn lunny. ng thi tc gi cng chn thnh cm n cc thy c trong khoaTon - C - Tin hc trng i hc Khoa hc T nhin, i hc Qucgia H Ni, v cc thy c gio Vin Ton hc -Vin KHCNVN tn tnh ging dy ,to iu kin thun li trong sut thi gian Tc gihc tp v nghin cu.

    H Ni, nm 2009Hc vin

    V Th Hng

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    5/74

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    6/74

    CH NG 1. KI N TH C CHU N B 5

    A c php nhn:A A A

    (x, y) xy

    tha mn cc tnh cht sau :

    1. x(yz) = (xy)z;

    2. (x + y)z = xz + yz; x(y + z) = xy + xz;

    3. (xy) = (x)y = x(y), x,y,z A, CKhi , A c gi l mti s phc. Hn na , nuA l mtkhng gian Banach (vi chun ||.||) tha mn cc tnh cht sau :

    4. ||xy|| ||x||.||y||; (x A, y B)

    5. A cha phn t n v e sao cho xe = ex = x (x A);

    6. ||e|| = 1;thA c gi l mti s Banach.

    Nu php nhn giao hon th gi l i s (i s Banach) giaohon .

    1.1.2 Php tnh lin hp

    nh ngha 1.1.2. Gi sA l mt i s phc , nh x x A x

    gi lphp lin hp nu tha mn cc iu kin sau :

    (i) (x + y) = x + y

    (ii) (x) = x

    (iii) (xy) = yx

    (iv) (x) = x

    i s phc A ng i vi php lin hp gi l i s . Nu Al i s Banach ng i vi php lin hp th gi l mt i sBanach .NuA l mt i s Banach tha mn iu kin ||x|| = ||x|| thAgi li s Banach lin hp. Nu i s Banach tha mn iukin ||xx|| = ||x||2, x A th gi l mtC i s

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    7/74

    CH NG 1. KI N TH C CHU N B 6

    Phn t x A (A l i s ) gi l chun tc nu xx = xx.Gi l Hermit nu x = x, unitar nu xx = xx = e, (e l n v caA). Nu A l C i s th ||x|| = ||x||, x A. Vy mi C i su l i s Banach lin hp.

    1.1.3 i s von Neumannnh ngha 1.1.3. Gi sH l khng gian Hilbert, B(H) l i s ccton t b chn. A B(H) l mt i s con.i sA B(H) gi l i s von Neumann nu:

    (i) A l kn i vi php ly lin hp;

    (ii) I A

    (iii) A ng i vi topo hi t yu, tc lAnw

    A nu :< Anx, y >< Ax, y > vi mix, y H

    Nh vy i s von Neumann l mt C i s.

    1.1.4 Phim hm tuyn tnh dng v biu din

    nh ngha 1.1.4. (*) Gi sA l i s von Neumann. Phim hmtuyn tnh :

    : A C

    gi ldng nu:(xx) 0, x A

    (*) gi lphim hm dng chnh xc (ng) nu:

    (xx) 0

    v t(xx) = 0 suy rax = 0

    c bit : |||| = (I)(*) Nu(I) = 1 th gi ltrng thi

    nh ngha 1.1.5. K hiu : A+ = {x A : x 0} . nh x : A+ [0, ] tha mn tnh cht :

    (i) (x + y) = (x) + (y), x, y A+

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    8/74

    CH NG 1. KI N TH C CHU N B 7

    (ii) (x) = (x), 0; x A+ (quy c 0. = 0)

    (iii) NuU l unitar th : (U xU1) = (x), x A+

    Khi gi l vt ca i sA .Nu :

    (x) < , x A+

    th gi lvt hu hn.Nu :

    (x) = sup{(y)|y x; (y) < }

    th gi l vt na hu hn .Nu : (x) = 0, x 0 m suy rax = 0 th gi lvt chnh xc (hayvt ng)Vt gi lchun tc (Normal) nu:

    (T) = sup (T)

    trong T l dy cc ton t tng tiT.

    i s von Neumann gi l hu hn (hay na hu hn) nu vi mix A, x = 0 tn ti vt chun tc hu hn sao cho (x) = 0. Trn is von Neumann na hu hn lun tn ti mt vt chun tc , chnhxc na hu hn.

    1.2 Ton t o c theo mt vt

    Phn ny ta s nh ngha khi nim v tnh o c theo mt vt trn mt i s von Neumann A v ch ra rng tp A cc ton t oc l mt i s topo y .Gi s A l mt i s von Neumann na hu hn hot ng trnkhng gian Hilber H v l trng thi na hu hn chun ng trn A.

    1.2.1 Cc tnh cht c bn ca ph

    nh ngha 1.2.1. Gi sA l i s Banach . G = G(A) l tp hptt c cc phn t kh nghch ca i s A . Khi G lp thnh mt

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    9/74

    CH NG 1. KI N TH C CHU N B 8

    nhm . Ph (x) ca x A l tp hp tt c cc s phc sao choe x khng c kh nghch . C/(x) c gi l tp hp chnh quy caphn tx.

    C/(x) = { : (e x)1}

    S(x) = sup{|| : (x)}

    c gi l bn knh ph ca phn t x.

    Ta lun chng minh c rng (x) = , x A.

    nh ngha 1.2.2. Gi s a l ton t tuyn tnh vi min xc nhD(a) . K hiu

    D(a) = {g : ! g, < g|af >=< g|f > f D(a)}

    vi gi thit D(a) = H. Khi D(a

    ) l khng gian con v ton tag = g, g D(a), g l phn t duy nht

    < g|af >=< g|f >

    l mt ton t tuyn tnh. a gi l lin hp ca ton ta.

    Nu a a th a gi l ton t i xng . Nu a = a th a gi lt lin hp.Khi a l ton t ng v D(a) = H th khi D(a) = H v a = a.

    Ch . i s con A ca i s B(H) gi l chun tc nu n giaohon v nu T A th T A.

    nh ngha 1.2.3. Ton t P c gi l ton t chiu nu D(P) =H; P = P = P2

    Nh vy , ton t chiu P l b chn v c s tng ng mt - mtgia cc ton t chiu v cc khng gian con ng trong khng gianHilbert.

    nh ngha 1.2.4. Xt H l khng gian Hilbert . (, ) l mt khnggian o, l trng. P l tp hp cc ton t chiu trong khnggian HilbertH. nh xE : P c gi l mtkhai trin n vtrn (, ) nu cc iu kin sau c tha mn :

    1. E() = 0, E() = I

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    10/74

    CH NG 1. KI N TH C CHU N B 9

    2. E(AB) = E(A)E(B)

    3. E(A B) = E(A) + E(B) nuAB =

    4. x, y H hm tp hp Ex,y xc nh bi cng thc

    Ex,y(A) =< E(A)x, y >

    l mt o phc trn

    nh l 1.2.5. (V biu din Ph) Nu T B(H) v T l ton tchun tc th tn ti ng mt khai trin n v trn cc tp con Borelca ph(T) ca ton tT sao cho

    T =

    (T)

    dE()

    NuT l t lin hp th(T) R. Khi

    T =

    ba

    dE

    NuT l ton t unitarT T = TT = I . Khi (T) nm trong vngtrn n v . Khi

    T =

    20

    eidE()

    1.2.2 Khi nim v ton t khng b chn

    Vi cc ton t (tuyn tnh) a, b trn H ta c th nh ngha tng a + bv tch ab l cc ton t trn H vi min xc nh :

    D(a + b) = D(a) D(b)

    D(ab) = { D(b) b D(a)}

    Cc php ton ny c tnh cht kt hp, v th a+b+c v abc l cc tont c nh ngha tt. Hn na ,vi mi a,b,c ta c : (a + b)c = ac + bcv c(a + b) ca + cb

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    11/74

    CH NG 1. KI N TH C CHU N B 10

    nh ngha 1.2.6. Mt ton ta trn H l ng nu thG(a) can ng trongH H ;a l trc ng nu bao ngG(a) ca th ca n l th ca mtton t ng no ( gi l bao ng ca a , k hiu l [a]) ;a l xc nh tr mt nu D(a) tr mt trongH.

    Nu a, b v ab xc nh tr mt th :

    (ab) ba

    ng thc xy ra nu a b chn v xc nh khp ni.Ton t ng , xc nh tr mt a c biu din cc:

    a = u|a|

    y |a| l ton t t lin hp dng , v u l mt ng c ring vi

    supp(a) l php chiu u ca n v r(a) , php chiu ln bao ng camin gi tr ca a , l php chiu cui ca n.

    nh ngha 1.2.7. Nu tnga + b ca hai ton t xc nh tr mtavb l trc ng v xc nh tr mt , th bao ng [a + b] c gi ltng mnh caa vb. Tng t , tch mnh l bao ng [ab] nu ab ltrc ng v xc nh tr mt.

    Ta vit||a|| = sup{||a||

    |||| 1}

    vi mi ton t xc nh khp ni a trn H, b chn hoc khng. Khi c lng sau y ng :

    ||a + b|| ||a|| + ||b||; ||ab|| ||a||.||b||

    K hiu A l hon tp ca A (hon tp A ca i s von Neumann Al tp tt c cc b trong B(H) giao hon vi a trong A). nh l hontp 2 ln von Neumann khng nh A = A.

    nh ngha 1.2.8. Ton t tuyn tnh a trn H c gi l kt hpviA (v ta vitaA) nu:

    y A : ya ay

    Ta k hiu A l tp tt c cc ton t ng , xc nh tr mtkt hp vi A

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    12/74

    CH NG 1. KI N TH C CHU N B 11

    1.2.3 M u v php chiu

    K hiu Aproj l dn cc php chiu ( trc giao ) trong A . i vih (pi)iI cc php chiu trc giao trong A, k hiu :

    iI

    pi; (iI

    pi)

    l php chiu ln iI

    piH; (iI

    piH)

    Ta c :(iI

    pi) =

    iI

    pi ; (iI

    pi) =

    iI

    pi

    y p = 1 p l php chiu trc giao vi p. Hai php chiu p v q

    l tng ng nu p = uu v q = uu vi u A no . Ta k hius tng ng l . Cc php chiu tng ng c cng vt.

    Mnh 1.2.9. Gi sa l ton t ng, xc nh tr mt kt hp viA. Khi :

    supp(a) r(a)

    yr(a) k hiuphp chiu ln bao ng min gi tr caa.Vi cc php chiup, q A ta c:

    (p q) p q (p q)

    ko theo :(p q) (p) + (q)

    Tng qut hn :(iI

    pi) iI

    (pi)

    i vi h ty (pi)iI cc php chiu trongA ( nuI hu hn th iuny ko theo bng qui np; i vi trng hp tng qut , s dng tnhchun tc ca ).

    Nhn xt 1.2.10.

    p,q Aproj : p q = 0 = p 1 q

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    13/74

    CH NG 1. KI N TH C CHU N B 12

    ( y c ngha tng ng vi mt php chiu con ca ).Tht vy :

    p = 1 q = (p q) p

    = (p q) p q (p q) q = 1 q

    1.2.4 L thuyt v ton t o cnh ngha 1.2.11. Gi s, R+ . Khi ta k hiuD(, ) l tptt c cc ton taA sao cho tn ti php chiup A tha mn :

    (i) pH D(a) v ||ap||

    (ii) (1 p)

    KhipH D(a) th ton tap xc nh khp ni , i hi ||ap|| ko

    theo ap b chn .

    Mnh 1.2.12. Cho 1, 2, 1, 2 R+ . Khi :

    (i) D(1, 1) + D(2, 2) D(1 + 2, 1 + 2)

    (ii) D(1, 1).D(2, 2) D(12, 1, 2)

    Mnh 1.2.13. Gi s, R+:

    (i) Nua l ton t trc ng , th:a D(, ) [a] D(, ).

    (ii) Nua l ton t ng , xc nh tr mt vi biu din cc a = u|a|th:

    a D(, ) u A, |a| D(, )

    B 1.2.14. Cho a A v, R+ . Khi :

    a D(, ) (],[(|a|))

    ( y],[(|a|)

    k hiuphp chiu ph ca |a| tng ng vi khong ], [ ).

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    14/74

    CH NG 1. KI N TH C CHU N B 13

    Chng minh.

    t :p = [0,](|a|)

    . Khi : pH D(|a|) v

    || |a|p||

    Vi p Aproj no ta c :

    || |a|p||

    v (1 p) Gi s:

    |a| =

    0

    de

    l phn tch ph ca |a| . By gi: pH ta c:

    || |a|||2 2||||2

    v : (1 e)H{0}

    ta c:|| |a|||2 > 2||||2

    V:

    || |a|||2 =

    0

    2d(e|) =

    ],[

    2d(e|)

    nn:(1 e)HpH

    phi l {0} ,tc l (1 e) p = 0Vy 1 e 1 p, do

    (1 e)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    15/74

    CH NG 1. KI N TH C CHU N B 14

    Mnh 1.2.15. Cho a A v, R+. Khi :

    a D(, ) a D(, )

    Chng minh. Gi s a = u|a| l biu din cc ca a. Khi u l mtng c ca

    ]0,[(|a|) = supp(a)ln

    ]0,[(|a|) = supp(a) = r(a)

    Do tnh duy nht ca phn tch ph suy ra vi mi R+, u l mtng c ca

    ],[(|a|)

    ln ],[(|a|). p dng b trn c iu phi chng minh.

    nh ngha 1.2.16. Mt khng gian con E ca H c gi l trmt nu R+ , tn ti php chiu p A sao cho pE E v(1 p) .

    Mnh 1.2.17. Gi sE l khng gian con tr mt caH . Khi tn ti mt dy tng (pn)nN cc php chiu trongA vi

    pn 1, (1 pn) 0,

    n=1pnH E

    .

    Chng minh. Ly cc php chiu qk A, k N sao cho :

    qkH E

    v (1 qk) 2k. Vi mi n N , t :

    pn =

    k=n+1

    qk

    Khi

    pnH =

    k=n+1

    qkH E

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    16/74

    CH NG 1. KI N TH C CHU N B 15

    v

    (1 pn) =

    k=n+1

    (1 qk)

    k=n+1

    (1 qk)

    k=n+1

    2k = 2n

    . Ko theo: pn 1.Tht vy, k hiu p l supremum ca dy tng pn , ta c

    n N : (1 p) (1 pn) 2n

    do (1 p) = 0 v p = 1. Hn na

    n=1pnH E

    Vy nu E l khng gian con tr mt ca H th E tr mt trongH.

    B 1.2.18. (i) Cho p0 Aproj .Gi s rng :

    R+, p Aproj : p0 p = 0

    v(1 p) . Khi : p0 = 0.

    (ii) Cho p1, p2 Aproj. Gi s rng

    R+, p Aproj : p1 p = p2 p

    v(1 p) . Khi : p1 = p2.

    Mnh 1.2.19. Cho a, b A vE l khng gian con tr mt ca

    H cha trongD(a) D(b). Gi sa|E = b|E . Khi a = bChng minh. Xt trong khng gian Hilbert H2 = H H i s von

    Neumann A2 =

    A A

    A A

    c trang b vt na hu hn chun ng 2

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    17/74

    CH NG 1. KI N TH C CHU N B 16

    xc nh bi 2

    x11 x12

    x21 x22

    = (x11) + (x22). K hiu pa v pb l cc

    php chiu ln th G(a) v G(b) ca a v b .V a v b kt hp vi Ann G(a) v G(b) bt bin di tt c cc phn t ca

    A2 = { y 00 y |y A}

    v do pa, pb A2 . Gi s R+ khi tn ti mt php chiu p A

    vi pH E v (1 p) /2. t p2 =

    p 0

    0 p

    Khi : 2(1 p2) . Hn na

    pa p2 = pb p2

    V a v b thng nht trn pH E nn

    G(a) (pHpH) = {(,a)| pH,a pH}

    = {(,b)| pH,b pH} = G(b) (pHpH)

    Theo b trn , ta suy ra pa = pb, do a = b.

    nh ngha 1.2.20. Mt ton t ng , xc nh tr mt kt hp viA

    c gi l o c nu vi mi R+ , tn ti mt php chiup A sao cho pH D(a) v(1 p) .K hiuA ltp tt c cc ton t ng , o c ,xc nhtr mt

    Nhn xt 1.2.21. 1. Nu a, b A v a b th a = b.

    2. Nu a A, v a l i xng th a t lin hp .

    3. Nu a ng v p Aproj tha mn pH D(a) th ton t , xc nh

    khp ni ap cng ng v b chn.

    nh ngha 1.2.22. Ton t aA c gi tin o c nu vimi R+ tn ti php chiup A sao cho

    pH D(a), ||a|| <

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    18/74

    CH NG 1. KI N TH C CHU N B 17

    v(1 p) .Hay tng ngGi saA . Khi a l tin o c khi v ch khi

    R+, R+ : a D(, )

    Mnh 1.2.23. (i) Ta c A

    A.(ii) Via A tha A.

    (iii) Cho a, b A khi a + b vab xc nh tr mt v tin ng , v[a + b] A, [ab] A.

    (iv) A l mt i s i vi tng mnh v tch mnh.

    T y ta s b qua k hiu [ ] trong k hiu tng mnh v tch

    mnh.nh ngha 1.2.24. Vi mi, R+ , ta t

    N(, ) = A D(, )

    tc l , N(, ) l tp cc a A, o c sao cho tn ti php chiup A tha mn ||ap|| v(1 p) .

    nh l 1.2.25. (i) N(, ), vi , R+ to thnh c s cho cc

    ln cn ca 0 i vi topo trn A bin A thnh khng gian vc ttopo.

    (ii) A l i s topo Hausdorff y vA l mt tp con tr mtcaA

    Chng minh. iu kin (i) l hin nhin . Ta chng minh (ii) :(1) . A l Hausdorff , ta s chng minh rng

    ,R+

    N(, ) = {0}

    Lya

    ,R+

    N(, )

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    19/74

    CH NG 1. KI N TH C CHU N B 18

    Khi : R+, R+ : (],[(|a|))

    V l ng (faithful) , iu ny ko theo

    ],[(|a|) = 0

    , do a = 0.(2). Tip theo ta s chng minh A l i s topo.Theo kt qu trn php ton lin hp l lin tc. Ly a0, b0 A v, R+ . Chn , R+ sao cho

    a0 N(, ), b0 N(, )

    Khi vi mi a, b A tha mn a a0 N(, ) v b b0 N(, ) ,ta c

    ab a0b0 = (a a0)(b b0) + a0(b b0) + (a a0)b0

    N(, )N(, ) + N(, )N(, ) + N(, )N(, )

    N(2, 2) + N(, 2) + N(, 2)

    N(( + + ), 6)

    Do (a, b) ab l lin tc.(3).A l tr mt trong A.Tht vy , gi s a A , ly cc php chiu pn A sao cho

    pn 1, (1 pn) 0,nN

    pnH D(a)

    Khi apn A v apn a trong A v

    ||(apn a)pm|| = 0

    vi mi m n v (1 pm) 0 khi n (4). Cui cng ta s chng minh rng khng gian vc t topo A l y.V A c mt c s m c cho cc ln cn ca 0 ( chng hn s dng

    N(1/n, 1/m), n, m N

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    20/74

    CH NG 1. KI N TH C CHU N B 19

    ) ta ch cn chng minh rng mi dy Cauchy (an)nN trong A hi t .V vy gi s (an)nN l mt dy Cauchy trong A v

    n N : an+1 an N(2(n+1), 2n)

    Ly php chiu pn A sao cho

    ||(an+1 an)pn|| 2(n+1)

    v (1 pn) 2n. Vi mi n N ,t:

    qp =

    k=n+1

    pk

    V

    (1 qn) = (

    k=n+1

    (1 pk))

    k=n+1

    (1 pk)

    k=n+1

    2k = 2n

    vm n + 1, l N : ||(am+l am)qn|| 2

    m

    V qn pkvi mi k m n + 1 v do

    ||(am+l am)qn||

    m+l1

    k=m

    ||(ak+1 ak)qn||

    m+l1k=m

    ||(ak+1 ak)pk|| m+l1k=m

    2(k+1) 2m

    Ly

    nN

    qnH

    .Khi qnH vi n N no ,v do dy(am)mN

    l dy Cauchy. ta = limmam

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    21/74

    CH NG 1. KI N TH C CHU N B 20

    Nh vy ta nh ngha mt ton t a vi

    D(a) =nN

    qnH

    (ch rng D(a) l khng gian tuyn tnh con v (qn)nN l mt dytng cc php chiu). Theo cc xy dng , a l tin o c . Vimi n N ta c

    qnH D(a)

    v (1 qn) 2n. Ta khng nh rng a cng tin ng. thy iuny , p dng lp lun trn cho (an)nN. Do tn ti mt ton t tin o c b sao cho

    bn = limman, D(b)

    Khi D(a), D(b) : (a|) = lim(am|) = lim(|a

    m) = (|b)

    nn a b. Nh vy a tin ng . Vy [a] A. t: a0 = [a], cui cngta chng minh an a0 trong A. Gi s , N0. Ly n0 N sao cho

    2(n0+1)

    v 2n0 . Khi vi mi m n0 + 1 ta c

    ||(a0 am)qn0|| 2(n0+1)

    v(1 qn0) 2

    n0

    v H : (a0 am)qn0 = liml(am+l am)qn0

    v||(am+l am)qn0|| 2m 2(n0+1)

    do b n0 + 1 : a0 am N(, )

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    22/74

    CH NG 1. KI N TH C CHU N B 21

    1.3 Khng gian Lp theo mt vt

    Trong phn ny chng ta s nh ngha khng gian Lp , Lp = Lp(A, )vi 1 p v xy dng cc tnh cht c bn ca chng. Segal lm vi p = 1, 2, ( khng gian L chnh l A ) , v Kunze nghincu trong trng hp tng qut. Cch tip cn ca chng ti da trn

    khi nim hi t theo o trnh by trong phn trn s n ginhn.Cho trc mt vt na hu hn chun ng trn i s von NeumannA trn khng gian Hilbert. Gi s

    L2 = {a A : (aa) < }

    Cho a trong L2 v b trong A . Khi

    (ba)

    ba ||b||a

    a

    nn ba cng trong L2 . V a v b u trong L2 nn a + b cng trong L2 v

    (a + b)(a + b) 2(aa + bb)

    Do L2 l mt idean tri . Vy n l t lin hp v do l idean haipha (sau ny ta s ng nht L2 vi L2 L) . t L = L22 . Khi Lcng l mt idean hai pha (sau ny ta s ng nht n vi L1 L).Nu a trong A+ v (a) < th a1/2 trong L2 , nn a trong L. Ngc

    li, gi s c 0 vi c trong L. Khi c l tng hu hn c = biai vibi, ai trong L2. V c

    1

    2

    (bib

    i + a

    i ai) nn ta c (c) < . Do L

    cha tt c cc t hp tuyn tnh hu hn cc phn t a trong A+ vi(a) < , v cc phn t ny to thnh L A+. Nh vy m rngduy nht thnh mt phim hm tuyn tnh (vn k hiu l ) trn L.Theo biu din cc th (ba) = (ab), v do (ba) = (ab) vi mia, b trong L. V vy ,nu a 0 v a trong L th

    (ab) = (a1/2ba1/2)

    nn0 (ba) ||b||(a)

    vi mi b 0 trong Lv do , theo tnh chun tc v na hu hn ca ,vi mi b trong A+. Kt qu l |(ba)| ||b||(a) vi mi b trong A.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    23/74

    CH NG 1. KI N TH C CHU N B 22

    Ta cng s s dng k hiu ||b|| cho chun ton t ca phn t b trongA, v ta t ||a||1 = (|a|) vi a trong L. V a = u|a| vi ||u|| = 1 nnta c

    |(ba)| ||b||||a||1; b A, a L (1.1)

    vi 1 p < v a trong L , t ||a||p = (|a|p)1/p.Ta khng nh rngbt ng thc Holder:

    |(ba)| ||b||q||a||p (1.2)

    ng , vi a, b trong L v (1

    p) + (

    1

    q) = 1. thy iu ny , gi s u v

    v trong A vi ||u|| 1, ||v|| 1 v gi s c 0, d 0, c L, d Ltha mn c v d b chn cch xa 0 trn b sung trc giao ca cckhng gian trng ca chng. Do tnh lin tc nn s gii hn ny v saus b qua, v ta khng nhc n na . Khi s (udsvc1s) lin tc

    v b chn trn 0 Res 1 v chnh hnh phn trong. Theo v dv nguyn l Phragmn-Lindelof c bit n nh l nh l 3 ngthng ,ta c :

    |(udkvc1p)| supRes=1|(udsvc1s)|ksupRes=0|(ud

    svc1s)|1k

    vi 0 k 1, v theo (1.1) v phi ||d||k1||c||1k1 . p dng iu ny

    vic = |a|1/k, d = |b|1/(1k)

    y a = u|a|, b = v|b|, k = 1/q, v 1 k = 1/q , iu ny ko theo(1.2).Vi a = u|a| trong L, t

    b =|a|p1u

    ||a||p/qp

    y 1/p + 1/q = 1 . Khi d thy ||b||q = 1 v (ba) = ||a||p. Tc l

    ||a||p = sup||b||q=1|(ba)| (1.3)

    v supremum l t c. T y ta d dng thu c bt ng thcMinkowski

    ||a + b||p ||a||p + ||b||p (1.4)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    24/74

    CH NG 1. KI N TH C CHU N B 23

    vi a, b trong L. V v tri l (c(a + b)) vi c tha mn ||c||q = 1 ,nhngn bng (ca) + (cb), do nh hn v phi theo bt ng thc Holder.Cui cng ,ch rng ||a||p = 0 ko theo a = 0 do tnh ng ca . Dovy L l khng gian tuyn tnh nh chun vi chun ||.||p . Gi Lp lkhng gian Banach tng ng vi L sau b sung cho y .Nu a 0 trong L vi biu din ph

    a =

    0

    de

    th

    ||a||pp = (ap) =

    0

    pd(e)

    nn ||a||pp p(e) (1.5)

    vi mi 0. Vy , nu an trong L l dy Cauchy trong Lp th n ldy Cauchy theo o. Do tn ti mt nh x tuyn tnh t nhinlin tc ca Lp vo A. Ta chng minh c rng nh x t nhin ny ln nh.

    nh ngha 1.3.1. i vi ton t dng t lin hp a kt hp vi Abt k , ta t

    (a) = supnN(

    n0

    de)

    y

    a =

    0

    de

    l biu din ph caa . Khi vi mip ]1, [ ta c th nh ngha

    Lp(A, ) = {a A(|a|p) < }

    v||a||p = (|a|

    p)1/p < , a Lp(A, )

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    25/74

    CH NG 1. KI N TH C CHU N B 24

    .(Lp(A, ), ||.||p) l cc khng gian Banach trong

    I = {x A(|x|) < }

    l tr mt , v tt c chng c cha trong ( hoc thm ch l nhnglin tc trong ) A

    Li bnh Khi nim v ton t o c c a ra bi I.E.Segal[17] v to thnh c s cho vic nghin cu l thuyt tch phn khnggiao hon , tc l l thuyt tch phn . L(X, ) ( tng ng vikhng gian o (X, ) ) c thay th bi i s von Neumann tng quthn. L thuyt ny ng vai tr chnh trong vic xy dng cc khnggian Lp kt hp vi cc i s von Neumann na hu hn l khng gianc th ca cc ton t ng xc nh tr mt .Trong [18] , E.Nelson a ra mt hng tip cn mi i hi t kin thc v k thut i svon Neumann cho l thuyt ny , da trn khi nim v tnh o ctheo mt vt (bt ngun t khi nim hi t theo o c gii thiubi W.F.Stinespring trong [16] ).Ton t o c bt k cng o dctheo ngha Segal ( trong khi iu ngc li ni chung khng ng ). Tuynhin ,tp hp cc ton t o c ln cha cc khng gianLp theo .

    1.3.1 Hi t hu u trong i s von NeumannL thuyt xc sut khng giao hon l nn tng ton hc ca c hclng t, n c th coi l m rng t nhin ca l thuyt xc sut cin. Trong c hc c in, vi mi h ht im vt l c mt a tpkh vi U tng ng .Cc trng thi ca h c biu din bi cc imca U, v cc lng vt l (cc quan st c ) s c m t bi cchm (o c) trn a tp U. Trong c hc lng t, vi mi h vtl c mt khng gian Hilbert H tng ng. Vi h c s bc t do hu

    hn , cc trng thi hn hp c cho bi cc ton t lp vt dng (ton t tr mt ) .Cc quan st c s c biu din bi cc ton tt lin hp hot ng trn H. i vi h ht c s bc t do v hn ,ngi ta ng nht trng thi ca h vi trng thi ( ton hc ) trnmt i s ton t A thch hp . Trong hu ht trng hp ta c th lyA l i s ton t von Neumann hot ng trn mt khng gian phc

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    26/74

    CH NG 1. KI N TH C CHU N B 25

    (kh ly) . i s tt c cc ton t tuyn tnh b chn trn H l mt is von Neumann. Trng hp c in dn ta n i s von Neumanngiao hon L(U, Bu, ) cc hm o c b chn trn mt khng giano (U, Bu, ) . Khi cc hm o c khng b chn s c gn vo L(U, Bu, ) mt cch t nhin. o sau khi thc trin duynht thnh tch phn

    U

    f(d)

    l mt trng thi chun tc ng trn L. Do trng hp c inc coi l sn ca i s von Neumann (giao hon).

    i vi mt khng gian xc sut (, F , ) , gi L(, F , ) l i s(cc lp tng ng ) tt c cc hm nhn gi tr phc, b chn ctyu v F o c trn . N c th coi l mt i s von Neumanngiao hon hot ng trong L2(, F , ) nu ta ng nht hm g Lvi ton t nhn ag : f f g, vi f L2. i s A = L(, F , ) ctrng thi vt chun ng ( cho bi

    (f) =

    f d

    ). Theo nh l Ergoroff, s hi t hu chc chn ca dy (fn) tA l tng ng vi s hi t hu u ca n. Tc l ta c th pht

    biu li hi t hu chc chn bng chun trong L , trng thi vcc hm c trng.

    nh ngha 1.3.2. Gi s A l i s von Neumann vi trng thichun tc ng. Ta ni rng dy(xn) cc phn t caA hi t huu ti phn tx A nu vi mi > 0 ,tn ti mt php chiup Avi(1 p) < tha mn ||(xn x)p|| 0 khin .

    Ch . nh ngha trn khng ph thuc vo cch chn do hit hu u tng ng vi hai iu kin sau:(*) Trong mi ln cn mnh ca n v trong A , tn ti php chiu psao cho ||(xn x)p|| 0 , khi n (**) Vi mi trng thi chun ng trn A v , tn ti php chiup A vi (1 p) < tha mn

    ||(xn x)p|| 0

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    27/74

    CH NG 1. KI N TH C CHU N B 26

    Nhn xt. Nu l mt trng thi chun tc ng th topo mnh tronghnh cu n v S trong A c th metric ha bi khong cch

    dist(x, y) = [(x y)(x y)]1/2

    nh l 1.3.3. Gi s A l mt i s von Neumann vi trng thi

    chun ng. Vi dy b chn cc ton t (xn) tA s hi t hu uko theo s hi t mnh ( mnh) ca(xn).

    1.3.2 Cc kiu hi t hu chc chn trong i

    s von Neumann

    Khi nim hi t hu u l s tng qut ca khi nim hi t hu chcchn cho i s von Neumann . Ta c th xt cc phin bn khng giaohon khc ca khi nim ny.

    nh l 1.3.4. Gi s A l mt i s von Neumann vi trng thichun ng .Vi mi dy b chn (xn) trong A, cc iu kin sau ltng ng

    (i) Vi mi > 0 , tn ti php chiu p trong A vi (1 p) < vs nguyn dngN sao cho

    ||(xn x)p|| <

    vin N.

    (ii) Vi mi > 0 , tn ti php chiup A vi(1 p) < sao cho

    ||(xn x)p|| 0

    khin .

    (iii) Vi , tn ti dy cc php chiu (pn) trong A tng ti 1.( trongtopo mnh ) sao cho

    ||(xn x)pn|| <

    vin = 1, 2,...

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    28/74

    CH NG 1. KI N TH C CHU N B 27

    (iv) Vi mi php chiu khc khng p trong A tn ti php chiu khckhngq A sao cho q p v

    ||(xn x)q|| 0

    khin

    R rng trong trng hp i s von Neumann giao hon L(, F , )c 4 iu kin va thnh lp u tng ng vi hi t hu chcchn.

    nh l 1.3.5. Nu l mt trng thi vt chun ng ( tc A l is von Neumann hu hn ) th c 4 iu kin trn l tng ng.

    Gi s l mt vt ( hu hn hoc na hu hn ) . Xt i s

    A cc ton t o c i vi (A, ) theo ngha Segal Nelson. Hi thu u (hay hi t gn u khp ni )cng c th c xt i vi dytrong A (c th l i vi dy (xn) trong L1(A, )).

    nh ngha 1.3.6. Mt dy(xn) trongA c gi lhi t hu utix nu vi mi > 0, tn ti php chiup A sao cho

    (p) < , (xn x)p A

    vin > n0 v ||(xn x)p|| 0

    khin .

    nh l 1.3.7. Dy(xn) trongA ( trongA nu l mt vt ) c gil hi t hu u hai pha ti x A hay(A) nu vi mi > 0 ,tn tiphp chiup A sao cho (1 p) < v

    ||(xn x)p|| 0

    khin

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    29/74

    CH NG 1. KI N TH C CHU N B 28

    1.3.3 Dng khng giao hon ca nh l Egoroff

    Mnh 1.3.8. Gi sA l mt i s von Neumann hot ng trongkhng gian Hilbert H. Nu dy (xi) trong A hi t mnh ti x0 th vimi > 0 , tn ti dy(pi) ProjA sao cho pi 1 mnh v

    ||(xi x0)pi|| <

    vii = 1, 2,...

    nh l 1.3.9. (nh l Egoroff khng giao hon) Gi sA l mt is von Neumann vi trng thi chun ng ; xn l dy trongA hi tnx theo topo ton t mnh . Khi vi mi php chiup A v mi > 0, tn ti php chiu q p trong A v dy con (xnk) ca (xn) saocho (p q) < v ||(xnk x)q|| 0 khik .

    B 1.3.10. Gi s {xn} l mt dy ton t dng t A v {n} lmt dy s dng . Nu

    n=1

    1n (xn) < 1/2

    th tn ti php chiup A sao cho

    (p) 1 2

    n=1 1

    n (xn)

    v ||pxnp|| 2n vi min = 1, 2,....

    nh l 1.3.11. nh l Rademacher-Menchoft. Gi s 1, 2, ....l dy cc bin ngu nhin trc giao vc1, c1, .... l dy s thc tha mn

    k=1c2k(lgk)

    2 <

    Khi chui

    k=1

    ckk

    hi t vi xc sut1.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    30/74

    CH NG 1. KI N TH C CHU N B 29

    Cc k hiu s dng trong ti : A k hiu 1 i s vonNeumann hot ng trong mt khng gian Hilbert phc H ; A l hontp ca A; l mt trng thi trn A ; A+ l nn cc ton t dngtrong A ; ProjA l tp hp tt c cc php chiu trc giao trong A .Vip ProjA lun lun p = 1 p. Ton t n v trong A l 1, i vitp con Borel Z ca ng thng thc v ton t t lin hp x , k hiu

    eZ(x) l php chiu ph ca x tng ng vi Z. Vi x A th |x|2 = xx.A l tp cc ton t ng , o c , xc nh tr mt. A l tp ccton t ng , xc nh tr mt v kt hp vi A

    1.3.4 Khi nim v lut s ln

    Mt bin c ngu nhin c th xy ra m cng c th khng xy i vimi php th. i lng ngu nhin c th ly mt trong cc gi tr c

    th ca n. Nhng khi xt mt s ln nhng bin c ngu nhin hay ilng ngu nhin , ta c th thu c kt lun no m trn thc tc th xem l chc chn. Trong l thuyt xc sut ngi ta gi nhngnh l khng nh dy no nhng i lng ngu nhin hit theo xc sut v hng s l nhng nh l lut s ln . Nhngnh l lut s ln c in ( lut s ln i vi hi t theo xc sut )nh nh l Bernoulli v nh l Chebyshev , Khinchin...v lut s lni vi hi t hu chc chn nh nh l Kolmogorov.

    nh ngha 1.3.12. Lut yu s ln cn c gi l nh lKhinchin Xt n bin ngu nhin X1, X2,....,Xn c lp , cng phnphi vi phng sai hu hn v k vng E(X). Khi vi mi s thc dng , xc sut khong cch gia trung bnh tch ly

    Yn =X1 + X2 + ... + Xn

    n

    v k vngE(X) ln hn l tin v0 khin tin v v cc.

    limnPX1 + X1 + .... + Xn

    n E(X) = 0

    nh ngha 1.3.13. Lut mnh s ln Kolmogorov Xtn bin ngunhin c lp X1, X2, ........., Xn cng phn phi xc sut vi phng saiE(|X|) < . Khi trung bnh tch ly

    Yn =X1 + X2 + .... + Xn

    n

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    31/74

    CH NG 1. KI N TH C CHU N B 30

    hi t hu nh chc chn vE(X) .Tc l

    P

    limnYn() = E(X)

    = 1

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    32/74

    Chng 2

    Lut mnh s ln trong

    i s von Neumann

    Trong chng ny chng ta s cp n mt s kt qu c coi lm rng ca nh l c in cho dy bin ngu nhin c lp ( haykhng tng quan ) . D nhin ta s cn khi nim tng qut tng ngv tnh c lp trong i s von Neumann. Vic thit lp li nh nghac in khng kh. Nhng iu cn nhn mnh y l tnh c lplin quan n trng thi l mt iu kin rt hn ch ,c bit khi

    khng phi l vt.Khi nim c lp trong xc sut khng giao khngng vai tr qu quan trng nh trong xc sut c in. l l do vsao cc nh l v dy ton t c lp dng nh t quan trng so vicc nh l martingale hay ergodic . Rt may l i vi trng thi vt(tracial state) th cc k thut vn tng t nh trng hp c in.Vvy ta thu c rt nhiu kt qu ng cho c trng hp giao hon vkhng giao hon theo cch lm khng khc nhiu cch lm c in .

    Thay cho vic nghin cu tnh c lp, ta s nghin cu tnh trcgiao ( lin quan n trng thi ) vi iu kin km cht hn nhiu. Ccnh l lin quan n dy trc giao dng nh c ng dng nhiuhn, v s c nghin cu trong chng ny. Cc nh l nh vy clin h vi l thuyt tng quan trong cc qu trnh ngu nhin lngt ( xem [14] ) v cho ta mt s thng tin v bin thin tim cn cady quan st c khng tng quan.

    31

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    33/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 32

    Nu trng thi l vt th ta s thit lp c mt s nh l chody ton t o c. Chnh xc hn, ta s xt dy (xn) A ,vi A l*- i s t p cc ton t o c theo ngha Segal-Nelson . Cc thutng v mt s kt qu lin quan n ton t o c c th xem thmti liu trong phn ph lc.

    2.1 Tnh c lp

    Cho A l mt i s von Neumann vi trng thi chun tc ng (faithful normal state ) . K hiu A1, A2 l cc i s von Neumanncon ca A . Theo Batty [11] ta c 2 phin bn ca khi nim clp i vi dy ton t .

    nh ngha 2.1.1. Cc i s conA1, A2 c gi l c lp ( lin quann ) nu(xy) =(x)(y) vi mix A1, y A2 .

    R rng quan h c lp c tnh cht i xng.

    nh ngha 2.1.2. Cc phn tx, y A ( hay tA nu l trng thivt ) c gi lc lp nu cc i s von NeumannW(x) vW(y)ln lt sinh ra bi x vy l c lp.

    Dy {xn} cc phn t t A ( hay A nu l mt vt ) c gil c lp lin tip nu vi mi n , i s W(xn) c lp viW(x1, x2,....,xn1) .

    nh ngha 2.1.3. H {B, } ca cc i s von Neumann concaA ( hay trongA nu l vt ) gi lc lp yu nuB c lpviW{B; {}}

    2.2 Hi t hu y trong i s vonNeumann

    T y ta s s dng mt s kiu hi t trong ATa cng nhn nh ngha sau:

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    34/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 33

    nh ngha 2.2.1. Dy {xn} trong A c gi l hi t hu y tix nu vi mi > 0 ,tn ti dy (qn) cc php chiu trongA sao cho

    n

    (1 qn) <

    v ||(xn x)qn|| < ; n = 1, 2, ....

    Trc ht ta lu rng nu l vt th hi t hu y ko theohi t hu u.

    Chng minh. Tht vy , gi s xn 0 hu y . Khi tn ti dycc php chiu qn sao cho ||xnqn|| < , n = 1, 2,... v

    n(qn ) <

    t :

    pn =

    s=n

    qn

    , ta c :

    (1 pn)

    s=n

    (1 qn) 0

    Tc l xn 0 hu khp ni . Theo nh l 1.3.5 th xn 0 hu u.

    Khi l mt trng thi , ta c kt qu sau:

    nh l 2.2.2. Gi sA l i s von Neumann vi trng thi chuntc ng , v (xn) l dy b chn trong A . Nu xn x hu y thxn x hu u.

    Chng minh. Gi s ||xn|| 1 v x = 0 . Cho trc > 0. Ta s tmdy (qn) cc php chiu trong A sao cho :n

    (qn ) <

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    35/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 34

    v ||xnqn|| < vi n = 1, 2,...C nh dy s dng (n) tha mn:n 0 v

    n=1

    (1 qn)1n < /2

    Theo b 1.3.10 , tn ti php chiu p A vi (p

    ) < v tha mn||pqnp|| = ||qnp

    ||2 < 2n; n = 1, 2, ....

    Khi ta c:

    ||xnp|| ||xnqnp|| + ||xnqnp|| ||xnqn|| + ||q

    np|| < + (2n)

    1/2 < 2

    vi n > M0()V vy iu kin sau c tha mn:

    (*) Vi mi > 0 , tn ti php chiu p vi (p) 1 v tha mn||xnp|| < vi n > n0();Theo nh l 1.3.4 th xn 0 hu u ;

    2.3 nh l gii hn mnh cho dy trc

    giao

    Trong mc ny ta s chng minh nh l gii hn mnh sau y v dytrc giao lin quan n mt trng thi .

    nh l 2.3.1. [15] Gi s A l i s von Neumann vi trng thichun tc ng , v (xn) l dy trc giao tng i trong A (tc l(xnxm) = 0 vim = n)Nu :

    n=1(lg n

    n

    )2(|xn|2) < (2.1)

    Th cc trung bnh :

    Sn =1

    n

    nk=1

    xk (2.2)

    hi t hu u ti0

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    36/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 35

    chng minh nh l ny ta s bt u vi kt qu nh sau .

    Mnh 2.3.2. Gi s (yn) l dy trc giao tng i trong A . t:

    tn =n

    k=1

    yn (2.3)

    Khi tn ti dy ton t dngBm trongA sao cho :

    |tn|2 (m + 1)Bm 1 n 2

    m (2.4)

    v

    (Bm) (m + 1)2mk=1

    (|yk|2) (2.5)

    Chng minh. Vic chng minh da trn tng ca Plancherel [ 7] vc trnh by trong l thuyt v chui trc giao ( xem [8] ). Ta s btu vi biu din nh phn ca ch s n ; ta chia khong I = (0, 2m]thnh cc khong (0, 2m1] v (2m1, 2m] ,mi khong ny li tip tcc chia i .... v ta s thu c dy phn hoch ca I . Cc phnt ca phn hoch u tin c di 2m1 ,ccphn t ca phn hochth r c di 2mr . i vi s nguyn dng n 2m , ta c biu dinnh phn ca n. Khi khong (0, n] c th vit thnh tng ca nhiunht m khong ri nhau I(n)j mi khong thuc mt phn hoch khc

    nhau , tc l :

    (0, n] =m

    j=0

    I(n)

    j (2.6)

    Vi I(n)j l tp rng hoc l khong c di |I(n)

    j | ; (j=1,2,...m) Tac th vit :

    tn =m

    j=0

    kI

    (n)j

    yk (2.7)

    (ng nhin , ta s t kI

    (n)j

    yk = 0

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    37/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 36

    nu I(n)j trng ) . By gi ta ch rng vi dy Z1, Z2,....,Zn trong A ,ta c :

    |n

    k=1

    Zk|2 n

    nk=1

    |Zk|2 (2.8)

    iu ny d dng suy ra bng quy np t bt ng thc :

    xy + yx xx + yy

    t:Bm =

    I

    |kI

    yk|2 (2.9)

    y I chy trn tt c cc khong l phn t ca phn hoch ca(0, 2m]. Khi ta c:

    |tn|2 (m + 1)

    mj=0

    | kI

    (n)j

    yk|2 (m + 1)Bm (2.10)

    Hn na Bm khng ph thuc vo n (0, 2] nn (2.5) ng .Mnh c chng minh xong .

    * Chnh minh nh l 2.3.1

    Chng minh. t :

    SN = 1N

    Nk=1

    xk

    . Gi s : 2k < N 2k+1. Khi :

    |SN S2k|2 = |(

    1

    N

    1

    2k)

    2ks=1

    xs +1

    N

    Ns=2k+1

    xs|2 (2.11)

    2[(

    1

    N

    1

    2k )

    2

    |

    2k

    s=1 xs|2

    +

    1

    N2 |

    n

    s=2k+1

    xs|

    2

    ]

    p dng mnh 2.3.2 , ta c:

    |SN S2k|2 212k[|

    2ks=1

    xs|2 + (k + 2)Bk]

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    38/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 37

    y Bk l ton t dng , khng ph thuc vo N (2k, 2k+1] v thamn :

    (Bk) (k + 2)2k+1

    s=2k+1

    (|xs|2) (2.12)

    Do , vi 2k < N 2k+1, ta c:

    |SN S2k|2 Dk (2.13)

    Vi Dk A+, v

    (Dk) 212k[

    2ks=1

    (|xs|2) + (k + 2)

    2k+1s=2k+1

    (|xs|2)] (2.14)

    Theo gi thit ca nh l , ta c :

    k=1

    (Dk)

    k=1

    212k22k

    k2

    2ks=1

    (|xs|2)(

    lg s

    s)2

    +

    k=1

    212k22k

    k2(k + 2)2

    2k+1s=2k+1

    (|xs|2)(

    lg s

    s)2

    s=1 (|xs|2

    )(

    lg s

    s )

    2

    (

    k=12

    k2 + const) (2.15)

    Hn na:

    k=1

    (|S2k|2) =

    k=1

    1

    22k

    2ks=1

    (|xs|2)

    k=1

    22k22k

    k2

    s=1

    (|xs|2)(

    lg s

    s)2 < (2.16)

    Cho trc > 0.T (2.15) ,(2.16) suy ra ta c th tm c dy s dng(k) sao cho k 0 v :

    k=1

    1k (|S2k|2 + Dk) < /2 (2.17)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    39/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 38

    Theo b 1.3.10 tn ti php chiu p A vi (p) 1 tha mn:

    ||p|S2k|2p|| < 2k; ||pDkp|| < 2k (2.18)

    Nh vy ,vi 2k < N 2k+1 , ta c c lng sau :

    ||SNp||2 + ||(SN S2k)p + S2kp||

    2

    2[||(SN S2k)p||2 + ||S2kp||

    2]

    = 2[p|SN S2k|2p|| + ||p|S2k|

    2p||]

    2[||pDkp|| + ||p|S2k|2p||]

    < 8k 0 khiN . iu ny c ngha l :

    SN =1

    N

    N

    s=1 xshi t hu u v 0nh l c chng minh xong.

    Ta s thit lp phin bn r chiu ca nh l 2.3.1

    nh l 2.3.3. Gi s (x(i)n ); i = 1, 2,....,r l mt h hu hn cc dytrc giao tng i trong A ( tc l((x(i)n )x

    (i)m ) = 0 vi m = n v

    i = 1, 2,...,r). Gi thit :

    n=1

    (lg n

    n)2(|x(i)n |

    2) < ; i = 1, 2,...,r

    Khi , vi mi > 0 , tn ti php chiu p A vi (1 p) < vtha mn:

    Max1ir||1

    N

    Nn=1

    x(i)n p|| 0; N

    tc l, cc trung bnh1

    N

    Nn=1

    x(i)n

    hi t ti0 hu u v u theo 1 i r;

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    40/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 39

    D nhin nu l mt vt th nh l ny l h qu tm thng canh l 2.3.1. Nu l trng thi chun tc ng tng qut , chng minhc th thu c bng cch xem xt k chng minh ca nh l 2.3.1.

    Chng minh. t :

    S(i)N =

    1

    N

    N

    n=1 x(i)n

    V p dng mnh 2.3.2 , ta c c lng :

    |S(i)N S

    (i)2k

    | D(i)k ; (i = 1, 2,...,r)

    Vi D(i)k A+ no c tnh cht ging Dk . n y ta c th t :

    Dk =r

    i=1D

    (i)k ; SN = (

    r

    i=1|S

    (i)N |

    2)1/2

    V tip tc chng minh nh trong nh l 2.3.1

    Ta s so snh nh l 2.3.1 vi cc kt qu c in .nh l Rademacher - Menchoft v s hi t hu chc chn ca chuitrc giao [8] cng vi b Kronecker cho ta lut mnh s ln sau y:

    nh l 2.3.4. i vi dy(Xn) cc bin ngu nhin khng tng quan, nu :

    n

    (lg nn

    )2var(Xn) <

    Th:1

    n

    nk=1

    (Xk EXk) 0

    vi xc sut1

    R rng nh l 2.3.1 c th c coi l s m rng ca lut mnhs ln ni trn cho trng hp khng giao hon .Vi mt vi iu kin mnh hn trong nh l 2.3.1 ta s thu c shi t tt hn ca dy trung bnh . Do d dng chng minh 2 nhl sau:

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    41/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 40

    nh l 2.3.5. Gi s(xn) l dy trongA trc giao lin quan ti trngthi . Nu

    s=1

    as(|xs|2) <

    khi0 < as 0 v

    s=1

    1s2as

    <

    th1

    n

    ns=1

    xs 0

    hu y .

    Chng minh. t:

    Sn =1

    N

    Ns=1

    xs

    , khi :

    (|SN|2) =

    1

    N2

    Ns=1

    (|xs|2)

    1

    N2aN

    Ns=1

    as(|xs|2)

    Do vy : (|SN|2) < Vi > 0 , ta t :

    qN = e[0,2](|SN|2)

    Khi :||SNqN|| < vi N = 1, 2,... Hn na :

    N=1

    (qN) 2

    k=1

    (|Sk|) <

    Kt thc chng minh.nh l tip theo l kt qu mnh hn ca Batty [11] (nh l 2.3.1)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    42/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 41

    nh l 2.3.6. Gi s(xn) l dy c lp yu b chn u trong A vi(xk) = 0 . Khi

    1

    n

    ns=1

    xs 0

    hu y .

    Chng minh. Cho trc > 0. t :

    SN =1

    N

    Ns=1

    xs

    D dng ch ra rng :

    (|SN|4) N4(3N2 N)

    Do : N

    (|SN|4) <

    t :qn = e[0,4](|SN|

    4)

    suy ra: N

    (qN) <

    v ||SNqN||4 || |SN|4qN|| < 4

    Vi N = 1, 2,... suy ra iu phi chng minh.

    2.4 M rng khng giao hon ca nh l

    Glivenko-Cantelli

    Ta cn thm mt nh ngha na.

    nh ngha 2.4.1. Gi s v l 2 ton t t lin hp c st nhpviA . Gie(.) ve(.) l cc o ph ca v .Ta ni rng v l cng phn phi nu (e(Z)) = (e(Z)) vi mi tp con Borel Zca ng thng thc.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    43/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 42

    Ta s chng minh kt qu tng qut ca nh l Glivenko-Cantelliv phn phi thc nghim.

    nh l 2.4.2. [9] Gi s n l dy ton t t lin hp , c lp tngi v cng phn phi , st nhp viA. Khi vi mi > 0 , tn timt php chiup trong A sao cho :

    sup

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    44/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 43

    Nhng t nh ngha ca i,k, ta c :

    (i+1,k 0) (i,k + 0) 1

    k

    V kt qu l :

    N(i,k + 0) (i,k + 0) 1

    k

    N( 0) ( 0) N(i+1,k 0) (i+1,k 0) +1

    k(2.19)

    Nu 1,k th:

    1

    k N( 0) ( 0) N(1,k 0) (1,k 0) +

    1

    k(2.20)

    V nu > 1,k th:

    N( 0) ( 0) = 0 (2.21)

    thun tin ta t :

    N(0,k + 0) (0,k + 0) = N(1,k 0) (1,k 0) = 0

    Theo (2.19) ,(2.20) ,(2.21) th vi mi s thc v k = 1, 2,... tn timt i gia 0 v k 1 sao cho :

    N(i,k + 0) (i,k + 0) 1k

    N( 0) ( 0)

    N(i+1,k 0) (i+1,k 0) +1

    k;

    do vy vi php chiu p ty t A ta c:

    p[N(i,k + 0) (i,k + 0)]p 1

    kp

    p[N( 0) ( 0)]p

    p[N(i+1,k 0) (i+1,k 0)]p +1

    kp

    V ta thu c kt qu:

    ||p[N( 0) ( 0)]p||

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    45/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 44

    max1ik,=0 ||p[N( + ) (i,k + )]p|| +1

    k

    Ko theo :

    sup

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    46/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 45

    v:||(sn (sn))(1 q)|| n 1

    Chng minh. Ta c th gi s (xn) = 0. Ta s nh ngha cc dy phpchiu pn, qn trong A bng quy np. t q0 = 0 . Cho trc qn1 ,t:

    pn = e(2,){(1 qn1)snsn(1 qn1)}

    v :qn = pn + qn+1

    R rng cc pn trc giao ,

    qn =N

    r=1

    pr

    , pn v qn thuc W{xn : r n}

    .T tnh c lp v cc tnh cht ca vt th vi r n:

    (pr|sn|2pr) = (pr((sn sr) + sr)

    ((sn sr) + sr)pr)

    ((sn sr)srpr) + (prs

    r(sn sr)) + (prs

    rsrpr)

    = ((sn sr)srpr) + (prs

    r(sn sr)) + (prs

    rsrpr)

    = (pr(1 qr1)srsr(1 qr1)pr) 2(pr);v:

    (qn) 2

    nr=1

    (snsnpr) = 2(snsnqn)

    2(snsn) = 2

    nj=1

    ||xj||22

    t :

    q =

    r=1

    pr

    , khi :

    (q) 2n

    j=1

    ||xj||22

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    47/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 46

    , v:||(1 q)snsn(1 q)||

    ||(1 pn)(1 qn1)snsn(1 qn1)(1 pn)||

    2

    Nh l h qu ca nh l trn, ta nhn c dng suy rng sau yca nh l Kolmogorov.

    nh l 2.5.2. Gi sxn l dy c lp lin tip trongL2(A, ) sao chochui

    n=1

    ||xn (xn)||22

    hi t , v gi

    sn =

    n

    k=1 xk. Khi dysn (sn) hi t hu u.

    Chng minh. Ta c th gi s rng xn l t lin hp v (xn) = 0 . Chns nguyn nk sao cho

    n=nk

    (x2n) < 8k

    Theo nh l 2.5.1 tn ti cc php chiu qk vi (qk) < 2k

    tha mn||(sn sm)(1 qk)|| < 2

    (k1)

    vi m, n nkNn {sn} l dy Cauchy theo o . Gi s l gii hn theo o can . Khi ta c:

    ||(sm s)(1 qk)|| < 2(k+1)

    vi n > nk.V vy sn s trn cc tp ln v do hi t hu u .

    S dng b Kronecker ta thu c :

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    48/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 47

    nh l 2.5.3. Gi s{xn} l dy c lp lin tip trongL2(A, ) saocho

    n=1

    n2||xn (xn)||22 <

    . Khi

    n1

    n

    k=1

    (xk (xk))

    hi t hu u .

    Ch rng t kt qu va nu ta c th suy ra m rng sau y calut mnh s ln Kolmogorov.

    nh l 2.5.4. Gi s {xn} l dy cc ton t cng phn phi , clp lin tip v t lin hp trongL1(A, ) . Khi :

    n1n

    k=1

    xk (x1)

    hu u.

    Ta b qua chng minh ca nh l ny v trong phn sau ta s nura kt qu tng qut hn.

    2.6 Lut mnh s ln i vi vt

    Ta s bt u vi nh l 2.5.2 t suy ra m rng ca phn

    ca nh l ba chui Kolmogorov.

    B 2.6.1. Gi s{k} l dy ton t o c c lp lin tip t A.Vid > 0 , t

    k = ke[0,d]{|k|}

    . Khi cc iu kin :

    (i)

    k (e(d,){|k|}) <

    (ii)

    k (kk) <

    (iii)

    k (k) hi t .

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    49/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 48

    Ko theo s hi t hu u ca chui

    k k;

    Chng minh. Theo nh l 2.5.2 v (ii) chuik

    (k (k))

    hi t hu u , v do theo (iii) chuik

    k

    hi t hu u . iu ny cng vi (i) cho ta s hi t hu u cak k.

    Tht vy, t :

    sn =

    n

    k=1 k;

    sn =n

    k=1

    k

    R rng ch cn chng minh {sn} l dy Cauchy hu u , tc l :Vi mi > 0 , tn ti p ProjA (tp hp cc php chiu ca A) vi(p) 1 v s nguyn dng N sao cho

    ||(sn sm)p|| <

    vi n, m N.V chui k

    k

    hi t hu u nn vi mi > 0 , ta tm c q ProjA v N sao cho

    ||( sn sm)q|| <

    vi n > m N v (q) < /2. t :

    p = q k=m+1

    e[0,d]{|k|}

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    50/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 49

    theo (i) ta c:

    (p) (p) +

    k=m+1

    (e(d,){|k|}) <

    Vi m ln (m N) . Khi :

    ||(sn sm)p|| ||( sn sm)q|| <

    vi n > m NDo {sn} l dy Cauchy hu u . Kt thc chng minh.

    Bin i mt cht nh l trn ta c kt qu sau:

    B 2.6.2. Gi s {n} v {n} l cc dy ton t o c t A v{cn} l dy s dng . t:

    n = ne[0,cn]{|n|}.

    Nu n

    (e(cn,){|n|}) <

    th chui n

    (n + n)

    hi t hu u khi v ch khi chuin

    (n + n)

    hi t hu u.Ni ring nu

    n

    (e(cn,){|n|}) <

    , th chuik k hi t hu u khi v ch khi chuik

    k

    hi t hu u .

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    51/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 50

    Chng minh. t :

    sn =n

    k=1

    (k + k)

    ;

    sn =n

    k=1(k + k)

    V x l cc hiu (sn sm), ( sn sm) nh cch ch ra trong chngminh nh l trn.

    nh l 2.6.3. Gi sn : R+ R+ l dy hm khng gim sao chon()/ v2/n() khng gim vi min .Gi s

    0 < xn

    Nu {k} l dy ton t c lp lin tip lin kt vi A v tha mn(j) = 0 v

    k=1

    (n|k|)

    (xk)< (2.22)

    Th chui

    k=1

    kxk

    (2.23)

    hi t hu u.

    Chng minh. t :

    n = ne[0,xn]{|n|} = ne[0,1]{|nxn

    |}; n = 1, 2, ....

    Khi ta c :(e[xn,]){|n|})

    (n|n|)

    n(xn)

    T (2.22) ta thu c :

    n=1

    (e(1,){|nxn

    |}) < (2.24)

    Hn na , v :2

    x2n

    n()

    n(xn)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    52/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 51

    vi 0 xn nn ta c:

    (|n|2)

    x2nn(xn)

    (

    xn0

    n()ed{|n|})

    x2nn(xn)(n|n|)

    V do :

    n=1

    n

    xn

    2= n=1

    n

    xne[0,1]{|

    nxn

    |}2< (2.25)

    V : (n) = 0 nn ta c :

    |(n)| (|n|e[xn,){|n|}) (

    |

    n|)

    (xn)xn

    (V

    n()

    n(xn)xn

    vi xn). Do vy :

    n=1 n

    xn

    n=1(n|n|)

    (xn)< (2.26)

    Theo b 2.6.1 v (2.24) ,(2.25) ,(2.26) ta thu c (2.23). Kt thcchng minh.

    By gi ta s chng minh lut mnh s ln m khng cn gi thitv tnh hu hn ca cc m men thng ca n.

    nh l 2.6.4. Gi sn : R+ R+ l dy hm khng gim tha mn

    2

    /n() khng gim , v gi s0 < xn

    , {n} l dy ton t o c c lp lin tip . t:

    n(d) = (ed{|n|})

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    53/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 52

    Nu :

    n=1

    0

    n()

    n(xn) + n()n(d) < (2.27)

    Th tn ti dy hng s (Ck) sao cho :

    1xn

    nk=1

    (k Ck) 0 (2.28)

    hu u.V trong trng hp ny ta c th t :

    Ck = (ke[0,xk]{|k|}) (2.29)

    Chng minh. i vi hm khng gim : R+ R+ v ton t vi

    || =

    0

    e(d)

    ta t(.) = (e(.))

    th s c c lng sau ( vi x > 0 )

    0

    ()

    (x) + ()(d)

    1

    2(x)

    x0

    ()(d) +1

    2

    x

    (d)

    =1

    2(x)((||e[0,x]{||})) + (e(x,){||})

    =1

    2(x)((||e[0,x]{||})) + (e(x,){||})

    V vy ta c : n

    (n|n|)

    (xn)< (2.30)

    V: n

    (e(xn,){|n|}) < (2.31)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    54/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 53

    Vi:n = ne[0,xn]{|n|} (2.32)

    Hn na :

    (|n|2)

    x2nn(xn)

    (n|n|)

    V do : n

    (|n|2)

    x2n<

    iu ny ko theo s hi t ca chui :

    n

    n (n)

    xn

    V do vy theo b 2.6.2 ta suy s hi t hu u ca chui

    n

    (n)

    xn

    By gi ta ch vic p dng b Kronecker.

    Hai nh l sau y chnh sa mt s kt qu ca W.Feller ( i vibin ngu nhin thc)

    nh l 2.6.5. Gi s{k} l dy ton t t lin hp , cng phn phi

    i xng v c lp lin tip , lin kt vi (A, ) .Gi s rng l hmkhng gim sao cho 2/() khng gim.Gi thit: 0 = x0 < x1 < x2, .... v

    k=n

    1

    (xk)= 0(

    n

    (xn)) (2.33)

    Khi iu kin :

    n (e(xn,){|1|}) < (2.34)Ko theo:

    1

    xn

    nk=1

    k 0 (2.35)

    hu u .

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    55/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 54

    Chng minh. t:n = ne[0,xn){|n|}

    . Khi :

    n=1

    (|n|)

    (xn)=

    nk=1

    (|1|e[xk1,xk){|1|})

    n=k

    1

    (xn)

    C

    k=1

    k[xk1,xk)

    ()

    (xk)(ed{|1|})

    C

    k=0

    (e(xk,){|1|}) <

    Do (2.30) ng. Hn na (2.31) tha mn theo gi thit v (n) = 0.( v n phn phi i xng ). Lp li phn chng minh ca nh l (2.6.4)

    sau cng thc (2.31) ta thu c (2.35) . iu phi chng minh.Trong trng hp n khng phn phi i xng ta cn hn ch thm

    iu kin i vi {xk}

    nh l 2.6.6. Gi s{n} l dy cng phn phi , c lp lin tip, v{xn} c m t nh trong nh l (2.6.4)Nu thm vo

    (1) = 0;xkxn

    C0k

    n; k n (2.36)

    th (2.34) ko theo (2.35).

    Chng minh. Tng t nh l (2.6.5) ta ch ra rng :

    1

    xn

    nk=1

    (k (k)) 0

    hu u. V do :1

    xn

    n

    k=1

    (k) 0

    Ta c c lng sau:

    1

    xn

    nk=1

    (n) 1

    xn

    nk=1

    xk

    (ed{|1|})

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    56/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 55

    Do s dng phn tch cc :

    k k = uk|k k|

    ta c:|(k k)| ||uk||(|k k|) = (|k k|)

    v|k k| = |k|e(xk,){|k|}

    V vy :1

    xn

    nk=1

    (k) 1

    xn

    nm=1

    mk=1

    +

    m=n+1

    nk=1

    xm+1xm

    (ed{|1|}) S1 + S2

    Vi :

    S1 =1

    xn

    nm=1

    mxm+1(e[xm,xm+1){|1|})

    S2 =1

    xn

    nm=n+1

    nxm+1(e[xm,xm+1){|1|})

    S1 0 v :n

    m=0

    (m + 1)(e[xm,xm+1){|1|})

    =

    m

    (e(xm,){|1|}) <

    Theo gi thit v do ta c th p dng b Kronecker.Lp lun tng t cho S2 . Chng minh c hon thnh.

    By gi ta s chng minh kt qu cho trng hp khng giao hon

    ca lut s ln Marcinkiewicz. Ta bt u vi 2 mnh sau:Mnh 2.6.7. Gi s{n} l dy c lp lin tip trongA v

    n=1

    10

    (e[,){|n|})d <

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    57/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 56

    Khi chui

    n=1

    ( (n))

    hi t hu u , y :

    n = ne[0,1){|n|}

    Chng minh. Tch phn tng phn , ta c:

    10

    (e[,){|n|})d =1

    2(e[1,){|n|})

    +1

    2

    1

    02(ed{|n|})d =

    1

    2(e[1,){|n|}) +

    1

    2(|n|

    2)

    V do , theo gi thit ta suy ra:n

    (|n|2) <

    v n

    (e[1,){|n|}) <

    Bt ng thc th nht cng vi nh l 2.6.2 cho ta s hi t hu uca chui

    n

    (n (n))

    v cng vi bt ng thc th hai v b 2.6.2 suy ra s hi t huu ca

    n=1

    (n (n))

    .

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    58/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 57

    Mnh 2.6.8. Gi s{n} xc nh nh trn v

    n=1

    10

    (e[bn,){|n|})d <

    vi{bn} l dy hng s dng , bn . Khi :

    (i)

    n=1

    b1n (n (n))

    hi t hu u , v

    (ii)

    b1n

    n

    k=1(k (k)) 0

    hu u

    yn = ne[0,bn){ n}

    Chng minh. Ta c :

    1

    0(e[bn,){|n|})d =

    1

    0(e[,){

    n

    bn })d

    V theo mnh 2.6.7 chui

    n=1

    nbn

    n

    bn

    hi t hu u ,vi :

    nbn

    =

    n

    bn e[0,1){|

    n

    bn |}

    =nbn

    e[0,bn){|n|}

    V vy ta c (i)p dng b Kronecker ta thu c (ii).

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    59/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 58

    By gi ta s chng minh kt qu tng t ca Marcin Kiewicz theoLuczak [9]

    nh l 2.6.9. Gi s{n} l dy ton t c lp lin tip , cng phnphi , tLr(A, ), 0 < r < 2. Khi

    n

    1/rn

    k=1(k k) 0hu u. yk = 0 vir < 1 vr = (1) vi1 r < 2

    Chng minh. Vi phn phi xc sut trn na ng thng thc:

    F() = (e[0,){||}), 0, A,

    ta c c lng sau:

    r

    n=1

    (e[n1/r ,){||}) (||r) 1 + r

    n=1

    (en1/r,){||}) (2.37)

    Chng hn xem [10] . S dng (2.37) ta thu c:

    n=1

    10

    (en1/r,){|1|})d

    (|1|r)

    1

    0

    1rd <

    Nu r < 2 bt ng trn cng vi mnh 2.6.8 cho ta :

    n1/rn

    k=1

    (k (k)) 0

    hu u vi :k = ke[0,n1/r]{|k|} 0

    Lp lun tiu chun ch ra rng :

    n1/rn

    k=1

    ((k) k) 0, n

    (Chng hn , xem [10], chng minh hon tt.)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    60/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 59

    Ta s kt thc phn ny vi mt s lut yu s ln trong i svon Neumann.

    nh l 2.6.10. Cho {n} l dy cc ton t t lin hp o c , cngphn phi , c lp lin tip t A . Nu :

    limn

    n(e(n,){|1|}) = 0

    th :

    n1

    k=1

    (k n) 0

    theo o, vi :n = (1e[0,n){|1|})

    Chng minh. Gi s A tc ng trong khng gian Hilberte H, t :

    Sn =n

    k=1

    k; (n)k = ke[0,n){|k|}

    Sn =n

    k=1

    (n)k ; mn = (Sn) = n(

    (n)1 )

    Vi s > 0 bt k , ta c:

    p = e[2,)(|Sn mn|) e[0,)(|Sn mn|)

    n

    k=1

    e[0,n){|k|} = 0

    Tht vy, nu vi x no c chun bng 1 , px = x th

    x e[0,n){|k|}(H)

    v do kx = (n)k x

    vi k = 1, 2,...n.Ko theo Snx = Snx .V th ta thu c :

    2 || |Sn mn|e(2,){|Sn mn|x}||

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    61/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 60

    = ||(Sn mn)x|| ||(Sn Sn)x|| + ||(Sn mn)x||

    = || |Sn mn|e[0,){|Sn mn|x}||

    iu ny khng th xy ra, vy p = 0 v do (xem ph lc)

    e[2,){|Sn mn|} e[,){|Sn mn|} n

    k=1 e[n,){|k|} (2.38)Theo bt ng thc Tchebyshev v t kt qu :

    (| ()|2) (||2)

    Ta thu c :

    (e[2,)(|Sn mn|)) 2(|Sn mn|

    2) + (n

    k=1e[n,)(|k|))

    2n

    k=1

    (|(n)k |

    2) +n

    k=1

    (e[n,))

    = 2n(|(n)1 |

    2) + n(e[n,)(|1|)) (2.39)

    By gi ly > 0 ty , t (2.39) vi =n

    2, ta c:

    e[,)(|Snn n|)= e[,)(|Sn mnn |)=

    e[n,)(|Sn mn|)

    4(|

    (n)1 |

    2)

    2n+ n

    e[n,)(|1|)

    = 42n1

    [0,n)

    2

    ed(|1|)

    +n

    e[n,)(|1|)

    Tch phn cui cng c th c lng nh sau:

    [0,n)

    2

    ed{|1|}) n1k=0

    (k + 1)2(e[k,k+1){|1|})

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    62/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 61

    =n1k=0

    (2k + 1)(e[k,n){|1|}) (e[0,n){|1|})

    +3n1k=1

    k(e[k,n){|k|}) 1 + 3n1k=1

    k(e[k,){|1|})

    Do vy cui cng:(e[,){|

    Snn

    n|})

    42n1[1 + 3n1k=1

    k(e[k,){|1|})] + n(e[n,){|1|}) 0

    khi n Chng minh c hon tt.

    S dng k thut tng t ta c th chng minh kt qu sau calut yu s ln.

    nh l 2.6.11. Cho {n} l dy phn t t lin hp c lp lin tiptL1(A, ). Nu:

    (i)n

    k=1

    (e[n,){|k k|}) 0

    khin

    (ii)n1

    nk=1

    (|k k|) 0

    khin ,vi || = ||e[0,n){||} v :

    (iii)

    n2n

    k=1

    ([|k k|2]) 0

    khin vik = (k) th :

    n1n

    k=1

    (k k) 0

    theo o.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    63/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 62

    2.7 Tc hi t trong lut mnh s ln

    Cc kt qu trong phn ny c trong t tng ca cc nh l Spitzer-Hsu-Robbins-Katz i vi bin ngu nhin thc. Chng ta s i theophng php da trn c lng tt ca cc m men ca binngu nhin b cht ct nu ra bi Dugue [12] (xem thm [13])

    Trong phn ny {n} s k hiu cho dy ton t c lp lin tip t A .Mt vi kt qu s lin quan ti trng hp n t lin hp v cng phnphi .Trong cc nh l khc ta s gi thit n khng nht thit t lin hpnhng cc ton t (|k|, k = 1, 2, ....) cng phn phi vi r > 0 v t > 0ta t :

    (n)k =

    (n)k,r,t = ke[0,nr/t]{|k|}

    , 1 k n V :

    (n)k =

    (n)k,r,t =

    (n)k,r,t (

    (n)k,r,t)

    Ta s thit lp hai mnh ph tr sau:

    Mnh 2.7.1. Cho {n} c lp v tha mn |k| cng phn phi

    (A) Nu0 < t < 2 vr > 0 th iu kin(t1) < ko theo

    n=1

    nr2(e(nr/t,){|n

    k=1

    nk |}) < (2.40)

    (B) Nu0 < t < 1, r 1 th iu kin(|1|t) < ko theo

    (|(n)1 |) = 0(n

    r/t1) (2.41)

    Chng minh. Gi s

    o < t < 2, r > 0, , (|1|t) <

    Khi theo bt ng thc Tchebysev ta c :

    n=1

    nr2(e(nr/t,){|n

    k=1

    (n)k |})

    const

    n=1

    nr2n2r/tn(|(n)1 |

    2)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    64/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 63

    i vi o xc sut trn [0, ) ,

    0

    xt (dx) <

    v r

    t > 0

    ko theo:

    n=1

    1

    n+1

    nr/t0

    xt+ (dx) (2.42)

    const

    k=1k(r/t)

    kr/t

    (k1)r/txt (dx)

    ( so snh [12] ). Trong trng hp ca chng ta th :

    (|(n)1 |

    2) = nn(r/t)(2t)+1

    vi 1

    n <

    V do ta c (2.40)By gi ta s chng minh (2.41) vi gi thit (B) . Tht vy, t:

    ||1 =

    0

    ue (du)

    (biu din ph) v (du) = (e(du)). Ta c :

    n1r/t(|(n)1 |)

    nr/t0

    xt( xnr/t

    )1t (dx) 0

    v r 1 v (||t) <

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    65/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 64

    Mnh 2.7.2. Gi s {n} c lp vi {|k|} cng phn phi v(||2) < . Khi ta c:

    m=n

    (e(n,){|n

    k=1

    (n)k |}) < (2.43)

    Chng minh. Hin nhin ta c:

    (|n

    k=1

    (n)k |

    4) constk=1

    (|(n)k |

    2|(n)1 |

    2)

    +n

    k=1

    (|(n)k |

    4)

    Hn na:(|(n)k |4) = nn3 + (|(n)1 |4)

    Vi:

    n=1

    n <

    (v chng hn: (|

    (n)k |

    2(n)k )

    (1

    2||

    (n)k ||) const.n

    ). S dng cng thc (2.42) ta thu c :

    (|(n)1 |

    4) n3n

    vi

    n=1

    n <

    V vy:

    n

    k=1

    (n)k

    4 nn4vi

    n=1

    n <

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    66/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 65

    v do :

    nn4

    nk=1

    (n)k

    4 (n)k 4e(n,){n1

    (n)k

    }

    const.n4e(n,){n

    1 (n)k }

    Cui cng ta thu c:

    n=1

    e(n,){ n

    k=1

    (n)k

    }<

    nh l 2.7.3. Cho {n} c lp v |k| cng phn phi , 0 < t < 1.Khi iu kin (|1|t) < ko theo

    n=1

    n1

    e(,){ 1

    n1/t

    nk=1

    k

    }< (2.44)vi mi > 0

    nh l 2.7.4. Cho{n} c lp , t lin hp v cng phn phi. Githit : (|1|t) < , 1 t 2 v(1) = 0. Khi :

    n=1

    nt2

    e(,){1

    n

    nk=1

    k

    }< (2.45)ng vi mi > 0.

    Chng minh. By gi ta s thit lp 2 iu kin :

    (a) {n} c lp v |k| cng phn phi

    0 < t < 1, (|1|t) < , r 1

    (b) {n} c lp ,cng phn phi ,t lin hp

    1 t 2, (|1|t) < , (1) = 0, r = t

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    67/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 66

    R rng chng minh cc nh l trn ,ta ch cn chng minh rngmi mt trong cc iu kin (a),(b) ko theo:

    n=1

    nr2

    e(nr/t,){ n

    k=1

    k

    }< (2.46)

    lm iu ny ,ta s t vi r > 0, t > 0, n = 1, 2, ....

    pn = pn,r,t = e(nr/t,){|n

    k=1

    k|}

    qn = qn,r,t =n

    k=1

    e(nr/t,){|k|}

    n = n,r,t = e((n1)r/t,){|

    n

    k=1

    (n)

    k,r,t|}

    Ch rng :pn q

    n

    n = 0

    vi mi n. Tht vy, nu c :

    0 = x = pn qn

    n x

    th ta s c :

    ||n

    k=1

    kx|| = || n

    k=1

    k

    pnx|| nr/t||x||V cng lc :

    ||

    nk=1

    kx|| ||

    nk=1

    (n)k

    x|| < (n 1)r/t||x||

    L iu khng th xy ra. V vy, ta c:

    pn qn n

    v do (pn) (qn) + (n)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    68/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 67

    n y ta cn ch ra c:

    n=1

    nr2(qn) < (2.47)

    V:

    n=1

    nr2

    (n) < (2.48)

    Nu t > 0, r > 0 v (|1|t) < th r rng

    n=1

    nr2(qn,r,t)

    n=1

    nr1(e(nr/t,){|1|}) <

    V vy ch cn chng minh (2.48) .Gi s (a) ng, ta s chng minh :

    Qn = n e[0,(nr/t)/4]{|n

    k=1

    (n)k |} = 0 (2.49)

    Thc ra nu tn ti 0 = x = Qnx th ta s c :

    ||n

    1(n)k x|| (n

    r/t)/4||x||

    v:

    ||n1

    (n)k x|| (n 1)

    r/t||x||

    t:(n)k = (

    (n)k ), n = max1kn|

    (n)k |

    p dng phn tch cc ca (n)k v theo mnh (2.7.1.b) ta c :

    n (|(n)1 |) < 14

    nr/t1

    V vy vi n , ta thu c :

    ||n1

    (n)k x|| ||

    n1

    (n)k x|| + n|n|.||x||

    nr/t

    2||x||

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    69/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 68

    iu ny l khng th ,do (2.48) ng. iu ny ko theo:

    n e((nr/t)/4,){|n1

    (n)k |}

    Xem xt ti (2.40) ta thu c (2.48) .

    By gi ta gi s (b) ng. Nu 1 t < 2 th (2.40) ng (vi r = t vp dng mnh (2.8.a)) .Trong trng hp t = 2 ta c (2.43) theo mnh (2.7.2).Ch rng

    n = |((n)1 )| 0

    , ta c th chng minh (2.49) ( vi t = r) v kt thc chng minh nhtrng hp (a).

    2.8 Ch v ch thch

    Batty a ra rt nhiu khi nim v dy ton t c lp. Chng ta chx l dy c lp yu v c lp lin tip.

    nh ngha 2.8.1. H {B, } cc i s von Neumann con caAc gi l c lp mnh nu W{B, 1} c lp vi W{B, 2} vi mi tp con ri nhau 1, 2 ca . Dy ( hay h ) ton t

    trong A (hay A nu l vt) l c lp mnh nu cc i s vonNeumannW() c lp mnh.

    Trong [11] ta c th tm thy trnh by c th lin quan ti mi quanh gia cc kiu c lp. y ta cp n mt lut s ln mnh c nu ra bi S.M.Goldsteinlin quan n dy ton t tha mn iu kin Rosenblatt.

    nh ngha 2.8.2. Cho A l i s von Neumann vi trng thi chun

    tc ng . Dy {n} t A c gi l tha mn iu kin Rosenblattnu tn ti dy s dng{an} gim v0 sao cho:

    |(xy) (x)(y)| an||x||.||y||

    vi mi x W(1, 2, ....k) v y W(k+n, k+n+1, ....); (k, n =1, 2,...)

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    70/74

    CH NG 2. LU T MNH S L N TRONG I S VON NEUMANN 69

    Dy{n} c gi l tha mn iu kin ||.||2 (||.||) hay tim cn giaohon nu tn ti dy s dng{bn} gim v0 sao cho :

    ||xy yx||2 bn||x||||y||

    (hay tng ng

    ||xy yx|| ||x||||y||) vi mi

    x W(1,....,k), y W(k+n, k+n+1, .....)

    (k, n = 1, 2, ....).

    nh l 2.8.3. Cho {n} l dy t A tha mn iu kin Rosenblattcng vi dy{an} v t :

    bn = sup|ij|n||ij ji|| (n = 1, 2, ....)

    Gi s rng() an c1n

    1, bn c2n2

    vic1, c2, 1, 2 l cc hng s dng, n = 1, 2,... v :

    () sup||n|| <

    Khi :

    n1

    n

    k=1

    (k (k)) 0

    hu u .

    Chng minh. Ta cng nhn nh l trn.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    71/74

    Kt lunLut s ln l mnh khng nh trung bnh s hc ca cc bin

    ngu nhin hi t theo xc sut. Lut mnh s ln l mnh khngnh trung bnh s hc ca cc bin ngu nhin hi t hu chc chn.

    Lut s ln u tin c cng b vo nm 1713 bi Jamer Bernoulli.Sau kt qu c Poisson ,Chebyshev ,Markov ,Liapunov m rng.

    Lut mnh s ln c pht hin bi E.Borel nm 1909 v c Kol-mogorov hon thin nm 1926.Lun vn cp n mt vn hon ton mi trong xc sut

    hin i , l s quan h cht ch gia i s ton t , vt l lngt v xc sut. Cc kt qu , phng php , m hnh trong xc sut cin c thay th bi cc k thut chng minh, cc khi nim ,nhngha mi. Nghin cu lut mnh s ln da trn cc ton t trc giao,vt , trng thi ,i s von Neumann,...cc dng hi t hu u ,

    hu chc chn ...Ni dung ca ti vn ang l hng nghin cu cacc nh khoa hc trn th gii, nhiu cng trnh khoa hc khng ngngc cng b nh:L thuyt tch phn khng giao hon c sng tobi I.Segal (1953), c p dng vo l thuyt biu din cc nhm com-pact a phng ( Ray Kunze....) . Ngy nay n c nhiu ng dng quantrng trong l thuyt trng lng t ,iu ny c d bo trongcc cng trnh ca Segal ...Hay l thuyt v khng gian Lp tru tng

    ca J.Dixmier ; Khi nim hi t theo o (tnh o c theo mt vt)c gii thiu bi W.F.Stinespring (1959), E.Nelsen(1972)...V gn y

    nht l cc l thuyt v chng minh khi ngun ca Haagerup(1974) vkhng gian tru tng Lp kt hp vi i s von Neumann. Sau s xuthin cc khng gian Lp ca Haagerup, A.Connes a ra nh nghav khng gian Lp da trn khi nim o hm khng gian. Nhng khnggian ny c nghin cu bi M.Hilsum.....

    Vn c cp trong lun vn tng i mi v phc tp.V

    70

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    72/74

    Kt lun 71

    vy lun vn khng trnh khi nhng hn ch .Tc gi mong mun nhnc kin ng ca cc thy c gio ,cc ng nghip b sung ,hon thin ti.

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    73/74

    Ti liu tham kho[1] V Vit Yn-Nguyn Duy Tin (2001) ,L thuyt xc sut, Nh xut

    bn gio dc.

    [2] Nguyn Vit Ph-Nguyn Duy Tin (2004), C s l thuyt xc sut, Nh xut bn i hc Quc gia.

    [3] Nguyn Duy Tin (2000), Gii tch ngu nhin ,tp 3, Nh xut bni hc Quc gia H Ni.

    [4] Ryszard Jajte (1984), Strong Limit Theorems in Non-CommutativeProbability, Springer -Verlag, Berlin New York Tokyo.

    [5] Marianna Terp(1981), Lp Spaces Associated with von Neumann Al-gebras , Universitetsparken.

    [6] Edward Nelson(1972) ,Notes on Non-commutative Integration,Princeton University, New Jersey.

    [7] M.Plancherel (1913), Sur la convergence des series de fonctions or-thogonalles, Acad . Sci. Paris.

    [8] G.Alexits (1961), Convergence problems of orthogonal series, NewYork- Oxford-Paris.

    [9] A.Luczak, Some limit theorems in von Neumann algebras, Studia

    Math.

    [10] M.Loeve(1960), Probability theory , New Jersey.

    [11] K.Batty(1979), The strong law of large numbers for states and tracesof aW algebra, Z.Wahrscheinlichkeitstheorie verw .

    72

  • 8/2/2019 Lut mnh s ln trong i s von Neumann.

    74/74

    T I LI U THAM KH O 73

    [12] D.Dugue(1958), Traite de statistique theorique et appliquee, Paris.

    [13] S.Goldstein(1981), Theorems in almost everywhere convergence invon Neumann algebras, J.Oper.Theory 6.

    [14] L.Accardi(1980), Quantum stochastic processes, Dublin Institute forAdvanced Studies, Ser.A29.

    [15] R.Jajte , Strong limit theorems for orthogonal sequences in von Neu-mann algebras, Proc.Amer .Math.Soc.

    [16] W.Stinespring(1959), Integration theorems for gages and duality forunimodular groups, Trans.Amer.Math.Soc.

    [17] I.E.Segan(1953), A non-commutative extension of abstract integra-tion, Ann.of Math.57.

    [18] A.Zygmund (1959), Trigonomtric Series, Vol.II, Cambridge Uni-vesity Press, London, New York.