Lesson 4 Rietveld Refinementprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-4.pdfRietveld...

37
Lesson 4 Rietveld Refinement Nicola Döbelin RMS Foundation, Bettlach, Switzerland February 11 – 14, 2013, Riga, Latvia

Transcript of Lesson 4 Rietveld Refinementprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-4.pdfRietveld...

  • Lesson 4Rietveld Refinement

    Nicola DöbelinRMS Foundation, Bettlach, Switzerland

    February 11 – 14, 2013, Riga, Latvia

  • 2

    Repetition: Powder XRD Patterns

    10 20 30 40 50 60

    0

    200

    400

    600

    800

    1000

    Inte

    nsity

    [cou

    nts]

    Diffraction Angle [°2θ]

    Generation of X-rays

    Diffraction at crystal structures

    Powder samples (Debye rings)

    Diffractometers (Types, optical elements)

    Sample preparation (errors to avoid)

    Phase identification

  • 3

  • Rietveld Refinement

    4

    For more than just identification:

    Rietveld refinement

    Prof. Hugo Rietveld

    Extracts much more information from powder XRD data:

    - Unit cell dimensions

    - Phase quantities

    - Crystallite sizes / shapes

    - Atomic coordinates / Bond lengths

    - Micro-strain in crystal lattice

    - Texture effects

    - Substitutions / Vacancies

    No phase identification!

    Identify your phases first(unknown phase � no Rietveld refinement)

    Needs excellent data quality!

    No structure solution(just structure refinement)

  • Rietveld Refinement

    5

    Known structuremodel

    10 20 30 40 50 600

    1000

    2000

    3000

    4000

    Inte

    nsity

    [cou

    nts]

    Diffraction Angle [°2θ]

    Calculate theoreticaldiffraction pattern

    Compare withmeasured pattern

    Optimize structure model, repeat calculation

    10 20 30 40 50 600

    1000

    2000

    3000

    4000

    Inte

    nsity

    [cou

    nts]

    Diffraction Angle [°2θ]

    Minimize differences between calculated and observedpattern by least-squares method

  • Rietveld Refinement

    6

    10 20 30 40 50 60

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    Inte

    nsity

    [cts

    ]

    Diffraction Angle [°2theta]

    Measured Pattern (Iobs) Calculated Pattern (Icalc) Difference (Iobs-Icalc)

    Beginning of the refinement:

    - Phase was identified correctly (peaksat the right position)

    - But differences exist:

    - Peak width

    - Peak positions slightly shifted

    - Intensities

  • Rietveld Refinement

    7

    10 20 30 40 50 60

    0

    1000

    2000

    3000

    4000

    5000

    Inte

    nsity

    [cts

    ]

    Diffraction Angle [°2theta]

    Measured Pattern (Iobs) Calculated Pattern (Icalc) Difference (Iobs-Icalc)

    After the refinement:

    - Straight difference curve (only noise)

  • Modelling the Peak Profile

    8

    27 28 29 30 31 320

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    Inte

    nsity

    Diffraction Angle (°2θ)

    CuKβ

    CuKα1 & CuKα2 duplet

    Remaining Bremsstrahlung

    Absorption Edge

    CuKα Satellites

    (= CuKα3)

    All these signals are generatedby one d-spacing.

    Mathematical model to describethe profile is needed.

  • Modelling the Peak Profile

    9

    Traditional («Rietveld») Approach:

    Pseudo Voigt curves for Kα1, Kα2 and Kβ

    VP(x) = n * L(x) + (1-n) * G(x)

    Gaussian curveLorentzian curve

    Lorentzian (ω = 1.0) Gaussian (ω = 1.0) Pseudo-Voigt (n = 0.5)

    L(x) = 1

    1+( )2x-x0ω

    G(x) = exp[-ln(2)·( )2]x-x0ω

  • Pseudo-Voigt Curves

    10

    n = 0.5

    n = 0.25

    n = 0.75

    n = 0.0

    n = 1.0

    ω = 1.0

    ω = 0.5

    ω = 0.25

    n = 0.5

  • Pseudo-Voigt Curves

    11

    Kα1

    Kα2

    Fitting n, ω to peaksof a reference material

    ω2 = f(θ) = U · tan2(θ) + V · tan(θ) + W

    Actually fitting n, U, V, W

  • Pseudo-Voigt: Problems

    12

    Asymmetry

    Peaks at low 2θ anglesare asymmetric.

    Pseudo-Voigt curvesare symmetric.

    29.8 30.0 30.2 30.4 30.6 30.8 31.00

    2000

    4000

    6000

    8000

    10000

    Inte

    nsity

    [cts

    ]

    Diffraction Angle [°2θ]

  • 0 20 40 60 80 100 120 140

    0

    2000

    4000

    6000

    8000

    10000

    Inte

    nsity

    [cts

    ]

    Diffraction Angle [°2θ]

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    FW

    HM

    [°2θ

    ]

    Alternative Pseudo-Voigt Functions

    13

    Alternatives to PV function:

    - Pearson VII

    - Thompson-Cox-Hastings PV

    - Split PV

    - PV with axial divergence(Finger-Cox-Jephcoat PV)

    FWHM of all these functionsmust be fitted to peaksof a reference material.

    Common reference materialsdo not have peaks < 20° 2θ

  • Fundamental Parameters Approach FPA

    14

    Calculate the peak profile from the device configuration

    Take into account the contributions of:

    - Source emission profile (X-ray wavelength distribution from Tube)

    - Every optical element in the beam path (position, size, etc.)

    - Sample contributions (peak broadening due to crystallite size & strain)

    ww

    w.b

    ruke

    r.com

    Tube Device Configuration Sample

  • Fundamental Parameters Approach

    15

    www.bruker.com

  • Fundamental Parameters Approach

    16

    2θ=10° 2θ=30° 2θ=80°

    Calculated Peak Profiles

  • Fundamental Parameters Approach

    17

    FPA needs:

    - Very detailed and complete description ofthe instrument configuration

    - Very well aligned instrument

  • Fundamental Parameters Approach

    18

    21.0 21.2 21.4 21.6 21.8

    Inte

    nsity

    [a.u

    .]

    °2θ

    63.0 63.2 63.4 63.6

    °2θ

    120 121 122

    °2θ

    If done properly:

    Very good description of the peak profile

  • Fundamental Parameters Approach

    19

    http://www.bgmn.de

  • Fundamental Parameters Approach

    20

    - Some fundamental parameters are not documented

    - Complete configuration can be hard to obtain

    Good news:

    We created and verified configurations for all instruments involved in the course!

  • Summary: Rietveld Basics

    21

    - Calculate XRD pattern from model structure

    - Minimize differences between calculated and measured pattern

    - Accurate mathematical description of peak profile required:

    - Classical Rietveld approach: Fit PV functionto reference pattern

    - Fundamental Parameters Approach: Calculate peakprofile from device configuration

  • Rietveld Software Packages

    22

    Academic Software:

    - Fullprof

    - GSAS

    - BGMN

    - Maud

    - Brass

    - … many more1)

    Commercial Software:

    - HighScore+ (PANalytical)

    - Topas (Bruker)

    - Autoquan (GE)

    - PDXL (Rigaku)

    - Jade (MDI)

    - WinXPOW (Stoe)

    1) http://www.ccp14.ac.uk/solution/rietveld_software/index.html

    FPACommercial UI

    for BGMN

  • BGMN

    23

    BGMN:

    - Fundamental Parameters Approach

    - Free for academic use

    - Device independent

    - Very robust automatic refinement strategy

    - Good usability

    - Slightly less steep learning curve

    - Powerful scripting language

    - Multi-Platform

    - Multi-threaded

    Visit: http://www.bgmn.de for tutorials and documentation

  • Graphical User Interfaces for BGMN

    24

    BGMNwin (shipped with BGMN software package)

  • Graphical User Interfaces for BGMN

    25

    Profex (developed by Nicola Döbelin)

    - Open source

    - Multi-Platform

    - Device database

    - Structure database

    - Batch processing

  • Example Refinement

    26

    1.

    2.

    3.

  • Example Refinement

    27

    1.

    2.

    3.

    4.

    5.

  • Example Refinement

    28

    Start Refinement

  • Example Refinement

    29

    1.

    2.

    3.

  • Example Refinement

    30

    Good fit

    Summary

  • Summary: BGMN and Profex

    31

    - BGMN is the Rietveld kernel

    - Fundamental Parameters Approach

    - Profex is an editor / graphical user interface to BGMN

    - Best-case scenario (example):

    - Load scan file

    - Specify instrument configuration from internal database

    - Load structure files from internal database

    - Start refinement

    - … done

  • Refinement Strategies

    32

    10 20 30 40 50 60

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    Inte

    nsity

    [cts

    ]

    Diffraction Angle [°2theta]

    Measured Pattern (Iobs) Calculated Pattern (Icalc) Difference (Iobs-Icalc)

    Relation

    Mismatch – Structural Feature

  • Refinement Strategies

    33

    Wrong peak positions:

    - Unit cell dimensions

    - Sample height displacement

    - Zero-shift (instrumentmisalignment)

  • Refinement Strategies

    34

    Wrong absolute intensities:

    - Weight fraction (scaling)

  • Refinement Strategies

    35

    Wrong relative intensities:

    - Preferred orientation

    - Graininess

    - Atomic species

    - Atomic coordinates

    - Site occupancies

    - Thermal displacementparameters

  • Refinement Strategies

    36

    Wrong peak width:

    - Crystallite size

    - Micro-strain in crystal structure

  • Summary: Refinement Strategy

    37

    Effect in diffraction pattern Origin in crystal structure model

    Wrong peak positions Unit cell dimensions

    Sample height displacement

    Zero-shift

    Wrong absolute intensities Weight fraction (scaling)

    Wrong relative intensities Preferred orientation

    Atomic species / Substitutions

    Atomic coordinates

    Site occupancies

    Thermal displacement parameters

    Wrong peak width Crystallite size

    Lattice strain