Lesson 15 Wave Equations - 清華大學電機系-NTHUEEsdyang/Courses/EM/Lesson15_Slides.pdf · by...

59
Lesson 15 Wave Equations 楊尚達 Shang-Da Yang Institute of Photonics Technologies Department of Electrical Engineering National Tsing Hua University, Taiwan

Transcript of Lesson 15 Wave Equations - 清華大學電機系-NTHUEEsdyang/Courses/EM/Lesson15_Slides.pdf · by...

  • Lesson 15Wave Equations

    楊尚達 Shang-Da YangInstitute of Photonics TechnologiesDepartment of Electrical EngineeringNational Tsing Hua University, Taiwan

  • Outline

    Wave equations of fields (propagation)Wave equations of potentials (generation)Electromagnetic spectrum (applications)

  • Sec. 15-1Wave Equations of Fields

    1. Homogeneous equations in time domain

    2. Homogeneous equations in frequency domain

    3. EM fields in lossy media4. Microwave ovens

  • Homogeneous wave equation in time domain-1

    In a simple (linear, isotropic, homogeneous), charge free (ρ = 0), nonconducting ( , ) medium, Maxwell’s equations reduce to:

    0=σ 0=Jv

    tHE∂

    ∂−=×∇

    vv

    μ

    0=⋅∇ Ev

    tEH

    ∂∂

    =×∇v

    0=⋅∇ Hv

    tBE

    ∂∂

    −=×∇v

    v

    ρ=⋅∇ Dv

    tDJH

    ∂∂

    +=×∇v

    vv

    0=⋅∇ Bv

    (1)

    (2)

    (3)

    (4)

  • Homogeneous wave equation in time domain-2

    tHE∂

    ∂−=×∇

    vv

    μ

    0=⋅∇ Ev

    tEH

    ∂∂

    =×∇v

    ( )

    2

    2

    tE

    tE

    t

    Htt

    HE

    ∂∂

    −=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    ∂∂

    −=

    ×∇∂∂

    −=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂

    ∂−×∇=×∇×∇

    vv

    vv

    v

    μεεμ

    μμ

    ( ) AAA vvv ×∇×∇−⋅∇∇≡∇2( ) EEE vvv 22 −∇=∇−⋅∇∇=

    022

    2 =∂∂

    −∇tEEv

    vμε⇒

    Homogeneous 2nd-order PDE of vector field E

    v

    (1) (3)

    (2)

  • Homogeneous wave equation in time domain-3

    0=⋅∇ Hv

    ( )

    2

    2

    tH

    tH

    t

    Ett

    EH

    ∂∂

    −=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂

    ∂−

    ∂∂

    =

    ×∇∂∂

    =⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    ×∇=×∇×∇

    vv

    vv

    v

    μεμε

    εε

    ( ) AAA vvv ×∇×∇−⋅∇∇≡∇2( ) HHH vvv 22 −∇=∇−⋅∇∇=

    ⇒ 022

    2 =∂

    ∂−∇

    tHHv

    vμε

    tEH

    ∂∂

    =×∇v

    vε t

    HE∂

    ∂−=×∇

    vv

    μ

    Homogeneous 2nd-order PDE of vector field H

    v

    (3) (1)

    (4)

  • Homogeneous wave equation in time domain-4

    Compare with the equations of lossless TX lines:

    022

    2 =∂

    ∂−∇

    tHHv

    vμε

    022

    2 =∂∂

    −∇tEEv

    vμε),(),( 2

    2

    2

    2

    tzvt

    LCtzvz ∂

    ∂=

    ∂∂

    ),(),( 22

    2

    2

    tzit

    LCtziz ∂

    ∂=

    ∂∂

    Scalar waves

    Velocity:LC

    vp1

    =

    Vector waves

    Velocity:με1

    =pu

  • Comments-1

    We have assumed to derive:

    022

    2 =∂

    ∂−∇

    tHHv

    vμε

    022

    2 =∂∂

    −∇tEEv

    vμε

    i.e., these equations deal with how EM waves propagate, instead of how they are generatedfrom time-varying sources .

    0 ,0 == Jv

    ρ

    ( )Jv,ρ

  • Comments-2

    We have assumed simple media to derive:

    022

    2 =∂

    ∂−∇

    tHHv

    vμε

    022

    2 =∂∂

    −∇tEEv

    vμε

    i.e., these equations (standard waves properties) have to be modified if the medium is nonlinear, anisotropic, nonhomogeneous.

  • Why are we interested in time-harmonic (sinusoidal) fields?

    Any periodic (aperiodic) function → superposition of discrete (continuous) sinusoidal functions by Fourierseries (integral).

    Maxwell’s equations are linear PDEs. ⇒ (1) Sinusoidal sources produce sinusoidal fields of the same frequency in steady state. (2) Total field can be derived by superposition of individual sinusoidal responses.

    Easy to operate if phasors are used:

    ,ωjt

    →∂∂

    ωjdt 1→∫

  • From scalar phasors to vector phasors

    Scalar phasors of voltages & currents are sufficient to describe steady-state response of TX lines:

    { },)(Re),( tjezVtzv ω⋅= { }tjezItzi ω⋅= )(Re),(

    Vector phasors of E-field and M-field are required to describe time-harmonic EM fields:

    { }tjezyxEtzyxE ω),,(Re),,,( vv ={ }tjezyxHtzyxH ω),,(Re),,,( vv =

  • Homogeneous wave equation in frequency domain-1

    In a simple, source-free (ρ = 0, ) medium, phasors of EM fields satisfy with the equations

    0=Jv

    tHE∂

    ∂−=×∇

    vv

    μ

    0=⋅∇ Ev

    tEH

    ∂∂

    =×∇v

    0=⋅∇ Hv

    HjEvv

    ωμ−=×∇

    0=⋅∇ Ev

    EjHvv

    ωε=×∇

    0=⋅∇ Hv

    )(),( rEtrE vvvv →

    )(),( rHtrH vvvv →

    ωjt

    →∂∂

    (1)

    (2)

    (3)

    (4)

  • Homogeneous wave equation in frequency domain-2

    HjEvv

    ωμ−=×∇ EjHvv

    ωε=×∇

    ( ) ( )

    ( ) ( ) EEEEEjj

    HjHjE

    vvvvv

    vvv

    222 −∇=∇−⋅∇∇==−=

    ×∇−=−×∇=×∇×∇

    μεωωεωμ

    ωμωμ

    ( ) AAA vvv ×∇×∇−⋅∇∇≡∇2

    022 =+∇ EkEvv

    λπωμεω 2===

    puk Wavenumber (spatial

    angular frequency)

    022 =+∇ HkHvv

    (1) (3)

    0=⋅∇ Ev (2)

    με1=pu

  • Homogeneous wave equation in frequency domain-3

    Compare with the equations of lossless TX lines:

    Scalar waves, ODEs Vector waves, PDEs

    )()( 222

    zVzVdzd β−=

    )()( 222

    zIzIdzd β−=

    LCωβ =

    022 =+∇ EkEvv

    022 =+∇ HkHvv

    μεω=k

  • EM fields in lossy media-complex permittivity

    If the medium is conducting (σ ≠ 0), the presence of results in conduction currents

    if time-harmonic, simple medium

    EJvv

    σ=Ev

    ,EjEj

    jEjEH cvvvvv

    ωεεω

    σωωεσ =⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+=+=×∇⇒

    ,tDJH

    ∂∂

    +=×∇v

    vv

    ωσεε jc −= is the complex permittivitywhere

  • EM fields in lossy media-complex wavenumber

    ⎟⎠⎞

    ⎜⎝⎛ −=−=

    ωεσε

    ωσεε jjc 1

    Loss tangent

    ( )ccc jk δμεωμεω tan1−==

    ωεσδ =ctan

    If , ⇒ , the medium behaves like a dielectric

    1tan cδ { }ckIm

    μεω=k

  • EM fields in lossy media-propagation loss

    are associated with the power loss when the wave propagates through the medium.

    1. , ⇒ describes is not in phase with the driving due to the inertia of the bound charges, ⇒ frictional damping.

    EP cvv

    ε=

    { } { }cc kIm ,Im ε

    { }cεIm Pv

    Ev

    2. Ohmic power loss due to collision among free charges and atoms.

    ( )∫ ⋅= V dvJEP vv

  • Example 15-1: Property of a moist ground

    At f =1 kHz, , like a conductor

    ,10 0εε = ),mS( 10 2−=σ

    110tan 4 >>≈cδωεσδ =ctan

    At f =10 GHz, , like a dielectric110tan 3

  • Microwave oven-history

    Invented by Percy Spencer (1945), chocolate bar melt when building magnetrons(磁控管) for radar sets with Raytheon, tested popcorn & egg.

    First commercial model Radarange (1947).

  • Microwave oven-working principle (1)

    Pass EM wave at 2.45 GHz (λ=12.2 cm) through food. Polarized molecules (water, fat, ..) will rotate with the AC field, motion(~heat) dispersed to other non-polarized molecules by collision. (Not due to resonance, for water vapor fres=20 GHz)

    _

    +Ev

    E-torque Epvv //

  • Microwave oven-working principle (2)

  • Microwave oven-working principle (3)

  • Microwave oven-working principle (4)

    Microwaves can penetrate dry non-conducting substances, inducing initial heat more deeply(~cm) than other methods.(Not cook from the inside out)

    The oven door usually has a window with a layer of conductive mesh for shielding. The grid size is

  • Example 15-2: Microwave oven

    to cook a beef steak of , and

    A microwave oven generates an AC E-field of:

    0.35tan c =δ

    )m(V )10 2.45 (2cos250)( 9 ttE ⋅×⋅⋅= π

    040εε =

    ⇒= ,tanωεσδ c == cδωεσ tan

    ( ) ( )mS 9.135.0361040 )10 2.45 (2

    99 =⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅×⋅

    ππ

    ( ) ⇒=⋅= ,)()()( 2tEtJtEtpvvv

    σ ( )320 cmmW 6021

    ≈= EPavg σ

  • Sec. 15-2Wave Equations of Potentials

    1. Non-homogeneous equations in time domain

    2. Solutions to homogeneous equations3. Non-homogeneous equations in

    frequency domain

  • Potentials in time-varying cases (1)

    In the presence of time-varying fields:

    0=⋅∇ Bv

    ABvv

    ×∇=remains, ⇒ remains valid.M-field vector potential

    , ⇒0≠∂∂

    −=×∇tBEv

    vVE −∇≠

    v

    Instead, ( ),At

    Evv

    ×∇∂∂

    −=×∇ ,0=⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    +×∇tAEv

    v V∇−

    tAVE

    ∂∂

    −−∇=v

    v⇒

  • Potentials in time-varying cases (2)

    tAVE

    ∂∂

    −−∇=v

    v

    scalar potential, conservative component, ~charge distribution

    vector potential, nonconservative component, ~time-varying current

  • Nonhomogeneous wave equations of vector potential in time domain-1

    In simple media:

    tDJH

    ∂∂

    +=×∇v

    vv

    tEJB

    ∂∂

    +=×∇v

    vvμεμ

    ABvv

    ×∇=tAVE

    ∂∂

    −−∇=v

    v

    ( ) ( ) AAAB vvvv 2∇−⋅∇∇=×∇×∇=×∇⇒

    2

    2

    tA

    tV

    tE

    ∂∂

    −⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    −∇=∂∂

    vv

    ( ) 22

    2

    tA

    tVJAA

    ∂∂

    −⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    ∇−=∇−⋅∇∇v

    vvvμεμεμ

  • Nonhomogeneous wave equations of vector potential in time domain-2

    ⇒ ⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    +⋅∇∇+−=∂∂

    −∇tVAJ

    tAA μεμμε

    vvv

    v2

    22

    0=∂∂

    +⋅∇tVA με

    vBy Lorentz gauge:

    JtAA

    vv

    vμμε −=

    ∂∂

    −∇ 22

    2

    is decoupled with V,Av

    ⇒Nonhomogeneouswave equation

  • Nonhomogeneous wave equations of scalar potential in time domain

    In simple media:tAVE

    ∂∂

    −−∇=v

    v

    ρ=⋅∇ Dv

    ερ

    =⋅∇ Ev

    ( ) ( ) ( )At

    VAt

    VEvvv

    ⋅∇∂∂

    −−∇=⋅∇∂∂

    −∇⋅−∇=⋅∇ 2⇒

    0=∂∂

    +⋅∇tVA με

    v

    ερμε =

    ∂∂

    +−∇=⋅∇ 22

    2

    tVVE

    v

    ερμε −=

    ∂∂

    −∇ 22

    2

    tVV

    Nonhomogeneouswave equation

    Lorentz gauge

  • Comments-1

    Given charge and current distributions , ),( trJ vv

    Solve

    ),( trvρ

    ),( trA vv

    ),( trV vερμε −=

    ∂∂

    −∇ 22

    2

    tVV

    JtAA

    vv

    vμμε −=

    ∂∂

    −∇ 22

    2

    Derive fields by:tAVE

    ∂∂

    −−∇=v

    v

    ABvv

    ×∇=

    TBD…

  • Comments-2

    In static cases:

    Lorentz gauge

    0=∂∂

    +⋅∇tVA με

    v

    Coulomb’s gauge

    0=⋅∇ Av

    Nonhomogeneouswave equations Poisson’s equations

    ερμε −=

    ∂∂

    −∇ 22

    2

    tVV

    JtAA

    vv

    vμμε −=

    ∂∂

    −∇ 22

    2

    ερ

    −=∇ V2

    JAvv

    μ−=∇2

  • Solutions to nonhomogeneous wave equations in time domain (1)

    Consider a point charge at origin (spherical symmetry)

    ερμε −=

    ∂∂

    −∇ 22

    2

    tVV 01 2

    22

    2 =∂∂

    −⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    ∂∂

    tV

    RVR

    RRμε

    (except for the origin)

    ( ) ( )tRVRtRU ,, ⋅=Define

    022

    2

    2

    =∂∂

    −∂∂

    tU

    RU με⇒

    …standard wave equation

    ( ) ),(, τftRU = ,puRt −=τμε1=pu

    [ ] φθRRV )(2∇

    ( ) ,)(,R

    ftRV τ=

  • Solutions to nonhomogeneous wave equations in time domain (2)

    In static cases:R

    qRV⋅

    =πε4

    )(

    In time-varying ( at origin) cases:

    ( )R

    vduRttRV p

    ′−=Δ

    περ

    4)(

    ,

    vdt ′)(ρ)(τf

  • Solutions to nonhomogeneous wave equations in time domain (3)

    Since is linear,ερμε −=

    ∂∂

    −∇ 22

    2

    tVV

    the potential due to over a volume V' is:),( tr ′vρ

    pd

    Vd

    uRt

    vdR

    ttrtrV

    =

    ′−′

    =

    ∫ ′ ,),(

    41

    ),(

    v

    v

    ρπε

  • Solutions to nonhomogeneous wave equations in time domain (4)

    Similarly, the vector potential due to over volume V' is:

    ),( trJ ′vv

    ∫ ′ ′−′

    =V

    d vdR

    ttrJtrA

    ),(4

    ),(vv

    vv

    πμ

    The potentials , are determined by the source at at an earlier time

    ),( trV v ),( trA vv

    r ′v puRt −

    ⇒ Potential (& field) propagates with finite speed pu

    pd uRt =

  • Nonhomogeneous wave equations of potentials in frequency domain

    For time-harmonic waves:

    ερμε −=

    ∂∂

    −∇ 22

    2

    tVV

    JtAA

    vv

    vμμε −=

    ∂∂

    −∇ 22

    2

    ερ

    −=+∇ VkV 22

    JAkAvvv

    μ−=+∇ 22

    phasors,

    λπωμεω 2===

    puk

    0=∂∂

    +⋅∇tVA με

    v0=+⋅∇ VjA ωμε

    v

  • Solutions to nonhomogeneous wave equations of potentials in frequency domain

    kRR

    fR

    uRt

    pd

    ==

    ⋅==⋅

    λπ

    λωωω

    2

    For time-harmonic waves:

    ∫ ′ ′−′

    =V

    p vdR

    uRtrtrV

    ),(4

    1),(v

    v ρπε

    ∫ ′ ′−′

    =V

    p vdR

    uRtrJtrA

    ),(4

    ),(vv

    vv

    πμ

    ∫ ′−

    ′′

    =V

    jkR

    vdRerrV

    )(4

    1)(v

    v ρπε

    ∫ ′−

    ′′

    =V

    jkR

    vdRerJrA

    )(4

    )(vv

    vv

    πμ

    time retardation phase shift

    ( ) ,cos 00 φφω jeVtV →+

    ( )[ ][ ] ( )dtjd

    d

    eVttV

    ttV⋅−→⋅−+

    =+−ωφωφω

    φω

    00

    0

    cos

    cosphasor

    Justification

  • Sec. 15-3Electromagnetic Spectrum

  • Extremely low frequency (ELF): 0-300 Hz (1)

    Global communications with deeply submergedsubmarines.

    Why using ELF: attenuation of EM waves in sea water is lower for lower frequencies (TBD…).

    Difficulties: (1) low data rate, (2) huge antenna size (in principle λ/2), only support unidirectional communications.

  • What’s the problem?

    Crimson Tide(赤色風暴, 1995)

    Not confirmed yet…

    Launch nuke missiles now!

  • Extremely low frequency: 0-300 Hz (2)

    US Navy Seafarer system: 76 Hz (λ≈3,900 km). Low-conductivity ground, ⇒ deeper penetration of current (use a part of the globe as antenna).

  • Medium frequency (MF): 0.3-3 MHz

    Amplitude modulation (AM) broadcast: 0.53-1.61 MHz, antenna length λ/2≈150 m.

    Max audio BW: 10.2 kHz (channel spacing: 20.4 kHz).

    1906: 1st experiment (Canada).

    (commons.wikimedia.org)

  • Signal range of AM broadcast

    Day time: groundwave, diffracting around the curve of the earth, ~100 km.

    Night: skywave(ionspherereflection), much longer.

    (wikipedia.org)

  • Very high frequency (VHF): 30-300 MHz

    In US, 101 channels, from 87.9 MHz to 107.9 MHz (spacing 200 kHz).

    No ionsphere reflection, limited to line-of-sight range (~100 km).

    1933: invented.

    Frequency modulation (FM) broadcast: 88-108 MHz, antenna length λ/2≈1.5 m.

    (commons.wikimedia.org)

  • Ultra high frequency (UHF): 300 MHz-3 GHz

    TV broadcast: 530-596 MHz. (Audio:174-216 MHz)

    Cell phone: Global System for Mobile communications (GSM), 2G: (900 MHz, 1.8 GHz); 3G: (850/880 MHz, 1.9, 2.0, 2.1 GHz).

    Global positioning system (GPS): all satellites broadcast 1.58 GHz (L1), 1.23 GHz (L2).

    2.45 GHz: Wi-Fi, Bluetooth, microwave oven.

  • Super high frequency (SHF): 3-30 GHz

    Radar: L(1-2G), S(2-4G), C(4-8G, airborne weather), X(8-12G, missile guidance), Ku(12-18G).

    Wireless Local Area Network (WLAN): provide access point to the internet.

    λ ≈ centimeters.

  • Terahertz: 1012 Hz

    Aircraft-to-satellite communications (low water vapor environment).

    Security

    Difficult to be generated/detected by conventional electronic/optical means.

  • Infrared (IR): 1013 -1014 Hz, λ=0.7-100 μm (1)

    Fiber communications: λ≈1.55 μm (Near IR).

    Corning SMF-28, 0.2 dB/km, ⇒50% power after 15 km propagation.

  • Infrared (IR): 1013 -1014 Hz, λ=0.7-100 μm (2)

    Night vision devices (image intensifier): Photocathode converts weak visible & near IR photons into electrons, amplified by MCP, converted to visible photons by phosphor.

  • Infrared (IR): 1013 -1014 Hz, λ=0.7-100 μm (3)

    Thermal imaging: universal black body radiation (live human λ=9.5 μm; missile λ=3−5 μm; mid-IR), sense temperature variation.

    Passive house

    Detectors: InSb(銻化銦, III-V semiconductor, 0.17 eV, sensitive to 1-5 μm), bolometer (測輻射熱計, sensitive to all λ’s)

    (wikipedia.org)

  • Visible: (4-7)×1014 Hz, λ=0.4-0.7 μm

    (nm)

  • Ultraviolet (UV): λ=10-100 nm

    Light sources:

    Mercury vapor lamp + filter: λ=365 nm.

    Excimer lasers(准分子雷射): KrF λ=248 nm, ArF λ=193 nm(enable 30 nm feature size).

    Photolithography

    (cnx.org)

  • X-rays: λ=0.01-10 nm, E~keV (1)

    X-ray tube:

    Limit the max. photon energy (20-150 keV)

    1. X-ray fluorescence: knock out inner shell e-, ⇒ e- at higher energy levels fall (discrete lines).

    2. Bremsstrahlung: e- deflected by nucleus (cont. lines).

    (www.clin-eng.net)

  • X-rays: λ=0.01-10 nm, E~keV (2)

    Wilhelm C. Röntgen (1895)

    Medical diagnostics:

    Soft X-rays (λ>0.1 nm, E

  • γ-rays: λ

  • Appendix: Frequency chart

    Human voice/cello: 60 Hz-1.5 kHz

    Harp: 30 Hz-3 kHz

    (audiokarma.org)

    Middle C: 440 Hz

    Human hearing: 20 Hz-20 kHz (2-4 kHz most sensitive)

  • Appendix: Microchannel plate (MCP, 微通道面板)

    For detecting weak signals of ions or photons

    (hea-www.harvard.edu)

  • Appendix: Bolometer(測輻射熱計)

    Best choice for λ=200 μm - 1 mm (far-IR).