Kazumasa Aonashi*, Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba,...

46
Kazumasa Aonashi*, Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan [email protected] Jan. 18 th , 2012 JCSDA Seminar Ensemble-Based Variational Assimilation Method Ensemble-Based Variational Assimilation Method to Incorporate Microwave Imager Data to Incorporate Microwave Imager Data into a Cloud-Resolving Model into a Cloud-Resolving Model 1

description

Kazumasa Aonashi*, Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan [email protected]. Jan. 18 th , 2012 JCSDA Seminar. Ensemble-Based Variational Assimilation Method to Incorporate Microwave Imager Data into a Cloud-Resolving Model. - PowerPoint PPT Presentation

Transcript of Kazumasa Aonashi*, Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba,...

Page 1: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Kazumasa Aonashi*, Hisaki Eito, and Seiji Origuchi

Meteorological Research Institute, Tsukuba, Japan [email protected]

Jan. 18th, 2012

JCSDA Seminar

 

Ensemble-Based Variational Assimilation Method Ensemble-Based Variational Assimilation Method to Incorporate Microwave Imager Data to Incorporate Microwave Imager Data

into a Cloud-Resolving Modelinto a Cloud-Resolving Model 

1

Page 2: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Satellite Observation Satellite Observation (TRMM)(TRMM)

Infrared Imager

SST, Winds

Cloud Particles

Frozen Precip.

Snow Aggregates

Melting Layer

Rain Drops

Radiation from RainScattering by Frozen

Particles

Radar

Back scattering from Precip.

Scattering

Radiation0℃

Microwave Imager

Cloud Top Temp.

10μm

3 mm-3cm(100-10 GH z)

2cm19 GH z 85 GHz

2

Page 3: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Cloud-Resolving Model usedCloud-Resolving Model used JMANHM ( Saito et

al,2001)• Resolution: 5 km• Grids: 400 x 400 x 38• Time interval: 15 s

Explicitly forecasts 6 species of water substances

3

Page 4: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Goal: Data assimilation of MWI TBs into CRMsGoal: Data assimilation of MWI TBs into CRMs

Hydrological ModelCloud Reslv. Model + Data Assim System

MWI TBs(PR)

Precip.

4

Page 5: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

OUTLINEOUTLINEIntroductionIntroductionEnsemble-based Variational Assimilation (EnVA)Ensemble-based Variational Assimilation (EnVA)MethodologyMethodologyProblems in EnVA for CRMProblems in EnVA for CRMDisplacement error correction (DEC)+EnVADisplacement error correction (DEC)+EnVA MethodologyMethodology Application results for Typhoon CONSON (T0404)Application results for Typhoon CONSON (T0404)

Sampling error damping method for CRM EnVASampling error damping method for CRM EnVASample error-damping methods of previous studiesSample error-damping methods of previous studiesCheck the validity of presumptions of these methodsCheck the validity of presumptions of these methods

5

Page 6: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Ensemble-based Variational Assimilation Ensemble-based Variational Assimilation (EnVA)(EnVA)

• MethodologyMethodology (Lorenc 2003, Zupanski 2005)(Lorenc 2003, Zupanski 2005)• Problems in EnVA for CRMProblems in EnVA for CRM

– Displacement errorDisplacement error– Sampling errorSampling error

6

Page 7: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

EnVA: min. cost function in the EnVA: min. cost function in the Ensemble forecast error Ensemble forecast error

subspace subspace Minimize the cost function with non-linear Obs. term.

Assume the analysis error belongs to the Ensemble forecast error subspace  ( Lorenc, 2003):

Forecast error covariance is determined by localization

Cost function in the Ensemble forecast error subspace :

f/2e

fX X

=P/ 2

1 2[ , , , , , ]f f f f f f fe NP X X X X X X

1 2 N=[w , w ,, , , , w ]

))(())((21)()(21 11 XHYRXHYXXPXXJ fffx

f feP =P S

1 1( ) 1 2 { } 1 2{ ( ( )) } { ( ( )) }t tJ trace S H X Y R H X Y

7

Page 8: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Why Why Ensemble-basedEnsemble-based method?: method?:

200km

10km

Heavy Rain Area Rain-free Area

To estimate the flow-dependency of the error covariance

Ensemble forecast error corr. of PT (04/6/9/22 UTC)8

Page 9: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Why Variational MethodWhy Variational Method ??

MWI TBs are non-linear function of MWI TBs are non-linear function of various CRM variables.various CRM variables.TB becomes saturated as optical thickness increases:

TB depression mainly due to frozen precipitation becomes dominant after saturation.

s

s

TTwhenTeTBT

,)1( /2

To address the non-linearity of TBs

9

Page 10: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Detection of the optimum analysis Detection of the optimum analysis Detection of the optimum by minimizing

where is diagonalized with U eigenvectors of S :

Approximate the gradient of the observation with the finite differences about the forecast error:

To solve non-linear min. problem, we performed iterations.Following Zupanski (2005), we calculated the analysis of each Ensemble members, from the Ensemble analysis error covariance.

J,a aw

( ) 1 { } ( )ti m im d U m

( ) / ~ { ( ) ( )}/fiH X H X p H X

aiX

10

Page 11: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Problem in EnVA (1): Problem in EnVA (1): Displacement error Displacement error

Large scale displacement errors of rainy areas between the MWI observation and Ensemble forecasts

Presupposition of Ensemble assimilation is not satisfied in observed rain areas without forecasted rain.

AMSRE TB18v (2003/1/27/04z)

Mean of Ensemble Forecast(2003/1/26/21 UTC FT=7h )

11

Page 12: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Presupposition of Ensemble-based assimilationPresupposition of Ensemble-based assimilation

Obs.

Analysis ensemble mean

T=t0 T=t1 T=t2

Analysis w/ errors FCST ensemble mean

1 1( )1

f f Tf t t

e N

X XP

R

Ensemble forecasts have enough spread to include (Obs. – Ens. Mean)

12

Page 13: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Ensemble-based assimilation for observed rain Ensemble-based assimilation for observed rain areas without forecasted rainareas without forecasted rain

Obs.

Analysis ensemble mean

T=t0 T=t1 T=t2

Analysis w/ errors FCST ensemble mean

R

Assimilation can give erroneous analysis when the presupposition is not satisfied.

Signals from rain can bemisinterpreted as thosefrom other variables

Displacement error correction is needed!13

Page 14: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Problem in EnVA (2): Problem in EnVA (2): Sampling errorSampling errorForecast error corr. of W (04/6/9/15z 7h fcst)Forecast error corr. of W (04/6/9/15z 7h fcst)

Heavy rain(170,195)

Weak rain(260,210)

Rain-free(220,150)

200 km200 km

Severe sampling error for precip-related variables

14

Page 15: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Displacement error correction (DEC)Displacement error correction (DEC)+EnVA+EnVA

MethodologyMethodology Application results for Typhoon CONSON Application results for Typhoon CONSON (T0404)(T0404)CaseCaseAssimilation ResultsAssimilation ResultsImpact on precipitation forecastsImpact on precipitation forecasts

15

Page 16: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Displaced Ensemble variational Displaced Ensemble variational assimilation methodassimilation method

In addition to , we introduced to assimilation.The optimal analysis value maximizes :

Assimilation results in the following 2 steps: 1) DEC scheme to derive from 2)EnVA scheme using the DEC Ensembles to

derive from

X

d

arg max ( , | , )fP X d Y X

( , | , ) ( | , ) ( | , , )f f fP X d Y X P d Y X P X d Y X

( | , )fP d Y X

( | , , )a fP X d Y X

ad

aX

16

Page 17: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Fig. 1:CRM Ensemble Forecasts

Displacement ErrorCorrection

Ensemble-basedVariational Assimilation

( , ,

( ))

f fe

c f

X P

TB X

Y

d

MWI TBs

( ( ), ( ),

( ( )),

( ( )))

f fe

c f

c fi

X d P d

TB X d

TB X d

( , ,

)

a ae

ai

X P

X

Assimilation methodAssimilation method

17

Page 18: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

DEC scheme: min. cost DEC scheme: min. cost function for dfunction for d

Bayes’ Theorem

        can be expressed as the cond. Prob. of Y given   :

We assume Gaussian dist. of :   where    is the empirically determined scale of the

displacement error.We derived the large-scale pattern of by minimizing

(Hoffman and Grassotti ,1996) :

( | , ) ( , | ) ( ) / ( , )f f fP d Y X P Y X d P d P Y X

( , | )fP Y X d

( )fX d

1( , | ) exp{ 1 2 ( ( ( )) ( ( ( ))}f f t fP Y X d Y H X d R Y H X d

( )P d 2 2( ) exp{ ( / 2 )}dP d d

d

d

dJ21 21 ( ( ( ))) ( ( ( )))} 2

2f t f

d dJ Y H X d R Y H X d d

18

Page 19: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Detection of the large-scale Detection of the large-scale pattern of optimum displacementpattern of optimum displacement We derived the large-scale pattern of from , following Hoffman and Grassotti (1996) :

We transformed into the control variable in wave space, using the double Fourier expansion.

We used the quasi-Newton scheme (Press et al. 1996) to minimize the cost function in wave space.

we transformed the optimum into the large-scale pattern of by the double Fourier inversion.

21 21 ( ( ( ))) ( ( ( )))} 22

f t fd dJ Y H X d R Y H X d d

d

d

dJd

r

r

19

Page 20: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Fig. 1:CRM Ensemble Forecasts

Displacement ErrorCorrection

Ensemble-basedVariational Assimilation

( , ,

( ))

f fe

c f

X P

TB X

Y

d

MWI TBs

( ( ), ( ),

( ( )),

( ( )))

f fe

c f

c fi

X d P d

TB X d

TB X d

( , ,

)

a ae

ai

X P

X

Assimilation methodAssimilation method

20

Page 21: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Case Case (( 2004/6/9/22 UTC) TY 2004/6/9/22 UTC) TY CONSONCONSON

TMI TB19 v RAM (mm/hr)Assimilate TMI TBsAssimilate TMI TBs (10v, 19v, 21v(10v, 19v, 21v )) at at 22UTC22UTC

21

Page 22: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Cloud-Resolving Model usedCloud-Resolving Model used JMANHM ( Saito et

al,2001)• Resolution: 5 km• Grids: 400 x 400 x 38• Time interval: 15 s

Initial and boundary dataJMA’s operational regional model

Basic equations : Hydrostatic primitivePrecipitation scheme:

Moist convective adjustment + Arakawa-Schubert + Large scale condensation

Resolution: 20 kmGrids: 257 x 217 x 36

22

Page 23: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Ensemble Forecasts & RTM codeEnsemble Forecasts & RTM code

Ensemble forecasts100 members started with perturbed initial data   at 04/6/9/15 UTC (FG)Geostrophically-balanced perturbation (Mitchell et al. 2002) plus Humidity

RTM: Guosheng Liu (2004)One-dimensional model (Plane-parallel)Mie Scattering (Sphere)4 stream approximation

Ensemble mean (FG)Rain mix. ratio

TB19v cal. from FG

23

Page 24: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

TB19v from TMI and CRM TB19v from TMI and CRM outputsoutputs

FG :First guess

DE :After DEC

ND:NoDE+EnVA

CN :DE+EnVA

TMI

24

Page 25: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Post-fit residualsPost-fit residuals

FG : DE :

ND:CN :

LN:DE+EnVA.1st

))(())((21)()(21 11 XHYRXHYXXPXXJ fffx

Jx=24316.6Jb=0Jo=24316.6

Jx= 9435.2Jb=0Jo= 9435.2

Jx= 4105.4Jb= 834.5Jo= 3270.9

Jx= 2431.9Jb= 290.9Jo= 2141.0

Jx= 6883.0Jb= 14.5Jo= 6868.4

25

Page 26: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

RAM and Rain mix. ratio analysis RAM and Rain mix. ratio analysis (z=930m)(z=930m)

FG DE

RAM

ND CN

26

Page 27: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

RH(contours) and W(shades) along N-SRH(contours) and W(shades) along N-S

FG DE

CNNDS

S N S N

M

27

Page 28: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

RTW17 (%)

120100806040

TBc2

1v (K

)

280

270

260

250

240

RTW17 (%)

120100806040

TBc2

1v (K

)

280

270

260

250

240

QR9 (g/ kg)

1.0.8.6.4.20.0

TBc1

9v (K

)270

260

250

240

230

220210

QR9 (g/ kg)

1.0.8.6.4.20.0

TBc1

9v (K

)

270

260

250

240

230

220210

CRM Variables vs. TBc at Point MCRM Variables vs. TBc at Point M

FG

FG

DE

DE

Qr(930m) vs.TB19v

RTWRTW(3880m)(3880m) vs.TB21vvs.TB21v

28

Page 29: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Hourly Precip. forecastsHourly Precip. forecasts (FT=0-1 h) 22-23Z 9th(FT=0-1 h) 22-23Z 9th

RAM

DE

CNND

FG

29

Page 30: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Hourly Precip. Forecasts (FT=3-4 h) 01-02Z 10th Hourly Precip. Forecasts (FT=3-4 h) 01-02Z 10th

RAM

DE

CNND

FG

30

Page 31: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

SummarySummaryEnsemble-based data assimilation can give erroneous analysis, particularly for observed rain areas without forecasted rain. In order to solve this problem, we developed the Ensemble-based assimilation method that uses Ensemble forecast error covariance with displacement error correction. This method consisted of a displacement error correction scheme and an Ensemble-based variational assimilation scheme.   

31

Page 32: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

SummarySummaryWe applied this method to assimilate TMI TBs (10, 19, and 21 GHz with vertical polarization) for a Typhoon case (9th June 2004). The results showed that the assimilation of TMI TBs alleviated the large-scale displacement errors and improved precip forecasts. The DEC scheme also avoided misinterpretation of TB increments due to precip displacements as those from other variables.

32

Page 33: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Sampling error damping method for CRM Sampling error damping method for CRM EnVAEnVA

•Sample error-damping methods of previous studies•Check the validity of presumptions of these methods

33

Page 34: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Sample error-damping methods of Sample error-damping methods of previous studiesprevious studies

Spatial Localization (Lorenc, 2003)

Spectral Localization (Buehner and Charron, 2007)   

When transformed into spatial domain

Variable Localization (Kang, 2011)

ˆ ˆ ˆ( 1, 2) ( 1, 2) ( 1, 2)sl ENS slC k k C k k L k k

( 1, 2) ( 1 , 2 ) ( )sl ENS slC x x C x s x s L s ds

1,2( 1, 2) ( 1, 2) ( )sp ENSC x x C x x S

( 1, 2) ( 1, 2) ( 1, 2)v ENSC v v C v v v v

34

Page 35: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Cloud-Resolving Model usedCloud-Resolving Model used JMANHM ( Saito et

al,2001)• Resolution: 5 km• Grids: 400 x 400 x 38• Time interval: 15 s

Initial and boundary dataJMA’s operational regional model

Basic equations : Hydrostatic primitivePrecipitation scheme:

Moist convective adjustment + Arakawa-Schubert + Large scale condensation

Resolution: 20 kmGrids: 257 x 217 x 36

35

Page 36: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Ensemble ForecastsEnsemble ForecastsExtra-tropical Low(Jan. 27, 2003)

Typhoon CONSON(June. 9, 2004)

C

Baiu case(June 1, 2004)

100 members started with perturbed initial dataGeostrophically-balanced perturbation plus HumidityRandom perturbation with various horizontal and vertical scales (Mitchell et al. 2002)

36

Page 37: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Horizontal correlation of ensemble forecast Horizontal correlation of ensemble forecast error (H~ 5000 m) : Typhoon error (H~ 5000 m) : Typhoon (( black: U, green:RHW2, redblack: U, green:RHW2, red :: WW ))

Rain-free area Weak Precip PR 1-3 mm/hr

Heavy PrecipPR >10mm/hr

km km km

1) (precip, W) had narrow correlation scales (~ 15 km).2) Horizontal correlation scales of (U, V, PT, RH) decreased (160 km -> 40 km) with precipitation rate. 37

Simple spatial localization is not usable.

Page 38: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Power spectral of horizontal ensemble Power spectral of horizontal ensemble forecast errorforecast error (H~5000m)(H~5000m) : Typhoon : Typhoon

W U

1) Precip and W are diagonal, other had significant amplitudes for low-frequency, off-diagonal modes.2) The presumption of the spectral localization “Correlations in spectral space decreases as the difference in wave number increases” is valid. 38

Spectral localization may be applicable.

Page 39: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Cross correlation of CRM variables in the Cross correlation of CRM variables in the vertical (Typhoon): Rain-free areasvertical (Typhoon): Rain-free areas

Precip  

W RHW2 PT U V

Precip

  

WR

HW

2P

TU

V

PS

Page 40: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Cross correlation of CRM variables in the Cross correlation of CRM variables in the vertical (Typhoon): Weak rain vertical (Typhoon): Weak rain ((1-3 mm/hr)

Precip  

W RHW2 PT U V

Precip

  

WR

HW

2P

TU

V

PS

Page 41: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Cross correlation of CRM variables in the Cross correlation of CRM variables in the vertical (Typhoon):Heavy rain vertical (Typhoon):Heavy rain ((>10mm/hr)

Precip  

W RHW2 PT U V

Precip

  

WR

HW

2P

TU

V

PS

Page 42: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

1)Cross correlation between precipitation-related variables and other variables increases with precipitation rate.2) Variables can be classified in terms of precipitation rate.

Cross correlation of CRM variables in the Cross correlation of CRM variables in the vertical (Typhoon)vertical (Typhoon)

Weak rain areas

Rain-free areas

Heavy rain areas

42

Variable localization needs classification in terms of precipitation.

Page 43: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Introducing sampling error Introducing sampling error damping ideas to EnVAdamping ideas to EnVA

Spetctal Localization >Use of ensemble forecasts at neighboring grid points

Heterogeneity of forecast covariance >

Classification of CRM variables and assumption of zero cross correlation between different classes.

43

Page 44: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

SummarySummary

We checked the validity of presumptions of the sampling error damping methods..

Simple spatial localization is not usable.Spectral localization may be applicable.Variable localization needs classification in terms of precipitation.We should consider heterogeneity of the forecast covariance (Michel et al, 2011).

44

Page 45: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

SummarySummaryEnsemble-based Variational Assimilation (EnVA)Ensemble-based Variational Assimilation (EnVA)MethodologyMethodologyProblems in EnVA for CRMProblems in EnVA for CRMDisplacement error correction (DEC)+EnVADisplacement error correction (DEC)+EnVA MethodologyMethodology Application results for Typhoon CONSON (T0404)Application results for Typhoon CONSON (T0404)

Sampling error damping method for CRM EnVASample error-damping methods of previous studiesCheck the validity of presumptions of these methods

45

Page 46: Kazumasa Aonashi*,  Hisaki Eito, and Seiji Origuchi Meteorological Research Institute, Tsukuba, Japan aonashi@mri-jma.go.jp

Thank you for your attention.Thank you for your attention.

End

46