Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N....

35
30.10.2017. 1 Kartografske projekcije 2 Kako ćemo definirati položaj nekog objekta u prostoru? Koji je oblik Zemlje? Kako ćemo taj položaj definirati i prikazati u 2 dimenzije? Osnovni koncepti geodezije Osnove kartografskih projekcija Današnje predavanje

Transcript of Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N....

Page 1: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

1

Kartografske projekcije

2

• Kako ćemo definirati položaj nekog objekta u prostoru?

• Koji je oblik Zemlje?

• Kako ćemo taj položaj definirati i prikazati u 2 dimenzije?

• Osnovni koncepti geodezije

• Osnove kartografskih projekcija

Današnje predavanje

Page 2: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

2

3

Zadatak: Probajte opisati svoju trenutnu lokaciju u prostoru...

Bez dodatnih pomagala i poznavanja geodezije naš opis je osuđen da bude lokalan, relativan i kvalitativan!

Gdje se nalazimo?

I danas se koristimo adresama, međutim one su kvalitativniopis lokacije!

Page 3: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

3

Waterford, IrskaNeolitik

Rimski Milliarium Aureum

Milliarium Aureum je određen kao mjernoishodište rimskih cesta:

DATUM – u geodeziji to je dogovorena referenca prema kojoj se vrše mjerenja

Page 4: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

4

7

Portugal

Rimski Milliarium AureumRim

Engleska

Izrael

Nizozemska

Zadatak: Opišite, kvantitativno i što preciznije, gdje se nalaze točke A i B!

A

B

1. Definirati referentnu točku (ishodište) i referentni okvir

2. Odrediti, putem mjerenja, lokaciju mjesta od interesa

Page 5: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

5

9

Kartezijev (pravokutni) koordinatni sustav

Dvodimenzionalni sustav koji se najčešće koristi kod projiciranih koordinata

- definiran ishodištem i baznim vektorima (tj. osima)- osi x i y, ili to mogu biti E i N (istok i zapad)

x

y

90°

A

B

(10, 32)

(40, 21)

30

11

Lokacija je definiranakvantitativno!

Kroz povijest...

do 16. stoljeća

16. do 20. stoljećeDruga polovica 20.stoljeća do danas

Fiksni objekti ili

spomeniciPribližno procjenjene imaginarne linije duž

površine Zemlje

Centar mase planeta Zemlje,

elipsoid

Page 6: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

6

11

• Danas svoju “horizontalnu” lokaciju definiramo koordinatama na imaginarnom elipsoidu čiji se centar nalazi u Zemljinom centru mase

• Vertikalnu lokaciju definiramo u odnosu na površinu jednake gravitacije (geoid)

12

Stvarna površina zemlje nije idealno geometrijsko tijelo, već je vrlo složena i nepravilna

Geoid je ekvipotencijalna površina sile teže (određena mjerenjima) koja bi se podudarala sa površinom oceana da su u ravnoteži, u potpunom mirovanju i da se protežu kroz kontinente

Geoid

Page 7: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

7

13

Međutim, geoid je nepravilna ploha i nije pogodna kao osnova za razna računanja i izražavanje koordinata, stoga je potrebno površinu zemlje aproksimirati sa jednostavnijim oblikom:

• Pravilna matematička ploha najbliža plohi geoidaje rotacijski elipsoid

Rotacijski elipsoid

14

Rotacijski elipsoid nastaje rotacijom elipse oko njezine osi

Kako bi odredili osobine rotacijskog elipsoida dovoljno je poznavati elemente jedne meridijanske elipse

Velika poluos označava se sa a

Mala poluos sa b

Spljoštenost:

Ekscentricitet:

Polumjer zakrivljenosti u polu:

Oblik i veličina Zemlje

a

baf

a

bae

22

b

ac

2

Page 8: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

8

15

Općim Zemljinim elipsoidom nazivamo elipsoid kojim se najbolje prikazuje Zemlja kao planet, čija se ravnina ekvatora podudara sa onom Zemlje te čija se mala os podudara sa srednjim položajem rotacijske osi Zemlje (to je dakle matematički model Zemlje)

1. Ocean2. Elipsoid3. Sila teža4. Topografija5. Geoid

Page 9: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

9

17

Bitni korak je izbor i pozicioniranje referentnog elipsoida tako da najbolje aproksimira geoid – izbor geodetskog datuma (tj. geodetskog sustava)

Do danas su se koristile razne verzije elipsoida: različitih položaja njegova centra, veličine, oblika i orjentacije

Referentni elipsoid nazivamo elipsoid na koji se svode geodetska mjerenja i na kojem se ona obrađuju

Ima utjecaj na vrijednosti geografskih koordinata!

18

• Opći Zemljin elipsoid nije u prošlosti korišten kao referentni uglavnom zbog toga što se nije mogao orijentirati na odgovarajući način (nisu postojali odgovarajući instrumenti i mjerenja)

• Stoga su pojedine zemlje ili grupe zemalja utvrđivale svoj referentni elipsoid koji je bio najprikladniji za njihovo područje – ti elipsoidi su se razlikovali po dimenzijama i orijentaciji

• Rezultat takve situacije je nepovezanost geodetskih mreža i karata raznih država

Page 10: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

10

19

6376500

6377000

6377500

6378000

6378500

Os a

63556006355800635600063562006356400635660063568006357000

Os b

20

• U prošlosti su geodetske mreže rijetko prekrivale više kontinenata

• Postoje razlike u poklapanju geodetskih mreža i raznih elipsoida

• Nacionalizam

Zašto toliko elipsoida i datuma??

Page 11: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

11

21

Besselov elipsoid je važan referentni elipsoid jer se do nedavno ili još uvijek koristi u raznim državama Europe, uključujući i Hrvatskoj (danas ga zamjenjuju noviji sustavi GRS i WGS)

• Besselov elipsoid se jako dobro poklapa sa zakrivljenosti geoida na području Europe i Euroazije, te je pogodan za lokalne nacionalne geodetske primjene (koristi ga Njemačka, Austrija, Češka i neke Azijske i Afričke države) iako su njegove osi kraće za čak 700m od danas precizno poznatih mjera

• Od 2010. u Hrvatskoj se službeno koristi GRS 80

22

Ukoliko želimo izraditi GIS projekt čiji podaci obuhvaćaju područje nekoliko država a koji ne koriste isti elipsoid morat ćemo transformirati podatke sa jednog elipsoida na drugi

Transformacije između koordinata su često komplicirane i matematički zahtjevne – metode i izračune razrađuju geodeti!

npr. izračunate su formule za transformaciju između koordinata na Besselovom elipsoidu i WGS84 elipsoidu:

φ i λ zadaju se u stupnjevima, a korekcije se dobivaju u sekundama

• za južnu Hrvatsku

• za sjevernu Hrvatsku

154.123174.0''

325.255789.0''

388.41996.1023.0''

282.143316.0''

2

Page 12: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

12

23

Napredak moderne satelitske tehnologije i računala u drugoj polovici 20 stoljeća omogućio je puno preciznije određivanje središta inercije Zemlje, položaja njezine osi rotacije te njezina oblika i dimenzija - time se mogao i pravilno orijentirati opći Zemljin elipsoid te razviti jedinstvena svijetska triangulacija

24

• Elipsoid koji najbolje globalno ocrtava čitavu Zemlju

• 3-dimenzionalni koordinani sustav

• Središte se nalazi u Zemljinom centru mase

Geocentični elipsoid i koordinatni sustav

• Za određivanje vrijednosti elemenata općeg Zemljinog elipsoida koristi se veliki broj geodetskih, astronomskih, gravimetrijskih i satelitskih mjerenja

• Međunarodno geodetsko udruženje (IAG) kontinuirano prati i uspoređuje nova mjerenja te ih periodički usvaja i preporučuje kao referentne vrijednosti – tako je 1979. godine preporučen Geodetski referentni sustav 1980 (GRS 80)

Page 13: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

13

25

World Geodetic System 1984 (WGS 84) razvijen je 1980tih u SAD-u (Department ofDefense) na temelju novijih mjerenja i poznatih GRS 80 parametara, u međuvremenu su parametri elipsoida malo korigirani (međutim, te korekcije su neznatne za potrebe uobičajene kartografske primjene)

• Ishodište koordinatnog sustava WGS 84 nalazi se u središtu mase Zemlje

• WGS 84 je referentni sustav za GPS!

Pauza

Page 14: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

14

27

Geodeti mogu vršiti

mjerenja:

1. prema zakrivljenoj

površini zemlje –

kopliciraniji izračuni

2. sa pretpostavkom

ravne površine -

primjenjivo samo za

male udaljenosti

Kolika je razlika?

S

C

Θ

Kut (Θ) Zakrivljena dužina (S)

Ravnolinijska dužina (C)

Razlika izmeđuS i C

1 sekunda 30.8195 m 30.8195 m 0.0000 m

1 minuta 1 894.5 m 1 894.5 m 0.0000 m

½ stupnja 55 475 m 55 475 m 0.1760 m

1 stupanj 110.95 km 110.95 km 1.408 m

5 stupnjeva 554.75km 554.75km 176.0 m !

Page 15: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

15

5 stupnjeva

30

Bitni korak kod izrade karata je izbor projekcije kojom ćemo elipsoid preslikati na ravninu

Carl Friedrich Gauss (Theorema Egregium)

Transformacije zakrivljene površine u ravninu uvijek dovode do deformacija

Ima izuzetne implikacije za kartografiju, jer iz toga proizlazi da nije moguće izraditi savršenu kartu svijeta, niti za najmanji dio njezine površine!

Osnove kartografskih projekcija

C.F.Gauss (1777-1855)

Page 16: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

16

31

• Geografski informacijski sustavi se razlikuju od drugih informacijskih sustava jer sadrže prostorne podatke – bilježe lokaciju, oblik i razmjer geografkih objekata

• Unutar GIS-a je moguće sve podatke spremati i manipulirati korištenjem geografskih koordinata, međutim prije ili kasnije te podatke željeti ćemo prikazati unutar jedne ravnine, bila to printana karta ili na ekranu monitora

Kartografska projekcija je metoda preslikavanja zakrivljene površine sfere ili nekog drugog oblika na ravninu

32

Grana kartografije koja proučava načine preslikavanja zakrivljene površine Zemlje i ostalih nebeskih tijela na ravninu naziva se matematička kartografija

• Cilj izračunavanja kartografskih projekcija je stvaranje matematičke osnove za izradu karata i rješavanje teorijskih i praktičnih zadataka u kartografiji, geodeziji, geografiji, astronomiji, navigaciji (i u geologiji) i ostalim srodnim znanostima

(“Kartografske projekcije” N. Frančula, 2004)

• Proces projiciranja je poželjno moći matematički objasniti kako bi mogli vršiti odgovarajuće transformacije koordinata!

Page 17: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

17

33

Zašto nam je važno razumjevanje kartografskih projekcija?

Waypoint 1 33 T 464395 5026813

Waypoint 2 33 T 464396 5026812

Waypoint 3 33 T 464667 5026086

Waypoint 4 33 T 465035 5026880

Waypoint 5 33 T 464991 5026782

Waypoint 6 33 T 464792 5026744

Waypoint 7 33 T 464604 5026631

GIS

Tablice

GPS

Karte tiskane na papiru

Digitalni podaci

Podaci sa terena

34

• Deformacije pri projiciranju se odnose na promjene u dužinama, površinama i kutovima

• Veličine tih deformacija jedan su od bitnih pokazatelja vrijednosti kartografskih projekcija

Page 18: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

18

35

Na plohi elipsoida ili sfere točke su određene presjekom koordinatnih linija meridijana i paralela

Svaka mreža koordinatnih linija preslikana na ravninu naziva se kartografska mreža, dok se mreža predstavljena linijama meridijana i paralela naziva osnovna kartgrafska mreža

36

Zadatak kartografskih preslikavanja je da ustanovi ovisnost između koordinata točaka na Zemljinom elipsoidu i koordinata tih točaka u projekciji

Ta se ovisnost najčešće određuje osnovnim jednadžbama kartografskih projekcija:

),(

),(

2

1

fy

fx

Page 19: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

19

37

Apsolutna lokacija na

zemlji se u

matematičkom smislu

opisuje korištenjem:

1. geografskih

koordinata

2. planarnih

koordinata

38

Koordinate su brojevi čijim zadavanjem se definira položaj točke na pravcu, u ravnini, na plohi ili u prostoru

Prve koordinate su upotrebljavali Grčki astronomi koristeći koncepte poput kuteva i radiusa, te su koristili polarne koordinate za određivanje položaja nebeskih tijela na nebeskoj sferi

Koordinate su se sustavnije počele primjenjivat u 17.st. Za riješavanje geometrijskih problema u ravniniVažnu ulogu u razvoju geometrije imao je R. Descartes (1596-1656, lat. ime Renatus Cartesius) koji je prvi postavio i upotrebljavao pravokutni koordinatni sustav

Koordinate i koordinatni sustavi

Hipparkhos (cca. 190-120 p.k.)

Page 20: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

20

39

Kartezijev koordinatni sustav Pravolinijski sustav koordinata U ravnini se zadaje točkom O (ishodište) i

uređenim parom nekolinearnih vektora i i j (bazni vektori)

Pravci koji prolaze ishodištem u smjeru baznih vektora nazivaju se koordinatnim osima Kartezijevog koordinatnog sustava -apscisa (x os) je određena vektorom i, dok je ordinata (y os) određena vektorom j

Kartezijevim koordinatama točke M u sustavu Oxy naziva se uređeni par brojeva (x,y) koji su koeficijenti prikaza vektora OM u bazi i, j:

Sustav se naziva pravokutnim ukoliko su bazni vektori međusobno okomiti i jedinične duljine – može se koristiti i kosokutni

jyixOM

40

Dali su ova dva sustava ekvivalentna?

Lijevi Desni

1x pravi kut

3x pravi kut

Lijevi

Page 21: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

21

41

U matematici se redovito koristi desni Kartezijev koordinatni sustav

Međutim, u nekim područjima je i lijevi sustav našao praktičnu primjenu

• U računalnoj grafici moramo pripaziti na početnu postavu koordinatnog sustava –koordinatni sustav na zaslonu monitora može biti lijevi sa ishodištem u gornjem lijevom kutu

• U matematičkoj kartografiji gotovo redovito se primjenjuje lijevi koordinatni sustav, s dodatnim dogovorom da pozitivni smjer osi x pokazuje sjever, a pozitivni smjer osi y istok

42

Slično se može definirati Kartezijev koordinatni sustav u prostoru sa ishodištem O i tri bazna vektora

Ravnine koje sadrže par koordinatnih osi nazivaju se koordinatnim ravninama

Također razlikujemo lijevi i desni koordinatni sustav u prostoru

kzjyixOM

OM

Page 22: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

22

43

Osim pomoću Kartezijevih koordinata položaj točke može se opisati i pomoću polarnih koordinata (vrsta krivolinijskih koordinata)

Udaljenost ρ (rho) točke M od pola naziva se polarnim polumjerom (radius), a kut ϕ (phi) polarnim kutom u odnosu na neku referentnu polarnu os

Koordinatne linije su koncentrične kružnice (ρ=const.) i zrake (ϕ=const.)

Veza polarnih i kartezijevih koordinata izražava se formulama:

sin

cos

y

x

44

U prostoru polarne koordinate nazivaju se sferne koordinate

ρ (radius), ϕ (azimut), θ (inklinacija)

Njima se definiraju geografske koordinate na sferi ili elipsoidu

U geodeziji i kartografiji uvode se drugačije oznake od onih u matematici –ujesto ϕ dolazi geografska duljina λ, a umjesto θ dolazi geografska širina ϕ

Jednadžba sfere sa ishodištem u Kartezijevom sustavu Oxyz i s radiusom R glasi:

2

2222 Rzyx

Page 23: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

23

45

Jednadžba za rotacijski elipsoid glasi:

Geografska širina mjeri se u intervalu –π/2≤φ≤π/2, a geografska duljina u intervalu –π≤λ≤π

12

2

2

2

2

2

b

z

a

y

a

x

46

Točka s koordinatama (0,0,b) naziva se Sjevernim polom, a ona s koordinatama (0,0,-b) Južnim polom.

Kružnica na elipsoidu koja je jednako udaljena od polova naziva se ekvatorom i ona dijeli elipsoid na dva dijela – polutke.

Pravac koji prolazi polovima naziva se os rotacijskog elipsoida, a ravnina u kojoj se nalazi ekvator – ekvatorskom ravninom.

Page 24: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

24

47

Kut koji zatvara normala (ali ne i radius-vektor) proizvoljne točke M na elipsoidu s ekvatorskom ravninom naziva se geografskom širinom i označava s φ.

Sve točke na rotacijskom elipsoidu koje imaju istu geografsku širinu leže na kružnici koja se naziva paralela.

48

Poluelipse na elipsoidu koje spajaju Sjeverni i Južni pol nazivaju se meridijanom. Jedan među njima naziva se nultim ili početnim meridijanom. To je obično meridijan koji leži na ravnini y = 0.

Geografska duljina proizvoljne točke M na elipsoidu označava se s λ, a to je kut između meridijana koji prolazi točkom M i nultog meridijana.

Page 25: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

25

49

Definicija mjerila:

1. Mjerilo je odnos dužina na karti prema odgovarajućim dužinama u prirodi

2. Mjerilo je odnos dužina na karti i odgovarajućih dužina na Zemljinom elipsoidu

• Ni ta definicija nije precizna, jer elipsoid ne možemo preslikati u ravninu bez deformacija, pa stoga ni mjerilo u svakoj točki karte ne može imati istu vrijednost!

3. Mjerilo nazivamo odnos između dviju veličina izraženih istim mjernim jedinicama (Frančula, 2004)

Mjerilo

50

Pošto mjerilo u svakoj točki karte ne može imati istu vrijednost razlikujemo:

1. Glavno mjerilo

2. Mjestimično mjerilo

Glavno ili opće mjerilo je ispisano na karti, a možemo ga zamisliti kao mjerilo u kojem Zemljin elipsoid prvo smanjujemo, prije prelikavanja u ravninu

Page 26: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

26

51

Karakteristika glavnog mjerila jest da ono ne može ostati sačuvano nakon projiciranja na čitavoj karti, već samo duž nekih karakterističnih linija ili u nekim točkama (što ovisi o tipu projekcije)

Mjerila u ostalim točkama karte nazivamo mjestimična mjerila Mjestimično mjerilo može varirati sa položajem, ali i sa smjerom!

Npr. ako je glavno mjerilo 1:10 000 000, mjestimična mjerila mogu imati iznose 1:9 800 000, 1:10 155 625, i sl.

52

Da bismo definirali odnos dužina u projekciji i dužina na Zemljinom elipsoidu uvodimo pojam linerano mjerilo – definiramo ga kao odnos diferencijala dužine luka (ds') u projekciji prema odgovarajućem diferencijalu na elipsoidu (ds)

Deformacija dužina je razlika između linearnog mjerila i jedinice:

ds

dsc

'

1 cd

Page 27: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

27

53

Tissotova indikatrisa (elipsa deformacija) je prikaz kojim se mjeri i prikazuje deformacija usljed projiciranja – pokazuje kako se mijenja mjerilo u jednoj točci u raznim smjerovima

To je diagram koji rezultira projiciranjem kružnice sa zakrivljenog elipsoida na plohu

Rezultat je elipsa čije osi odgovaraju smjerovima u kojim mjerilo ima maksimalne (a) i minimalne (b) vrijednosti

1''

22

b

y

a

x

Kod projiciranja će se inicijalne kružnicedeformirati ovisno o tome dali dolazi dodeformacija kutova, površina ili udaljenosti

Page 28: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

28

55

Podjela kartografskih projekcija može se napraviti na osnovi tri kriterija:

1. Prema vrsti deformacija

2. Prema položaju pola normalne kartografske mreže

3. Prema obliku normalne kartografske mreže

Vrste kartografskih projekcija

56

a) Konformne projekcije čuvaju kutne odnose Mjerilo ne ovisi o azimutu

(koriste se kod izrade nautičkih karata)

Mjerila duž paralela i meridijana su međusobno jednaka

Oblici ostaju slični nakon projekcije (...slične forme, otkud im ime), ali ne i površina

Male površine ostaju relativno nedeformirane, međutim takve projekcije nisu pogodne za prikaz velikih područja poput kontinenata i oceana

Primjeri Mercatorova projekcija UTM (Universal Transverse

Mercator) Gauss-Krüger

Projekcije prema vrsti deformacija

Usporedite prikaz Grenlanda sa nekim od kontinenata, npr. Afrike.Koja je stvarna površina Grenlanda u km2, a koja Afrike?

Mercatorova projekcija

Page 29: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

29

57

b) Ekvivalentne projekcije čuvaju površinu Gube se kutni odnosi – nemoguće je da jedna projekcija bude istovremeno

ekvivalentna i konformna Oblici se deformiraju Pogodne su za prikaz distribucije točaka preko velikih područja jer gustoća

točaka neće biti izmijenjen

Primjeri: Lambertova projekcija Albersova projekcija

Kako se odmičemo od ekvatora, šta se događa sa mjerilima u smjeru meridijana,a šta u smjeru paralela? Usporedi sada prikaz Grenlanda i Afrike.

Lambertova projekcija

Kako se rezlikuju mjerila na sjevernom i južnom polu? Usporedi prikaz Grenlanda ipodručja Ognjene zemlje.

Albersova projekcija

Page 30: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

30

59

c) Ekvidistantne projekcije čuvaju udaljenosti Deformiraju se kutevi (oblici) i površine

Često se koriste u atlasima za prikaz velikih površina jer su kompromis između velikih kutnih distorzija ekvivalentnih i površinskih distorzija konformnih projekcija

Primjeri: Kvadratična projekcija

Sinusoidalna (Sansonnova projekcija)

Duž kojih linija ova projekcija čuva duljine? Šta se događa sa deformacijom površina?

Kvadratična p.

Grb UN-a prikazujeazimutalnu ekvidistalnuprojekciju Svijeta

Duž kojih linija su očuvane udaljenosti?

Sinusoidalna p.

Duž kojih linija su očuvane udaljenosti?

Page 31: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

31

61

Kod projekcija koje čuvaju kuteve tissotove indikatrise će biti kružnice, ali često će biti veće ili manje od originala jer površine neće moći biti istovremeno očuvane

Kod projekcija koje čuvaju površine

tissotove indikatrise će biti elipse zbog

distorzija kuteva i dužina, ali jednakih

površina kao originalne kružnice

Kod projekcija koje čuvaju udaljenosti

duž određenih pravaca tissotove

indikatrise će biti elipse čija jedna os (u

smjeru očuvanja) je jednaka radiusu

originalne kružnice

62

d) Uvjetne projekcije

Sve projekcije koje nisu niti konformne niti ekvivalentne niti

ekviditantne

Primjer:

Winkel tripel projekcija

Deformira i kuteve i površine i udaljenosti ali u minimalnim iznosima

National Geographic je koristi za izradu svojih karata svijeta

Page 32: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

32

63

Podjela se odnosi na položaj pola Q(φp,λp) normalne kartografske mreže

1. Uspravne (φp = π/2) - pol normalne mreže se podudara s geografskim polom, pa je mreža meridijana i paralela ujedno i mormalna mreža

2. Poprečne (φp = 0) – pol normalne mreže nalazi se na ekvatoru3. Kose (0 < φp < π/2) – pol normalne mreže nalazi se u bilo kojoj točki

između pola i ekvatora

Projekcije prema položaju pola kartografske mreže

64

1. Konusne

2. Cilindrične

3. Azimutalne

4. Pseudokonusne

5. Pseudocilindrične

6. Polikonusne

7. Kružne

Projekcije prema obliku kartografske mreže

Page 33: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

33

Azimutalna

Cilindrična

Konusna

Uspravna Poprečna Kosa

66

Konusne projekcije – kod uspravnih projekcija se meridijani preslikavaju kao pravci koji se sjeku u jednoj točki pod kutevima proporcionalnim odgovarajućim razlikama duljina, a paralele kao lukovi koncentričnih kružnica sa središtem u presjeku meridijana

Page 34: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

34

67

Azimutalne projekcije – kod uspravnih projekcija meridijani su pravci koji se sijeku u jednoj točki pod kutovima jednakim razlikama njihovih geografskih duljina, a paralele su koncentrične kružnice sa središtem u presjeku meridijana

Stereografska az. projekcija

Centralna (gnomonska)az. projekcija

Ortografskaaz. projekcija

Page 35: Kartografske projekcije - pmf.unizg.hr · PDF file(“Kartografske projekcije” N. Frančula, 2004) • Proces projiciranja je poželjno moći matematički objasniti kako bi mogli

30.10.2017.

35

69

Cilindrične projekcije – kod uspravnih projekcija meridijani se preslikavaju kao pravci međusobno paralelni na razmaku proporcionalnom razlikama njihovih geografskih duljina, a paralele također kao pravci okomiti na meridijanePošto su meridijani i paralele okomiti položaj točaka možemo izražavati pravokutnim koordinatama x i y