KAERI/RR-252/80 : 1980年度 硏究報告書 : 化學交換法 開發.

43
KAERI

Transcript of KAERI/RR-252/80 : 1980年度 硏究報告書 : 化學交換法 開發.

KAERI/RR-252/80 : 1980 : .:











1990
.
1990

{Ii I .

.


R 50 t 6
.
L
PA-l e = 8.5 X 10-4
U235 .

ii1f .
SUMMARY
This study is concerned with the development of a process
235to achieve enriched uranium (3 - 4% ~VVU) by a chemical exchange
method.
use the isotopic effect which occures in an exchange reaction
between two different uranium compounds , it is considered that
possible unit operations for the separation methods would be
exchange distillation , gas-liquid chemical exchange , liquid­
liquid chemical exchange and solid-liquid chemical exchange.
In our experiments , we chose the ion exchange processes
among solid-liquid exchange methods first.
In this year we performed experiments with a redox ion
exchange system using anion exchange resins in 6N Hel solution
and at 500C. From the results obtained , we plotted uranium
concentration profiles and isotopic ratio profiles , and calcu­
lated the isotopic separation effect value to e =8.5xlO-4
with an highly porous ion exchange resin.
Based on the preliminary experimental results , we are
planning to develop more effective ion exchange resins and
experimentally difine the optimum conditions for maximum
235enrichment effect of -~~U.
3. … 16
2. 18
. 19
5. 21
-1-
1. 22
2. … " " " "" .. """,," """ " """…...... 23
....................................................................................... 37

2. t ............................................. 29
3. #{ .......................................... 30
4. 31
5. Uranimn Concentration Profile a Isotopic Ra tio Profile ...... 32
6. Urlium Concentration Profi Ie and Isotopic Ratio Profile ...... 33
7. Urlimn Concentration Profile and Isotopic Ratio Profile ...... 34
8. Schematic Model for the Reacti ons in Chromatographic Process .. · 35
-3-
Polystyrene Cl-form R
PA- l, Dowex 2, IRA-938 CG - 400 E
.
R PA-l
e = 8.4 X 10-‘ .
n
R tll
. l l
.
.
o i


.
(remixing effect)
.rl:
( stabil i ty )
l .
m 01 ~1
-5-
.
ξ .
.1 ":1 V ↑C
π} 1{t
1990

.

.

.
UF6 -NOUF6 7r I
( isotopic effect ) Gooear Atomic Cooperation
UHV) - u (Vn
Asahi Chern Ind. L. B I
ift~
\]1 I:
I1J
.

I
-7-
U - 235 .

.
( chemical exchange separation process) U235
( exchange dis ti lat ion) • ( gas-liquid
chemical exchange)l. ( 1iquid-l iid chemi cal exchange) I
(exchange chromatography ) ( redox
1)ion exchale ) ( unit operation)
.
UF6
UF6
· NOUF6 - UF6 o ( separa-
tion fac tor) 1. 0016 NOUF6 • UF6 (reflux )
UF‘6
2) .
1954
3) At __, ~-.1 ':'F=I d:1 _1 --.] A. _1 • ",. n J-.- L.% n.: _~ _ ..... 11 4)Spedding A • 1968 Ciric
.( cation exchange resin ) uo
5) 1 00000 rv 1.00006 I Rutenberg τ
R EDTA 7} 1 00006
6) '"' _1. 7 ) I JameB~ .J Calusaru
.
8. 9) 17A _ln-'!-'- KakihJaτ
1. 0013
-9-
1... 10) r DC
100018
3) J (Manha ttan project)
U (lV) - U(VI)
U 2351238 { 1. 0012
] .

11) .... , a) (single stage separation
factor) 1. 005 1. 001
( exchange rate) ( stage) 60
b) b

( ref lux) c)

.
?
a)
U(lV) - U(VI) I
3) .
( excRue system) ( phase equi librimn )
~ ( column alysis ) .
( isotopic seration th∞π) Colm 12,) Shimowa13 )
-10-
14) cascade Jl., Persoz. Conract I

15) G lueckauf , Thorms R Jacques τ ( conti DUO.S
differential equat ion model) 16)
H Kakihana

cell model A . U([Vl
- U(VI) O
Kakihana .
-11-

1
unv) - U(VD
17) .

. Bigeleisen (parti -
tion f Wlcti on ratio) K = 1/ 1.0013 UO~+
U4+ 10013

235 U( H20)~+ + Zi8U02(H20) ~ 238U(H2 0) + 235U0 2 (H20) ...... (2)
k= 1. 0002 UO
. ( solvent) ( solva-
tion ) U(VD U235 .
Unv) U(VI) I .
t ‘E .
B
E A S - (A, B )
B
E A m
-12-
1 H 4
S = 1 + 2 ( ~ -R o ) Ii
(41............ ‘ ........................ - ........
R : ZU mole
R l : i 2U mole
Ii : t f
(4) .
{
18) . 1950 Rona Shimo-
19) TT_L,l.-__ 20) "'_1 __ 21) kawa .L"~ Kakihana <J v .J, Seko
o
3000 .
j
Jl.] (chemical species)
;:0:. TT_L' L 16) τ Kakihana
.
‘ - a ~ _. I , ~ I • _. • aC,( x ,t )
( -V i ( x ,t ) Ci ( x , t ) +D,(x ,t ) . - , ax ax
151
-13-
Vj(x , t) : x ( )

(
( diffus ion coeffi ci ent )
x -:τ~
R (mass transfer coefficient) . )
Vj , DJ 7} x -
aCj(x , t) e 2 cd x , t ) .... eCi ( x , t ) ----- = Di a - Vt- ------------------------ (6) a t ax‘ ax
. ( two- isotopic system A. B )
(6)
.
(x ,t) + K = .AI t) e~ (kx ) '" …. (7)
RA (x , t) x , t
A mole (mole fract ion) . ( feed
solut ion) RA

RA(x ,t)- o = C exp k ( k t + x p ) • e~ k ( x-x p )
k = (VA - VB ) / ( DA- )
= ( VA Do - VB DA ) / ( DA- ~ )
-14-
.
RA(" ,t) - RAQ = A’ It) { exp ( k X'e ) - I} .… '" (8)
k A ’ (t) .
(maJ{lmum degree of isotopic enrichment)
6. R A mtl
%= A ’ It) {exp(k"'e)-I} 00 ( erπiclurent zone width)
Xe
max
l" ( + 1 ) (9)
MAmax s tart up time
l+e(l-RAOI l) ’‘ ~ 1 t( s) = { ZmU-A'e It) lκ ( -.,7\, ., + I)} .... " !I e V k e \ ~-l'l - •• -,•• A(t) ’
( rate of grouth of Xe )
d "e !l eV
.
+
5--
.
3 ,-'

TiO + 2H+ + e- = Ti3 + + H20 , 0.099 V······················· .. ·· (1
DO + 4H+ 2 e- = U4 + 2H 2 0 , 0.330 V.. ·…........................ (15)
F 3+ + e-= Fe 2 , 0.771V .. ·· .... ·.. · .. ··· .......... ·.. (1
l Ti3+ , Fe 3+ .
Cl- .
R 2
OJ
Cl-
.
. Unv) - u(
20) Gonda 9.J
3
· 5 rv 6 50 t .
--16-


1. 1 om 1. 2 m
water jaket
1 1Tl1π R
glass wool 1 0m . %
(peristaltic pump)
.
.
1. 8
4
1) U0 2 Cl 2 : U0 2 powder U02 Cl 2
.
3) TiCl 3 :
) PA-l : polystyrene type. 200 rv 400 sh
) Amt r1i te lRA-938 :Macroreticular polystyrene type
100 '" 400 mesh (Rohn and Hass )
-17-
) .Amberli te CG -400 : IX> lystyrene type. 20000 mesh
(RobIn and ss )
) Dowex 2: polystyrene typ 200 "J 400 mesh
2
.

( thi ck s lurry )

7t “ . 6 10
( precondi tioning ) .
.
4 CIs Fe 3 +
U0 2 C1 2 30 om
. Fe s +
TiCl s
Fe 3+ l
30 om
TiC13
.
- .


10 om f l1lctional
collector S m£ rvlO m£ 1
.
R l .
4.
Ti DJ ;π Fe
Dowex SOW X 8 Dowex 2
R (x j
.
- 1
.IJ

f T. S. N. 206 SA ( Cameca )
.
-19-


8

9

3%H20 2
UO";2. UH. Ti +3. TiO Fe+ 2. F’1t32 , U , ~ & , ~ J. VZ-, L'''' ,
Ti +3
roWEX SOW
1.6 N
20-
(uranium concentrat ion prof ile and isotopic ratio profile)
FJg.5 Fig.7
.
. ( 8 )
( ) DO + 2Ti 3 +
( ) D' + + 2Fe 3 +
• U022++ 2F + + 4H+
IIoa+ T+
U4+
. U"
Fe 3+ UO~ +
.
R UO U 4+
«r 7t .

. ( gel ψpe) Dowex 2 IRA -938 CG -400
I (- ) (- )
a1J .
ql PA-l
.
Dowex: 2 PA-l 00-400 channeling
. ""1 Dowex 2
-22-
J lRA-938 CG-400
. 01 -
Fe 3 + l.D~+
( se lectivi ty )
. uo
( remixing)
.

. - R
-
R .
PA-l
}

.
l U4 + Fe3 + Fe 2 +
Fe 3+ Rt
UO~+ l
.
2.
PA-l R ‘( Fig. 6 J 23 )
-23-
‘---/ -
I
(difference equat ion) .!!..
6( RI -R o )
(1
R i : i U
. k
k =VB-VA/ -DA
A. B
. 6 (Ri-R o)/6x (R I -R 0 ) plot
k kA R.. = R o y
A . l 2 . D&2
B~ { 0.007311
. CG -400 0.007313 I RA- 938
.
a
-24-
Q R.. <I -R .. )
k = P(R,, -R o )
Q:

P - EiiNV6Ra(1-Ra) -
( R" - Ro )
.
(22) R" P
(21)
(22 )

c , N , V 6 e q
| N
i U( lV) - U(vn UO~+
25-
·
.
I R
o E , i

.
16 23 31 39 14
B PA-I PA-1 IRA-938 CG DONEX 2
( 1 ) ( 2 )
0.1M i 0.05M U0 2 C 1 2 UC1 4
in 6N In 6N HCI HCI
0.1M J.05M TiCI 3 TiC1 3
in 6N m 6N HCI HC1
(mesh) 200"'400 200""'400 100""'4 00 20 0 ""'4 0 0 200 .-v400
( 63.4 60.5 92.1 90 B6
(mt/br) 1. 47 4.4 6 3.2 3.98 1. 67
( 0.13 1 1 0.85 0.73 0.09
(t) 50 50 50 50 50
-27-
PA-1 ( 1 ) PA-1 ( 2 ) IRA 938
K = 0.11 K = 0.23 K = 0.08
A = 4.95 x 10 - 6 A = 1. 4 x 10- 6 A=9XIO- 7
e = 8.7 X 10- 4 e=8.5x10- 4 e = 7.5 X 10- 4
: s Process | .
U(H 20)l+
-28-
6
4
2
U
-29-
1
,‘
<
d g ’ · s ~ υ } m - u
φ “i
Hcr Concentration (M)
-30-
(3)
J Ii;:- .'.< ..... 1_. _.--­ lκ ••,
μ μ ” ”
ν ” ” ” … “ “ ”
μ …

N
) I 1. Co lumn 2. Colunm
11 II " 3
4. ~
6.
7.
‘ 31-
7360
­
,
-32-
Eluent
Effluent Volume (ml) : 23 • ’ ~ Column: PA-l Cl- ‘ Form
Load : O.lM UOZ Clz in 6N HCl Eluent : 0.1 M Ticl3 in 6N HCl
Flow rate: 4. 5 ml/hr
Tetnp : 50 C
Profile.
-33-
7340
II -‘
- -
- ~
...- ~.....-- -.--- -
40
30
20
10
Cl3 in ml/hr
in chromatographic process.
1. M. Benedict et aI , Report of Uranium Isotopic Separation
Riew Ad Hoc Committee , (1972).
2. P. R. Ogle et aI , GAT-674 (1972).
3. T. M. Florence et aI , J. Inorg. Nuc1. Chern. , 37 , 1961
(1975) .
4. M. M. Ciric et aI , Abhand1 Dewt. Akad Wiss. Berlin , K1.
Chern. Geo1. BioI. 7 , 223 (1964).
5. A. C. Rutenberg et aI , J. Inorg. and Nucl. Chern. 31
2289 (1969).
6. D. B. James et aI , U.S. Pat. 3 ,869 ,536 (1975).
7. A. Ca1usaro et aI , "Isotopenpraxis" 11. Jahrgang Helft
12 , 422 (1975).
8. H. Kakihana , Separation Sci. and Tech. 15(3) 567 (1980).
9. Y. Fujii et aI , J. Nucl. Sci. and Tech. 15(10) 745 (1978).
10. M. Okamoto et aI , Private Communication.
11. H. London , Separation of Isotopes , Newnes , London (1961).
12. K. Cohen , J. αlem. Physices 8 588 (1940).
13. J. Shimokawa , "Isotopenpraxis" 6 Jahrgang Heft 4 121 (1970)
14. P. Conrad , Sep. Sci. and Tech. 7 (1972).
’­-“
15. R.Jacques , Sep. Sci. and Tech. 15(3) 533 (1980).
16. H. Kakihana et aI , J. Nucl. Sci. and Tech. 14(8) 572
(1977).
18. E. Rona , J. . Chern. Soc. 72 4339 (1950).
19. J. Shirnokawa et aI , J. Nuch. Sci. and Tech. 1 51 (1964)
20. H. Kakihana et aI , IAEA. VIENNA 121 (1965).
21. M. Seto et aI , U.S. Pat. 4 ,049 ,769 (1977).
-38-
A -η-‘
*
73 -1344 74-1344
I "1
5.
VII.
1.