ISDN - NGN- SIGTRAN

30
1. Tổng quan giao thức Sigtran SIGTRAN là một bộ giao thức do IETF đề xuất nhằm mục đích truyền các dữ liệu báo hiệu thời gian thực qua mạng IP. SIGTRAN cho phép các nút phía mạng IP giao tiếp với các nút phía mạng SS7 như thể chúng là một phần của mạng báo hiệu SS7. Nó cũng cho phép các nút SS7 có thể giao tiếp với nhau qua các link IP, làm giảm lưu lượng trên link báo hiệu, tránh tắc nghẽn. 1.1 Cấu trúc tổng quan giao thức Sigtran Một cấu trúc giao thức Sigtran bao gồm 3 thành phần: - Chuẩn IP - Giao thức truyền tải báo hiệu chung, giao thức truyền dẫn điều khiển luồng (SCTP): giao thức SCTP cung cấp kết nối có định hướng khả dụng chuyển giao các bản tin của khách hàng trên một SCTP (các giao thức lớp thích ứng). Lưu ý rằng lớp SCTP thay thế cho lớp TCP. - Lớp thích ứng: Các giao thức được định nghĩa cho lớp này là M2PA, M2UA, M3UA, IUA và SUA. Dưới đây là mô hình giao thức Sigtran: Hình 1: Mô hình giao thức Sigtran

description

Co ban ve ISDN NGN SIGTRAN

Transcript of ISDN - NGN- SIGTRAN

Page 1: ISDN - NGN- SIGTRAN

1. Tổng quan giao thức Sigtran

SIGTRAN là một bộ giao thức do IETF đề xuất nhằm mục đích truyền các dữ liệu báo hiệu thời gian thực qua mạng IP. SIGTRAN cho phép các nút phía mạng IP giao tiếp với các nút phía mạng SS7 như thể chúng là một phần của mạng báo hiệu SS7. Nó cũng cho phép các nút SS7 có thể giao tiếp với nhau qua các link IP, làm giảm lưu lượng trên link báo hiệu, tránh tắc nghẽn.

1.1 Cấu trúc tổng quan giao thức Sigtran

Một cấu trúc giao thức Sigtran bao gồm 3 thành phần:

-         Chuẩn IP

-         Giao thức truyền tải báo hiệu chung, giao thức truyền dẫn điều khiển luồng (SCTP): giao thức SCTP cung cấp kết nối có định hướng khả dụng chuyển giao các bản tin của khách hàng trên một SCTP (các giao thức lớp thích ứng). Lưu ý rằng lớp SCTP thay thế cho lớp TCP.

-          Lớp thích ứng: Các giao thức được định nghĩa cho lớp này là M2PA, M2UA, M3UA, IUA và SUA.

Dưới đây là mô hình giao thức Sigtran:

 

Hình 1: Mô hình giao thức Sigtran

 

1.2 Các thành phần trong giao thức Sigtran

SIGTRAN định nghĩa sáu lớp con thích nghi sau đây:

      M2UA cung cấp dịch vụ của lớp MTP2 dưới mô hình client-server, ví dụ như kết nối giữa SG và MGC. Lớp MTP3 là người dùng của M2UA.

Page 2: ISDN - NGN- SIGTRAN

      M2PA cung cấp dịch vụ của lớp MTP2 dưới mô hình ngang hàng peer-to-peer, ví dụ như kết nối giữa các SG. Lớp MTP3 là người dùng của M2PA.

      M3UA cung cấp dịch vụ lớp MTP3 ở cả mô hình client-server (SG-to-MGC) và peer-to-peer. Lớp sử dụng nó là SCCP hoặc ISUP.

      SUA cung cấp dịch vụ lớp SCCP ở mô hình ngang hàng như giữa SG với SCP nằm bên phía mạng IP (IP SCP). Lớp sử dụng SUA là TCAP

      IUA cung cấp dịch vụ lớp ISDN.

      V5UA cung cấp dịch vụ giao thức V.5.2

Lớp M2UA

M2UA là giao thức định nghĩa bởi IETF cho phép truyền các bản tin báo hiệu lớp người sử dụng MTP2 ( ví dụ như MTP3) qua mạng IP sử dụng giao thức SCTP. M2UA cung cấp các dịch vụ cho lớp người sử dụng của nó tương tự như các dịch vụ do MTP2 cung cấp cho MTP3. M2UA có các mục đích sau:

      Cung cấp một cơ chế cho phép truyền bản tin báo hiệu lớp người sử dụng của MTP2 qua mạng IP sử dụng giao thức SCTP.

      Tập trung lưu lượng SS7 từ các link SS7 cách xa nhau về một điểm tập trung trên mạng.

      Bằng việc sử dụng M2UA, một vài điểm báo hiệu có thể hợp nhất thành một điểm báo hiệu tập trung. Đổi lại, các điểm báo hiệu này khi đó có thể được đặt gần các thành phần mạng khác hơn.  Khi đó, việc truyền báo hiệu giữa các thành phần này sẽ là truyền qua các kênh dành riêng, do vậy sẽ giảm chi phí cho việc xây dựng các điểm trung truyền báo hiệu.

Mô hình kiến trúc sử dụng M2UA như hình vẽ:

 

Page 3: ISDN - NGN- SIGTRAN

Hình 2: Mô hình kiến trúc M2UA

Ta biết là mỗi lớp MTP3 phải kèm theo một địa chỉ point code nhất định. Trong trường hợp này, nếu mỗi SG sử dụng lớp MTP3 thì mỗi SG sẽ phải có một SS7 point code riêng. Điều này sẽ dẫn đến sự lãng phí địa chỉ SS7. Bằng việc sử dụng lớp M2UA, các SG sẽ không cần phải có địa chỉ SS7 point code, các bản tin lớp MTP2 mà SG nhận được sẽ được chuyển đến lớp MTP3 ở MGC để xử lý và định tuyến tới phía đích.

Lớp M2PA

M2PA là giao thức truyền các bản tin báo hiệu lớp MTP3 qua mạng IP sử dụng giao thức truyền dẫn SCTP. M2PA tương đương với M2UA. Tuy nhiên, nó không chỉ là cung cấp kết nối giữa 2 lớp MTP2 và MTP3 cách xa nhau mà nó có thể thay thế hoàn toàn lớp MTP2 bên dưới lớp MTP3. Người dùng của M2PA là lớp MTP3 ở cả 2 đầu kết nối (với M2UA, người dùng một đầu là MTP3, đầu còn lại là SG NIF).

M2PA cho phép các lớp MTP3 ngang hàng của các SG có thể liên lạc trực tiếp với nhau. Thực chất, nó mở rộng mạng SS7 sang mạng IP.

Mô hình kiến trúc sử dụng lớp M2PA như hình vẽ:

 

Hình 3: Mô hình kiến trúc sử dụng lớp M2PA

Mô hình này được áp dụng chủ yếu cho các kết nối giữa SG với SG, sử dụng như cầu nối giữa 2 mạng SS7. Trong trường hợp này, mỗi một SG có thể kết nối tới nhiều SG khác mà không phải quan tâm xem các lớp phía trên của các SG là gì. Lớp MTP3 tại mỗi SG sẽ cung cấp chức năng định tuyến và quản lý các link MTP2/M2PA. Vì có lớp MTP3 cho nên mỗi SG phải có một địa chỉ pointcode tương ứng. M2PA cũng có thể thay thế link MTP2 trong trường hợp kết nối giữa SG với IP SCP bên phía mạng IP.

M2PA có các chức năng sau:

Page 4: ISDN - NGN- SIGTRAN

      Duy trì hoạt động liên tục giữa các thực thể ngang hàng MTP3 giao tiếp với nhau qua mạng IP.

      Mặt cắt giao diện MTP2/MTP3, cho phép quản lý các phiên truyền dẫn SCTP và lưu lượng thay cho MTP2 link.

      Thông báo về những thay đổi trạng thái phục vụ cho mục đích quản lý điều hành

Lớp M3UA

M3UA là giao thức hỗ trợ cho việc truyền dẫn các bản tin báo hiệu MTP3 (ví dụ như ISUP, SCCP) qua mạng IP sử dụng giao thức truyền dẫn SCTP. Về chức năng hoạt động, M3UA tương tự như M2UA. Giao thức này được sử dụng ở giao tiếp giữa SG và MGC hay các IP SCP bên phía mạng IP. M3UA cho phép dịch vụ lớp MTP3 có thể được cung cấp bởi một MGC nằm trong mạng IP, do vậy nó mở rộng mạng báo hiệu SS7 sang phía mạng IP.

 

Hình 4: Mô hình kiến trúc M3UA

Trong trường hợp này, MTP3 tại SG sẽ không nhận biết được là lớp người dùng ISUP của MGC đặt ở xa. Tương tự, lớp ISUP bên phía MGC cũng không biết được là nó đang được phục vụ bởi lớp MTP3 của SG cục bộ. Do vậy các bản tin báo hiệu số 7 sẽ được truyền một cách trong suốt từ SG tới MGC qua mạng IP

Lớp SUA

SUA là giao thức hỗ trợ truyền dẫn các bản tin lớp SCCP qua mạng IP sử dụng giao thức SCTP. Nó cho phép truy nhập tới các lớp ứng dụng (ví dụ như TCAP) tại IP SCP thông qua SG. Kiến trúc mạng sử dụng SUA cho phép một SG có thể kết nối đến nhiều IP SCP. Các IP SCP không cần phải có lớp MTP3 cục bộ, do vậy không đòi hỏi phải có địa chỉ SS7 point code riêng.

Page 5: ISDN - NGN- SIGTRAN

 

Hình 5: Mô hình kiến trúc lớp SUA

SUA hỗ trợ các chức năng sau:

      Truyền dẫn các bản tin SCCP (TCAP, MAP, INAP...)

      Hỗ trợ dịch vụ không kết nối SCCP

      Hỗ trợ dịch vụ hướng kết nối SCCP

      Quản lý các phiên truyền dẫn của SCTP giữa SG và một hay nhiều nút báo hiệu phía mạng IP

      Phân tán các nút báo hiệu phía mạng IP

      Thông báo về các thay đổi trạng thái phục vụ cho mục đích quản lý.

Lớp IUA và V5UA

IUA cung cấp dịch vụ của lớp ISDN Data Link. Còn V5UA cung cấp dịch vụ của giao thức V.5.2.

Lớp giao thức SCTP

SIGTRAN Working Group đã xây dựng giao thức SCTP nhằm mục đích khắc phục các khiếm khuyết của TCP.

 

Hình 6: Cấu trúc tổng quan SCTP

SCTP có các đặc điểm sau:

Page 6: ISDN - NGN- SIGTRAN

      SCTP là giao thức đơn điểm- thực hiện trao đổi dữ liệu được thực hiện giữa 2 đầu cuối

      SCTP định nghĩa định thời timer ngắn hơn nhiều so với của TCP.

      SCTP cung cấp cơ chế truyền dữ liệu người dùng một cách tin cậy, có cơ chế phát hiện mất hay không tuần tự dữ liệu và thực hiện việc sửa chữa nếu cần thiết.

      SCTP có khả năng tự điều chỉnh tốc đô (rate-adaptive) tuỳ theo tình trạng của mạng hiện tại.

      SCTP hỗ trợ cơ chế đa địa chỉ multi-homing. Mỗi một đầu cuối SCTP có thể có nhiều địa chỉ IP. Định tuyến tới một địa chỉ là độc lập với các tuyến khác, do vậy trong trường hợp một tuyến có sự cố thì tuyến khác sẽ được sử dụng.

      SCTP sử dụng thủ tục khởi tạo, dựa trên cơ chế Cookie để ngăn chặn kiểu tấn công từ chối dịch vụ

      SCTP cung cấp chức năng bundling, cho phép một gói tin SCTP có thể bao gồm nhiều đoạn dữ liệu, mỗi đoạn có thể bao gồm một bản tin báo hiệu hoàn chỉnh.

      SCTP cũng hỗ trợ chức năng phân tách dữ liệu, cho phép chia nhỏ bản tin báo hiệu thành nhiều bản tin SCTP cho phù hợp với các PDU bên dưới.

      SCTP là giao thức hướng bản tin. SCTP định nghĩa cấu trúc khung của dữ liệu. Còn TCP ngược lại là không định nghĩa cấu trúc của dữ liệu mà chỉ xem dữ liệu dưới dạng một chuỗi byte.

      SCTP cung cấp chức năng multi-streaming (đa luồng). Dữ liệu được chia thành nhiều luồng khác nhau, mỗi luồng có một cơ chế phân phối tuần tự độc lập nhau. TCP không hỗ trợ chức năng này.

2. Phương pháp đo kiểm các thành phần thuộc giao thức Sigtran

Đo kiểm là một vấn đề quan trọng trong quá trình triển khai, khai thác hệ thống. Việc đo kiểm xác định tính tuân thủ của hệ thống theo chuẩn và khả năng tương tác, phối hợp với các hệ thống khác. Giao thức Sigtran bao gồm trong đó là 6 lớp giao thức con M2UA, M2PA, M3UA, SCTP, SUA và IUA, do đó đo kiểm giao thức SIGTRAN là đo kiểm các lớp con nằm trong đó. Cho đến thời điểm hiện tại các khuyến nghị của RFC và ETSI mới chỉ tập trung cho việc đo kiểm ba lớp con nằm trong giao thức SIGTRAN đó là: lớp SCTP, lớp M2UA và lớp M3UA.

Page 7: ISDN - NGN- SIGTRAN

Trong quá trình khai thác bảo dưỡng, chúng ta cũng cần định kỳ đo kiểm hoạt động của giao thức Sigtran của các thiết bị nhằm xác định các thay đổi trong quá trình hoạt động cũng như xác định nguyên nhân gây ra lỗi và đưa ra giải pháp khắc phục (trong trường hợp xuất hiện lỗi trong quá trình khai thác và bảo dưỡng thiết bị).

Việc đo kiểm các lớp con trong giao thức Sigtran có thể dùng phương pháp giám sát hoặc mô phỏng tùy thuộc vào khả năng của thiết bị cần đo và các yêu cầu đo kiểm. Tất cả các lớp con M2UA, M3UA và SCTP đều có thể đo kiểm dùng phương pháp giát sát hoặc mô phỏng, cấu hình đo giám sát các lớp con đó có cấu hình dưới đây:

 

Hình 7: Cấu hình đo giám sát

Trong cấu hình đo giám sát báo hiệu Sigtran, máy đo được đấu xen vào giữa để giám sát việc trao đổi bản tin giao thức Sigtran giữa SGP và AS. Cấu hình đo giám sát được sử dụng để đo kiểm các hoạt động bình thường của các thiết bị cần đo là SGP và AS.

Ngoài ra, trong một số trường hợp có thể dùng phương pháp mô phỏng để kiểm tra các tính năng kỹ thuật của các lớp con thuộc giao thức Sigtran, cấu hình đo mô phỏng có dạng dưới đây:

 

Hình 8: Cấu hình đo mô phỏng

Trong cấu hình đo mô phỏng giao thức Sigtran, máy đo được cấu hình để mô phỏng một thiết bị SGP kết nối với AS cần kiểm tra thông qua giao thức Sigtran. Cấu hình đo này được sử dụng để kiểm các hoạt động bất thường của thiết bị có sử dụng giao thức Sigtran.

Việc thay đổi cấu hình đo mô phỏng hoặc giám sát phụ thuộc vào yêu cầu đo kiểm các tính năng kỹ thuật của từng lớp con trong giao thức Sigtran và phụ thuộc vào khả năng hỗ trợ của thiết bị cần đo.

Page 8: ISDN - NGN- SIGTRAN

Kết luận

Giao thức Sigtran là một giao thức mới ứng dụng cho mạng NGN, nó cho phép các nút phía mạng IP giao tiếp với các nút phía mạng SS7 nhằm nâng cao hiệu suất sử dụng mạng và phối hợp hoạt động giữa mạng PSTN hiện có với mạng NGN trong tương lai. Vì vậy, việc nghiên cứu giao thức Sigtran cùng các tính năng kỹ thuật và phương pháp đo kiểm các tính năng kỹ thuật trong đó cho phép triển khai mạng NGN được dễ dàng hơn trong tương lai và đặc biệt hỗ trợ phối hợp tương tác hoạt động giữa mạng hiện đang tồn tại với mạng NGN.

Tài liệu tham khảo

[1].        draft-ietf-sigtran-m2pa-09.txt

[2].        draft-ietf-sigtran-sctp-mib-10.txt

[3].        RFC3057.txt

[4].        RFC2960.txt

[5].        RFC3331.txt

[6].        RFC3332.txt

[7].     www.msforum.org

[8].    www.ss7open.org

[9].  www.iec.org

Máy đo báo hiệu J 6803B AGILENT:Signaling Analyzer - J7830A:The Agilent Signaling Analyzer is a high-performance solution for 2, 2.5 and 3G system verification, troubleshooting, and RAN optimization. Its intelligent call trace-centric approach enables distributed call trace, performance measurements, and drill-down problem isolation for calls on UMTS, GSM, TD-SCDMA, and CDMA RANs, as well as the mobile core, IMS, PSTN and Internet. Support of SS7 evolution The Signaling Analyzer supports the evolution of SS7:

SS7 in PSTN SS7 in GSM / UMTS / CDMA mobile core network SSS over IP - SIGTRAN

Specific benefits for Signaling Analyzer SS7 Signaling Analyzer SS7 shares the same powerful architecture of the rest of the

Signaling analyzer products. SS7 evolution support:: SS7 in PSTN, SS7 in GSM / UMTS / CDMA mobile

core network SSS over IP - SGTRAN Support of channelized E1/T1, ATM and IP transport Application layer protocols support such as MAP, INAP, BICC, TCAP

Page 9: ISDN - NGN- SIGTRAN

Transport layer support such as MTP2, MTP3, MTP3b, SCCP, ISUP, SCTP, M2UA and M3UA

Analysis of Clear Down Time, Setup Time, OPC, DPC, CIC, Calling Party Number, Called Party Number, Release Cause and Start Time, based on OPC, DPC and CIC, etc.

Correlation of SS7 protocols in mobile core and RAN

Các yêu cầu về máy đo trong BCNCKT:- Card giao diện E1/T1 PCM, ATM phải hỗ trợ các tính năng: số lượng 08 luồng E1:

+ Có khả năng hỗ trợ 08 PCM stream/Card (full duplex) với chế độ đo được cấu hình linh hoạt channelized hoặc HSL.+ Có khả năng giám sát tới 32 timeslot trên mỗi luồng E1.+ Có khả năng chọn cấu hình đo linh hoạt ATM hoặc PCM do người dùng định nghĩa.+ Hỗ trợ giám sát tối đa 04 luồng HSL đồng thời trên mỗi card đo.+ Hỗ trợ trở kháng 120 ohm (E1) và trở kháng cao.+ Dải điện áp đầu vào 70mVpeak to 3.3 Vpeak+ Suy hao chèn -18dB+ Độ nhạy -35dB + Giao diện: RJ-45

- Card Gigabit Ethernet:+ Hỗ trợ 2 cổng RJ45 GE 10/100/1000 BaseT.+ Tích hợp CPU Intel Core 2 Duo; 2,16Ghz; 1Gb RAM.

- Giao diện STM-1 channelized: thông qua bộ chuyển đổi STM-1 <-> E1:+ Hỗ trợ 01xSTM-1 (Full duplex)+ Có khả năng ghép các timeslot báo hiệu thuộc các E1 khác nhau trên luồng STM-1 vào một luồng E1 để thực hiện phân tích.+ Có khả năng giám sát E1 HSL (TDM và ATM) trên luồng STM-1.Máy đo có khả năng hỗ trợ đo các giao thức:MTP1, MTP2, SCCP, TCAP, CAMEL, EDSS1, TUP, ISUP, INAP, IPBCP, BGP, OSPF, RIP, HSRP, SNMP, SCTP, STC(Signaling Transport Converter), SMPP, M3UA,…Các giao thức báo hiệu mạng GSM:MAP, CAMEL, LAPB, LAPD, TRAU full rate và half rate (rất nhiều tham số và chuẩn cứ nêu cụ thể mà thiết bị có thể đáp ứng)Các giao thức báo hiệu mạng GPRS: y/c hỗ trợ các chuẩn trên giao diện Gb, Gc, Gd,Gf, Gr, Gs, Gn, Gp, Gi: Frame Relay, Ipv4, TCP, UDP, MTP, SCCP, TCAP, MAP, ICMPCác giao thức báo hiệu mạng thông minh IN: CAMEL, INAP alcatel E10 version 5 và 3.Các giao thức báo hiệu mạng NGN IP: MEGACO(Media gatewway Control Protocol), GCP, MGCP, SIP, SDP, RTP,….Đo báo hiệu HSL – High Speed SignallingCác thủ tục coding/decoding của Alcatel: LAPD, L2M,RSL, MAC GSM, Alcatel O&M Release 6.3, PCU

Page 10: ISDN - NGN- SIGTRAN

Các thủ tục coding/decoding của Ericsson: LAPD, L2M, RLC MAC, RLC MAC GSM, Ericson O&M.Các thủ tục báo hiệu riêng của HuaweiCó thêt lưu trữ các bản tin đo được dưới dạng file và xuất ra offline, giao diện đo dễ sử dụng (ví dụ như dạng cột có thể lựa chọn các trường hiển thị)Hỗ trợ hiển thị dạng đồ họa đồng thời các thông số: Rxlev, RxQual,Timing, MS Power, BS Power trên giao diện AbisPhần mềm tốt ưu hóa và khắc phục sự cố mạng GSM/GPRS: phần mềm phải cho phép tìm và giải quyết lỗi và tối ưu hóa mạng GSM/GPRS trên các giao diện A, Abis và Gb. Hiển thị và đánh giá lỗi dưới dạng bảng biểu, các bản tin chuyển giao, bản tin trên kênh SDCCH và TCH,….(rất nhiều tham số và chuẩn cứ nêu cụ thể mà thiết bị có thể đáp ứng và kô)

Yêu cầu về máy đo: Hỗ trợ đo các loại báo hiệu: SS7, HSL, IP, ATM, STM, Sigtran, Camel Phase 3. Bổ sung thêm module tách tín hiệu quang để đo online luồng STM-1 giao diện quang cho mỗi máy (Máy đo hiện tại chưa có chức năng đo online luồng quang).

TCAP :Transaction Capabilities Application Part, from ITU-T recommendations Q.771-Q.775 or ANSI T1.114 is a protocol for Signalling System 7 networks. Its primary purpose is to facilitate multiple concurrent dialogs between the same sub-systems on the same machines, using Transaction IDs to differentiate these, similar to the way TCP ports facilitate multiplexing connections between the same IP addresses on the Internet.TCAP is used to transport INAP in Intelligent Networks and MAP in mobile phone networks.

1. GIỚI THIỆU ISDN và B-ISDN

1.1. Các đặc điểm của mạng viễn thông ngày nay

Hiện nay, các mạng viễn thông hiện tại có đặc điểm chung là tồn tại một cách riêng rẽ, ứng với mỗi loại dịch vụ thông tin lại có ít nhất một loại mạng viễn thông riêng biệt để phục vụ dịch vụ đó. Thí dụ:

Mạng Telex: dùng để gửi các bức điện dưới dạng các ký tự đã được mã hoá bằng mã 5 bit (mã Baudot). Tốc độ truyền rất thấp (từ 75 tới 300 bit/s).

Mạng điện thoại công cộng, còn gọi là mạng POST (Plain Old Telephone Service): ở đây thông tin tiếng nói được số hoá và chuyển mạch ở hệ thống chuyển mạch điện thoại công cộng PSTN (Public Swiched Telephone Network).

Mạng truyền số liệu: bao gồm các mạng chuyển mạch gói để trao đổi số liệu giữa các máy tính dựa trên các giao thức của X.25 và hệ thống truyền số liệu chuyển mạch kênh dựa trên các giao thức X.21.

Các tín hiệu truyền hình có thể được truyền theo ba cách: truyền bằng sóng vô tuyến, truyền qua hệ thống mạng truyền hình CATV (Community Antenna TV) bằng cáp đồng

Page 11: ISDN - NGN- SIGTRAN

trục hoặc truyền qua hệ thống vệ tinh, còn gọi hệ thống truyền qua hệ thống vệ tinh, còn gọi hệ thống truyền hình trực tiếp DBS (Direct Broadcast System).

Trong phạm vi cơ quan, số liệu giữa các máy tính được trao đổi thông qua mạng cục bộ LAN (Local Area Network) mà nổi tiếng nhất là mạng Ethernet, Token Bus và Token Ring.

Mỗi mạng trên được thiết kế cho các dịch vụ riêng biệt và không thể sử dụng cho các mục đích khác. Thí dụ, ta không thể truyền tiếng nói qua mạng chuyển mạch gói X.25 vì trễ qua mạng này quá lớn.

Hậu quả là hiện nay có rất nhiều loại mạng khác nhau cùng song song tồn tại. Mỗi mạng lại yêu cầu phương pháp thiết kế, sản xuất, vận hành, bảo dưỡng khác nhau. Như vậy hệ thống mạng viễn thông hiện tại có rất nhiều nhược điểm mà quan trọng nhất là:

Chỉ truyền được các dịch vụ độc lập tương ứng với từng mạng.

Thiếu mềm dẻo: Sự ra đời của các thuật toán nén tiếng nói, nén ảnh và tiến bộ trong công nghệ VLSI ảnh hưởng mạnh mẽ tới tốc độ truyền tín hiệu. Ngoài ra còn có nhiều dịch vụ truyền thông trong tương lai mà hiện nay chưa dự đoán trước được, mỗi loại dịch vụ sẽ có tốc độ truyền khác nhau. Ta dễ dàng nhận thấy rằng hệ thống hiện nay rất khó thích nghi với yêu cầu của các dịch vụ khác nhau trong tương lai.

Kém hiệu quả trong việc bảo dưỡng, vận hành cũng như việc sử dụng tài nguyên. Tài nguyên sẵn có trong một mạng không thể chia sẻ cho các mạng cùng sử dụng.

1.2. Sự ra đời của hệ thống viễn thông mới - B-ISDN

Như đã nêu ở trên, yêu cầu có một mạng viễn thông duy nhất ngày càng trở nên bức thiết, chủ yếu là do các nguyên nhân sau:

Các yêu cầu dịch vụ băng rộng đang tăng lên.

Các kỹ thuật xử lý tín hiệu, chuyển mạch, truyền dẫn ở tốc độ cao (cỡ khoảng vài trăm Mbit/s tới vài Gbit/s) đã trở thành hiện thực.

Tiến bộ về khả năng xử lý ảnh và số liệu.

Sự phát triển của các ứng dụng phần mềm trong lĩnh vực tin học và viễn thông.

Sự cần thiết phải tổ hợp các dịch vụ phụ thuộc lẫn nhau ở chuyển mạch kênh và chuyển mạch gói vào một mạng băng rộng duy nhất. So với các mạng khác, dịch vụ tổ hợp và mạng tổ hợp có nhiều ưu điểm về mặt kinh tế, phát triển, thực hiện, vận hành và bảo dưỡng.

Sự cần thiết phải thoả mãn tính mềm dẻo cho các yêu cầu về phía người sử dụng cũng như người quản trị mạng (về mặt tốc độ truyền, chất lượng dịch vụ .v.v.).

Khuyến nghị ITU-T I.121 đưa ra tổng quan về khả năng của B-ISDN như sau:

Mạng tổ hợp dịch vụ số băng rộng (Broadband Integrated Services Digital Network - B-ISDN) cung cấp các cuộc nối thông qua chuyển mạch, các

Page 12: ISDN - NGN- SIGTRAN

cuộc nối cố định (Permanent) hoặc bán cố định (Semi-Permanent), các cuộc nối từ điểm tới điểm tới điểm hoặc từ điểm tới nhiều điểm và cung cấp các dịch vụ yêu cầu, các dịch vụ dành trước hoặc các dịch vụ yêu cầu cố định. Cuộc nối trong B-ISDN phục vụ cho cả các dịch vụ chuyển mạch kênh, chuyển mạch gói theo kiểu đa phương tiện (Multimedia), đơn phương tiện (Monomedia), theo kiểu hướng liên kết (Connection-Oriented) hoặc không liên kết (Connectionless) và theo cấu hình đơn hướng hoặc đa hướng.

B-ISDN là một mạng thông minh có khả năng cung cấp các dịch vụ cải tiến, cung cấp các công cụ bảo dưỡng và vận hành (OAM), điều khiển và quản lý mạng rất hiệu quả.

2. KHÁI NIỆM CƠ BẢN VỀ ATM

2.1. Định nghĩa và các đặc điểm chính của ATM

B-ISDN theo ITU-T dựa trên cơ sở kiểu truyền không đồng bộ ATM (Asynchronous Transfer Mode). Như vậy ATM sẽ là nền tảng của B-ISDN trong tương lai.

Trong kiểu truyền không đồng bộ, thuật ngữ "truyền" bao gồm cả lĩnh vực truyền dẫn và chuyển mạch, do đó "dạng truyền" ám chỉ cả chế độ truyền dẫn và chuyển mạch thông tin trong mạng.

Thuật ngữ "không đồng bộ" giải thích cho một kiểu truyền trong đó các gói trong cùng một cuộc nối có thể lặp lại một cách bất bình thường như lúc chúng được tạo ra theo yêu cầu cụ thể mà không theo chu kỳ.

Để minh họa, hình 1.1 và 1.2 biểu diễn sự khác nhau giữa dạng truyền đồng bộ và dạng truyền không đồng bộ. Trong dạng truyền đồng bộ STM (Synchronous Transfer Mode), các phần tử số liệu tương ứng với kênh đã cho được nhận biết bởi vị trí của nó trong khung truyền (hình 1.1) trong khi ở ATM, các gói thuộc về một cuộc nối lại tương ứng với các kênh ảo cụ thể và có thể xuất hiện tại bất kỳ vị trí nào (hình 1.2).

ATM còn có hai đặc điểm quan trọng:

Page 13: ISDN - NGN- SIGTRAN

Thứ nhất, ATM sử dụng các gói có kích thước nhỏ và cố định gọi là các tế bào ATM (ATM Cell), các tế bào nhỏ cùng với tốc độ truyền lớn sẽ làm cho trễ truyền và biến động trễ (Delay Jitter) giảm đủ nhỏ đối với các dịch vụ thời gian thực, ngoài ra kích thước nhỏ cũng sẽ tạo điều kiện cho việc hợp kênh ở tốc độ cao được dễ dàng hơn.

Thứ hai, ATM còn có một đặc điểm rất quan trọng là khả năng nhóm một vài kênh ảo (Virtual Channel) thành một đường ảo (Virtual Path), nhằm giúp cho việc định tuyến được dễ dàng.

2.2. Các lĩnh vực công nghệ mới quyết định sự ra đời và phát triển của ATM

Có hai yếu tố ảnh hưởng tới ATM, đó là:

Sự phát triển nhanh chóng của công nghệ bán dẫn cũng như công nghệ quang điện tử. Sự phát triển các ý tưởng mới về khái niệm hệ thống.

2.2.1. Các tiến bộ về mặt công nghệ

Công nghệ bán dẫn:

Công nghệ CMOS là công nghệ rất có triển vọng bởi độ tích hợp lớn, tốc độ cao (cỡ vài trăm Mbit/s tới vài Gbit/s), độ rộng băng truyền lớn, kích thước nhỏ, độ mềm dẻo cơ học cao, tránh được nhiễu của trường điện tử, xác suất truyền lỗi thấp và không có nhiễu xuyên âm.

2.2.2. Các ý tưởng mới về khái niệm hệ thống

Các quan điểm mới về hệ thống được phát triển mạnh mẽ trong những năm gần đây, đó là hệ thống phải có độ mềm dẻo thích hợp, độ rộng băng của hệ thống phải tuỳ thuộc vào yêu cầu của từng dịch vụ cụ thể, các dịch vụ thời gian thực được truyền theo phương pháp chuyển mạch gói.

Các ý tưởng này phải thoả mãn hai chức năng chính của mạng là:

Tính trong suốt về mặt nội dung:(Semantic Transparency):

Tính trong suốt về mặt nội dung là chức năng đảm bảo việc truyền đúng các bit từ đầu phát tới đầu thu (tức là sự chính xác về mặt nội dung).

Khi mới ra đời, trong các mạng chuyển mạch gói, chất lượng truyền số liệu còn kém, do đó để đảm bảo chất lượng truyền chấp nhận được, người ta phải thực hiện chức năng điều khiển lỗi trên mọi liên kết (Link).Việc điều khiển lỗi này được thực hiện bởi các giao thức HDLC (High-Level Data Link Control) bao gồm các chức năng: giới hạn khung (Frame Delimiting), đảm bảo truyền bit chính xác, kiểm tra lỗi (kiểm tra mã dư vòng CRC-Cyclic Redundancy Check), sửa lỗi bằng các thủ tục truyền lại. Hình 1.3. trình bày thủ tục điều khiển lỗi đầy đủ của mạng chuyển mạch gói thông qua mô hình liên kết các hệ thống mở OSI. Ta thấy quá trình điều khiển lỗi được thực hiện trên mọi liên kết (Link-by-Link) thông qua nút chuyển mạch, do đó nút chuyển mạch phải xử lý một loạt các thủ tục phức tạp khác nhau làm ảnh hưởng đến tốc độ xử lý chung của hệ thống.

Page 14: ISDN - NGN- SIGTRAN

Sau này do chất lượng của hệ thống truyền dẫn và chuyển mạch tăng lên nên tỷ lệ lỗi trên mạng giảm. Với một mạng chất lượng cao như vậy, người ta chỉ cần thực hiện một số chức năng của thủ tục HDLC như chức năng giới hạn khung, chức năng truyền bit chính xác, kiểm tra lỗi trên cơ sở từ liên kết tới liên kết (Link-by-Link). Như vậy chỉ có những chức năng này được cung cấp bởi các nút chuyển mạch trong mạng còn các chức năng khác như sửa lỗi sẽ được thực hiện trên cơ sở từ đầu cuối tới đầu cuối (End-to-End). Bằng cách này người ta đã giảm được khối lượng thông tin mà nút chuyển mạch cần sử lý, nhờ đó mà tốc độ xử lý của nút tăng lên. Như vậy lớp 2 trên mô hình OSI được chia thành hai lớp con, lớp 2a chuyên cung cấp các chức năng cơ bản của lớp 2, lớp 2b cung cấp các chức năng bổ sung. Các hệ thống ứng dụng nguyên lý này được gọi là chuyển tiếp khung (frame relay). Các nguyên lý này được trình bày trên hình 1.4.

Đối với B-ISDN ý tưởng này còn được mở rộng hơn nữa, các chức năng điều khiển lỗi không còn được cung cấp ở các nút chuyển mạch trong mạng nữa mà trong trường hợp cần thiết, sẽ được cung cấp bởi các thiết bị đầu cuối. Như vậy các chức năng được thực hiện trong mạng được giảm từ điều khiển lỗi đầy đủ (Full error Control) ở mạng chuyển mạch gói X.25 xuống còn cực kỳ tối thiểu ở mạng ATM, do đó các nút của ATM có độ phức tạp tối thiểu và vì thế có tốc độ truyền rất cao, có thể lên tới 600 Mbit/s (hình 1.5). Bảng 1.1 trình bày các chức năng được thực hiện ở nút mạng ATM so với mạng chuyển mạch gói và chuyển tiếp khung.

 

Bảng 1.1: Các chức năng được thực hiện ở nút mạng của X.25, chuyển tiếp khung, ATM

Chức năng Chuyển mạch

góiChuyển tiếp

khungATM

Page 15: ISDN - NGN- SIGTRAN

Truyền lại gói x - -

Giới hạn khung x x -

Kiểm tra lỗi x x -

Rõ ràng nút mạng ATM hầu như không phải xử lý một thông tin điều khiển nào trong khi nút chuyển mạch X.25 và chuyển tiếp khung phải thực hiện một loạt các thủ tục phức tạp khác nhau.

Tính trong suốt về mặt thời gian: (Time Transparency)

Các dịch vụ thời gian thực yêu cầu dòng bit có trễ rất ngắn khi được truyền từ đầu phát tới đầu thu, tức là chúng yêu cầu tính chính xác về mặt thời gian. Có thể phân biệt hai loại trễ: trễ do chuyển mạch và trễ từ điểm đầu tới điểm cuối.

Hệ thống chuyển mạch gói và chuyển tiếp khung rất khó khăn khi thực hiện các dịch vụ thời gian thực vì độ trễ cao. Do độ phức tạp của các nút chuyển mạch, chúng chỉ có thể hoạt động ở tốc độ vừa và thấp. Mạng ATM, mặt khác, chỉ cần những chức năng tối thiểu ở nút chuyển mạch, do đó nó cho phép truyền số liệu tốc độ rất cao, trễ trên mạng và các biến động trễ giảm xuống còn vài trăm micro giây, do đó quan hệ thời gian được đảm bảo như trong trường hợp chuyển mạch kênh.

3. CÁC DỊCH VỤ TƯƠNG LAI CỦA B-ISDN TRÊN CƠ SỞ ATM

3.1. Các dịch vụ phục vụ cho các thuê bao gia đình

Các dịch vụ quan trọng cho các thuê bao gia đình là những dịch vụ truyền hình (TV) bao gồm dịch vụ truyền hình cáp CATV, truyền hình số chuẩn SDTV(Standard Digital TV) hay trong tương lai là dịch vụ truyền hình độ phân giải cao HDTV (High Definition TV). Tuy vậy người ta còn phải giải quyết các vấn đề về tính tương thích giữa các tín hiệu video nói trên sao cho một chương trình SDTV có thể xem được trên màn hình HDTV và ngược lại.

Tất cả các tín hiệu video nói trên có thể được cung cấp bằng nhiều cách khác nhau. Dễ thực hiện nhất là phương pháp mô phỏng CATV trong đó một loạt các chương trình TV được đưa tới thuê bao theo các đường nối bán cố định. Một phương pháp khác là các kênh TV được truy nhập theo kiểu chuyển mạch, nghĩa là khách hàng có thể chọn một chương trình mong muốn theo một kênh thông tin xác định. Xa hơn nữa, người sử dụng có thể gọi tới một thư viện video sau đó chọn lấy một kênh từ rất nhiều các kênh truyền hình sẵn có.

Một ứng dụng quan trọng nữa là dịch vụ điện thoại truyền hình trong đó các hình ảnh chất lượng cao được truyền đi ở tốc độ từ 2 tới 5 Mbit/s với giá thành phải chăng.

Ngoài ra còn một loạt các ứng dụng thú vị khác như mua hàng tại nhà (Video-Shopping), dạy học tại nhà (Home-Education), các dịch vụ thông tin quảng cáo .v.v.

3.2. Các dịch vụ phục vụ trong lĩnh vực kinh doanh, giao dịch

Page 16: ISDN - NGN- SIGTRAN

Các thuê bao trong phạm vi công sở, văn phòng có những đặc điểm hoàn toàn khác so với các thuê bao gia đình. Điểm chung duy nhất giữa hai lĩnh vực này là điện thoại truyền hình. Tuy vậy dịch vụ này cũng phải được mở rộng để tiến tới điện thoại hội nghị truyền hình, sao cho người sử dụng có thể dùng dịch vụ điện thoại truyền hình để liên lạc giữa vài điểm cùng một lúc.

Có thể dự đoán nhiều dịch vụ của B-ISDN cho mạng LAN sẽ được đưa vào ứng dụng trong tương lai. Các hệ thống ATM-LAN được nối với nhau sẽ tạo khả năng truy nhập hệ cơ sở dữ liệu phân tán với tốc độ rất cao, điều này rất quan trọng do khả năng của PC đang tăng lên không ngừng về mặt tốc độ xử lý cũng như khả năng lưu trữ thông tin, do đó sẽ có ngày càng nhiều các phần mềm ứng dụng chạy trên các máy khác nhau trong môi trường dữ liệu phân tán. Ngoài ra còn phải kể đến các dịch vụ khác như: truyền ảnh y tế chất lượng cao để phục vụ cho việc chữa bệnh từ xa, giáo dục phân tán, truyền thông đa phương tiện, thư tín điện tử.

Trong lĩnh vực sản xuất, các ứng dụng sẽ là điều khiển/giám sát từ xa, phân phối các thông tin hình ảnh về sản xuất/xử lý tới công nhân trong nhà máy. Bảng 1.2. tóm tắt các dịch vụ băng rộng cơ bản và tốc độ tương ứng của chúng.

Bảng 2: Đặc điểm các dịch vụ băng rộng cơ bản

Dịch vụTốc độ (Mbit/s)

Truyền số liệu (hướng liên kết)1,5 -130

Truyền số liệu (không liên kết)1,5 -130

Truyền văn bản, tài liệu1,5 - 45

Điện thoại truyền hình / Hội nghị truyền hình 1,5 -130

TV30 - 130

Truyền hình phân giải cao130

4. TÓM TẮT

Chương này đã trình bày các đặc điểm của các mạng viễn thông hiện hữu cũng như các mặt hạn chế cuả chúng và các nhu cầu dịch vụ băng rộng đang tăng lên. Từ đó đặt ra vấn đề phải có một mạng tổ hợp băng rộng duy nhất ( B-ISDN) thay thế tất cả các mạng viễn thông nói trên, chính trên cơ sở này mà ATM hình thành và phát triển. Sự phát triển của kỹ thuật ATM là kết quả trực tiếp của các ý tưởng mới về khái niệm hệ thống được hỗ trợ bởi các thành tựu to lớn trong công nghệ bán dẫn và công nghệ quang điện tử. ATM có khả

Page 17: ISDN - NGN- SIGTRAN

năng đáp ứng được một loạt các dịch vụ băng rộng khác nhau, kể cả trong lĩnh vực gia đình cũng như trong thương mại.

Mạng viễn thông thế hệ mới

Mạng viễn thông thế hệ mới (Next Generation Network-NGN) đang là xu hướng ở nhiều nước trên thế giới do các tính chất tiên tiến của nó như hội tụ các loại tín hiệu, mạng đồng nhất và băng thông rộng. Tại Việt Nam, lĩnh vực viễn thông đang phát triển rất mạnh và nhu cầu của người dùng về các loại hình dịch vụ mới ngày càng cao vì vậy việc tiến lên NGN cũng là vấn đề cấp bách. Bài viết giới thiệu một số thông tin tổng quát về mạng NGN.

TỔNG QUAN VỀ NGN

NGN là mạng hội tụ cả thoại, video và dữ liệu trên cùng một cơ sở hạ tầng dựa trên nền tảng IP, làm việc trên cả hai phương tiện truyền thông vô tuyến và hữu tuyến. NGN là sự tích hợp cấu trúc mạng hiện tại với cấu trúc mạng đa dịch vụ dựa trên cơ sở hạ tầng có sẵn, với sự hợp nhất các hệ thống quản lý và điều khiển. Các ứng dụng cơ bản bao gồm thoại, hội nghị truyền hình và nhắn tin hợp nhất (unified messaging) như voice mail, email và fax mail, cùng nhiều dịch vụ tiềm năng khác.

Các đặc điểm của NGN:

1. Sử dụng công nghệ chuyển mạch mềm (SW-SoftSwitch) thay thế các thiết bị tổng đài chuyển mạch phần cứng (hardware) cồng kềnh. Các mạng của từng dịch vụ riêng rẽ được kết nối với nhau thông qua sự điều khiển của một thiết bị tổng đài duy nhất, thiết bị tổng đài này dựa trên công nghệ SW được ví như là 'trái tim' của NGN.

2. Mạng hội tụ thoại và dữ liệu, cố định và di động. Các loại tín hiệu được truyền tải theo kỹ thuật chuyển mạch gói, xu hướng sắp tới đang tiến dần lên sử dụng mạng IP với kỹ thuật QoS như MPLS.

3. Mạng băng thông rộng cung cấp đa dịch vụ: Mạng truyền dẫn quang với công nghệ WDM (Wavelength Division Multiplexing) hay DWDM (dense WDM).

CẤU TRÚC MẠNG NGN

Cấu trúc mạng NGN bao gồm 5 lớp chức năng: lớp truy nhập dịch vụ (service access layer), lớp chuyển tải dịch vụ (service transport/core layer), lớp điều khiển (control layer), lớp ứng dụng/dịch vụ (application/service layer) và lớp quản lý (management layer). Hình 1 thể hiện cấu trúc của NGN.

Lớp ứng dụng/dịch vụ

Lớp ứng dụng và dịch vụ cung cấp các ứng dụng và dịch vụ như dịch vụ mạng thông minh IN (Intelligent network), trả tiền trước, dịch vụ giá trị gia tăng Internet cho khách hàng thông qua lớp điều khiển... Hệ thống ứng dụng và dịch vụ mạng này liên kết với lớp điều khiển thông qua các giao diện mở API. Nhờ giao diện mở này mà nhà cung cấp dịch vụ có thể phát triển các ứng dụng và triển khai nhanh chóng các dịch vụ trên mạng. Trong môi trường phát triển cạnh tranh sẽ có rất nhiều thành phần tham gia kinh doanh trong lớp này.

Lớp điều khiển

Page 18: ISDN - NGN- SIGTRAN

Lớp điều khiển bao gồm các hệ thống điều khiển kết nối cuộc gọi giữa các thuê bao thông qua việc điều khiển các thiết bị chuyển mạch (ATM+IP) của lớp chuyển tải và các thiết bị truy nhập của lớp truy nhập. Lớp điều khiển có chức năng kết nối cuộc gọi thuê bao với lớp ứng dụng/dịch vụ. Các chức năng như quản lý, chăm sóc khách hàng, tính cước cũng được tích hợp trong lớp điều khiển.

Lớp chuyển tải dịch vụ

Bao gồm các nút chuyển mạch (ATM+IP) và các hệ thống truyền dẫn (SDH, WDM), thực hiện chức năng chuyển mạch, định tuyến các cuộc gọi giữa các thuê bao của lớp truy nhập dưới sự điều khiển của thiết bị điều khiển cuộc gọi thuộc lớp điều khiển. Hiện nay đang còn nhiều tranh cãi khi sử dụng ATM hay MPLS cho lớp chuyển tải này.

Lớp truy nhập dịch vụ

Bao gồm các thiết bị truy nhập cung cấp các cổng kết nối với thiết bị đầu cuối thuê bao qua hệ thống mạng ngoại vi cáp đồng, hoặc

cáp quang, hoặc thông qua môi trường vô tuyến (thông tin di động, vệ tinh, truy nhập vô tuyến cố định...)

Lớp quản lý

Đây là lớp đặc biệt xuyên suốt các lớp trên. Các chức năng quản lý được chú trọng là: quản lý mạng, quản lý dịch vụ, quản lý kinh doanh.

CÁC THÀNH PHẦN CỦA MẠNG NGN

Mối tương quan giữa cấu trúc phân lớp chức năng và các thành phần chính của mạng NGN được mô tả trong hình 2.

Theo hình 2 ta nhận thấy, các loại thiết bị đầu cuối kết nối đến mạng truy nhập (Access Network), sau đó kết nối đến các cổng truyền thông (Media Gateway) nằm ở biên của mạng trục. Thiết bị quan trọng nhất của NGN là SW nằm ở tâm của mạng trục (còn hay gọi là mạng lõi). SW điều khiển các chức năng chuyển mạch và định tuyến qua các giao thức. Các giao thức này sẽ được xem xét kỹ ở phần sau. Hình 3 liệt kê chi tiết các thành phần trong mạng NGN cùng với các đặc điểm kết nối của nó đến các mạng công cộng (PSTN).

Mô tả hoạt động của các thành phần:

Thiết bị SWThiết bị SW là thiết bị đầu não trong mạng NGN. Nó làm nhiệm vụ điều khiển cuộc gọi, báo hiệu và các tính năng để tạo một cuộc gọi trong mạng NGN hoặc xuyên qua nhiều mạng khác (ví dụ PSTN, ISDN). SW còn được gọi là Call Agent (vì chức năng điều khiển cuộc gọi của nó) hoặc Media Gateway Controller - MGC (vì chức năng điều khiển cổng truyền thông - Media Gateway).

Page 19: ISDN - NGN- SIGTRAN

Thiết bị SW có khả năng tương tác với mạng PSTN thông qua các cổng báo hiệu (Signalling Gateway) và cổng truyền thông (Media Gateway). SW điều khiển cuộc gọi thông qua các báo hiệu, có hai loại chính:

-  Ngang hàng (peer-to-peer): giao tiếp giữa SW và SW, giao thức sử dụng là BICC hay SIP.

-  Điều khiển truyền thông: giao tiếp giữa SW và Gateway, giao thức sử dụng là MGCP hay Megaco/H.248.

Cổng truyền thông

Nhiệm vụ chủ yếu của cổng truyền thông (MG - Media Gateway) là chuyển đổi việc truyền thông từ một định dạng truyền dẫn này sang một định dạng khác, thông thường là từ dạng mạch (circuit) sang dạng gói (packet), hoặc từ dạng mạch analog/ISDN sang dạng gói. Việc chuyển đổi này được điều khiển bằng SW. MG thực hiện việc mã hóa, giải mã và nén dữ liệu thoại.

Ngoài ra, MG còn hỗ trợ các giao tiếp với mạng điện thoại truyền thống (PSTN) và các giao thức khác như CAS (Channel Associated Signalling) và ISDN. Tóm lại, MG cung cấp một phương tiện truyền thông để truyền tải thoại, dữ liệu, fax và hình ảnh giữa mạng truyền thống PSTN và mạng gói IP.

Cổng truy nhập

Cổng truy nhập (AG - Access Gateway) là một dạng của MG. Nó có khả năng giao tiếp với máy PC, thuê bao của mạng PSTN, xDSL và giao tiếp với mạng gói IP qua giao tiếp STM. Ở mạng hiện nay, lưu lượng thoại từ thuê bao được kết nối đến tổng đài chuyển mạch PSTN khác bằng giao tiếp V5.2 thông qua cổng truy nhập. Tuy nhiên, trong mạng NGN, cổng truy nhập được điều khiển từ SW qua giao thức MGCP hay Megaco/H.248. Lúc này, lưu lượng thoại từ các thuê bao sẽ được đóng gói và kết nối vào mạng trục IP. 

Hình 3: Các thành phần chính trong NGN

Cổng báo hiệu

Cổng báo hiệu (SG - Signalling Gateway) đóng vai trò như một cổng giao tiếp giữa mạng báo hiệu số 7 (SS7 - Signalling System 7, giao thức được dùng trong PSTN) và các điểm được quản lý bởi thiết bị SW trong mạng IP. Cổng SG đòi hỏi một đường kết nối vật lý đến mạng SS7 và

Page 20: ISDN - NGN- SIGTRAN

phải sử dụng các giao thức phù hợp. SG tạo ra một cầu nối giữa mạng SS7 và mạng IP, dưới sự điều khiển của SW. SG làm cho SW giống như một điểm nút bình thường trong mạng SS7. Lưu ý rằng SG chỉ điều khiển SS7; còn MG điều khiển các mạch thoại thiết lập bởi cơ chế SS7.

Mạng trục IP

Mạng trục được thể hiện là mạng IP kết hợp công nghệ ATM hoặc MPLS. Vấn đề sử dụng ATM hay MPLS còn đang tách thành 2 xu hướng. Các dịch vụ và ứng dụng trên mạng NGN được quản lý và cung cấp bởi các máy chủ dịch vụ (server). Các máy chủ này hoạt động trên mạng thông minh (IN - Intelligent Network) và giao tiếp với mạng PSTN thông qua SS7.

CÁC GIAO THỨC BÁO HIỆU TRONG MẠNG NGN

Các giao thức và báo hiệu trong mạng NGN được thể hiện trong sơ đồ hình 4.

Megaco/H.248Megaco và H.248 giống nhau, đều là giao thức điều khiển MG. Megaco được phát triển bởi IETF (đưa ra vào cuối năm 1998), còn H.248 được đưa ra vào tháng 5/1999 bởi ITU-T. Sau đó cả IETF và ITU-T cùng hợp tác thống nhất giao thức điều khiển MG, kết quả là vào tháng 6/2000 chuẩn Megaco/H.248 ra đời.

Megaco/H.248 là báo hiệu giữa SW/MGC với MG (Trunking Media Gateway, Lines Media Gateway hoặc IP Phone Media Gateway). Megaco/H.248 điều khiển MG để kết nối các luồng từ ngoài. Sơ đồ điều khiển MG của Megaco/H.248 được thể hiện ở hình 5.

Megaco/H.248 tương tự với MGCP về mặt cấu trúc và mối liên hệ giữa bộ điều khiển và cổng gateway, tuy nhiên Megaco/H248 hỗ trợ đa dạng hơn các loại mạng (ví dụ ATM). 

Hình 4: Sơ đồ các giao thức

BICC

BICC (Bearer Independent Call Control) là giao thức báo hiệu giữa 2 MGC/Call Server, có thể là từ các nhà cung cấp khác nhau, nhằm mục đích đảm bảo lưu lượng thoại dùng kỹ thuật gói (VoP - Voice over Packet). Theo ITU-T, BICC được thiết kế để có thể tích hợp hoàn toàn với các mạng hiện hữu và bất kỳ hệ thống nào có hỗ trợ việc chuyển tải bản tin nhắn thoại.

Page 21: ISDN - NGN- SIGTRAN

BICC hỗ trợ các dịch vụ băng hẹp (PSTN, ISDN) một cách độc lập với đường truyền và kỹ thuật chuyển tải bản tin báo hiệu. Bản tin BICC chuyên chở cả thông tin điều khiển cuộc gọi và điều khiển đường truyền. BICC góp phần đơn giản hóa các báo hiệu sử dụng cho việc giao tiếp hoạt động giữa mạng truyền thống vào mạng NGN. Nói cách khác, mạng NGN với nền tảng mạng chuyển mạch gói có thể cung cấp đầy đủ các dịch vụ băng hẹp thông qua báo hiệu BICC.

Trong BICC, giao thức báo hiệu điều khiển đường truyền phụ thuộc vào công nghệ đường truyền lớp dưới như ATM, IP/MPLS.

Hình 6 mô tả ứng dụng của BICC trong việc liên kết hoạt động giữa mạng truyền thống (PSTN/ISDN) và mạng NGN. Hai thuê bao điện thoại truyền thống liên lạc với nhau thông qua sự điều khiển của softswitch theo báo hiệu BICC. Báo hiệu SIP sử dụng trong trường hợp 2 thuê bao IP phone hoặc một thuê bao IP phone liên lạc với một thuê bao điện thoại truyền thống.

SIP

SIP (Session Initiation Protocol) là giao thức điều khiển lớp ứng dụng được thiết kế và phát triển bởi IETF. Giao thức SIP được sử dụng để khởi tạo, điều chỉnh và chấm dứt các phiên làm việc với một hay nhiều yếu tố tham dự. Một phiên được hiểu là một tập hợp nơi gửi, nơi nhận liên lạc với nhau và trạng thái bên trong mối liên lạc đó. Ví dụ trạng thái có thể bao gồm cuộc gọi điện thoại Internet, tín hiệu đa phương tiện phân tán, hội nghị truyền thông đa phương tiện, hay có thể là trò chơi máy tính phân tán...

Là giao thức báo hiệu mở, mềm dẻo và có khả năng mở rộng, SIP khai thác tối đa công cụ Internet để tạo ra nhiều dịch vụ mới trong mạng NGN. Sơ đồ giao thức báo hiệu SIP trong NGN được thể hiện trong hình 7. SIP còn được dùng làm báo hiệu giữa 2 SW như thể hiện ở hình 6.

Giao thức khởi tạo phiên SIP thâm nhập vào thiết kế SW không chỉ như một giao thức báo hiệu cuộc gọi mà còn đóng vai trò của một cơ cấu vận chuyển cho các giao thức khác và cho báo hiệu của thiết bị SW đến các server ứng dụng và cho các hệ thống đáp ứng thoại tương tác hai chiều. Hiện nay SIP được dùng phổ biến cho Voice Over IP. Hiện nay, SIP đang trở thành lựa chọn thay thế H.323 để trở thành giao thức điểm nối điểm (end-to-end protocol) trong công nghệ SW. 

Page 22: ISDN - NGN- SIGTRAN

Hình 5: Sơ đồ điều khiển MG của Megaco/H.248

H.323

H.323 là giao thức chuẩn cho việc liên lạc bằng thoại, hình và dữ liệu trong hệ thống mạng IP (bao gồm mạng Internet). H.323 là tập hợp các chuẩn của ITU cho việc truyền thông đa phương tiện và là một trong những chuẩn chính cho VoIP như Megaco hay SIP.

H.323 được công bố lần đầu tiên vào năm 1996 và phiên bản mới nhất (version 5) được hoàn thành vào năm 2003. Các thành phần trong cấu trúc H.323 gồm có terminal, gateway, gatekeeper... (tham khảo bài 'Kiến trúc H.323...' trên TGVT A  1/2004, tr.75).

MGCP: Media Gateway Control Protocol

MGCP là giao thức VoIP và là một chuẩn được xác định bởi IETF, được dùng để điều khiển MG từ MGC/SW. MGCP là một giao thức chủ tớ (master/slave) mà qua đó MG sẽ thực thi các lệnh được gửi từ MGC/SW. MG truyền tải các loại tín hiệu như thoại, dữ liệu, hình ảnh giữa mạng IP và mạng truyền thống (PSTN). Có thể hiểu, trong mô hình MGCP, các MG chú trọng vào chức năng phiên dịch tín hiệu âm thanh, trong khi SW đảm nhận chức năng xử lý báo hiệu và cuộc gọi.

Chú ý, MGCP và Megaco/H.248 đều là giao thức điều khiển MG từ MGC/SW. Tuy nhiên, Megaco/H.248 là giao thức mới hơn và đang có xu hướng thay thế MGCP. Một số thiết bị được sản xuất hỗ trợ cả hai giao thức cùng một lúc.

Page 23: ISDN - NGN- SIGTRAN

Hình 7: SIP trong mạng NGN

Kết luận

Việt Nam, với xu thế phát triển và hội nhập, lĩnh vực điện tử - tin học - viễn thông đang có những bước tiến nhanh và mạnh trong việc ứng dụng các công nghệ mới trên thế giới nhằm cố gắng rút ngắn khoảng cách với các nước tiên tiến. Kế hoạch phát triển viễn thông của Việt Nam tới năm 2010 đã được Chính phủ phê duyệt với mục tiêu xây dựng và phát triển cơ sở hạ tầng mạng lưới viễn thông, tin học quốc gia tiên tiến, hiện đại, hoạt động hiệu quả, an toàn và tin cậy. Vì vậy mạng viễn thông thế hệ mới - NGN có khả năng đáp ứng những yêu cầu đặt ra.ÿ

Phan Thanh Hào, Tôn Thất Thiệ[email protected], [email protected]ưu điện, TP.HCM 

SIP: Session Initial ProtocolSDP: Session Description ProtocolEDSS1: Euro ISDNThe Inter-Working, Roaming Expert Group (IREG) specifies technicalIREG : International Roaming Experts GroupGPRS SNDCP. Subnetwork Dependent Convergence Protocol SNDCP

  TÀI LIỆU THAM KHẢO

 

1. TS.Nguyễn Quý Minh Hiển, TS.Đỗ Kim Bằng, 'Mạng viễn thông thế hệ sau', NXB Bưu ĐIỆN, 12-20022. F.D. Ohrtman Jr., 'Softswitch architecture for VoIP', McGraw-Hill, 12/2003.3. K.H.Lee, K.O.Lee, K.C.Park, 'Ar-chitecture to be deployed on strategies of Next Generation Networks', IEEE Communication magazine 20034. G.De Marco, P.Asprino, A.Fresa, M.Longo, 'Developing new generation network services', IEEE Communication magazine 2003