Ing. Jan Hlaváek, Ph.D.

41
- 1 - ZS 2018/2019 PRVKY A PROVOZ ELEKTROENERGETICKÝCH SOUSTAV (B1M15PPE + B1M15PPE1) Přednášející: Ing. Jan Hlaváček, Ph.D. e-mail: [email protected] místnost: F1-16c Cvičící: Ing. Martin Kněnický e-mail: [email protected] místnost: F1-16b

Transcript of Ing. Jan Hlaváek, Ph.D.

Page 1: Ing. Jan Hlaváek, Ph.D.

- 1 -

ZS 2018/2019

PRVKY A PROVOZ ELEKTROENERGETICKÝCH

SOUSTAV (B1M15PPE + B1M15PPE1)

Přednášející:

Ing. Jan Hlaváček, Ph.D.

e-mail: [email protected]

místnost: F1-16c

Cvičící:

Ing. Martin Kněnický

e-mail: [email protected]

místnost: F1-16b

Page 2: Ing. Jan Hlaváek, Ph.D.

- 2 -

Page 3: Ing. Jan Hlaváek, Ph.D.

- 3 -

Page 4: Ing. Jan Hlaváek, Ph.D.

- 4 -

Témata – část elektroenergetiky

Elektrické obvody, rovnice, zákony, výkon, energie

Parametry distribučních a přenosových vedení

Parametry a význam transformátorů, tlumivek a kondenzátorů v ES

Základní výpočty v sítích – ustálené stavy soustav

Základní výpočty v sítích – poruchové stavy

Dimenzování prvků ES, rozvodny

Chránění a jištění, ochrany proti přepětí

Řízení napětí a frekvence v ES

Kvalita elektrické energie, PPDS, vliv zdrojů na provoz DS

Další vybrané aspekty: Stabilita přenosu, tepelná bilance vodiče,

phase-shift TRF

Page 5: Ing. Jan Hlaváek, Ph.D.

- 5 -

Literatura

[1] Kyncl, J., Novotný, M.: Číslicové a analogové obvody. Skripta ČVUT, 2012 [2] Fencl, F.: Elektrický rozvod a rozvodná zařízení. Skripta ČVUT, 2009

[3] www.powerwiki.cz

[4] H. Saadat: Power system analysis. USA, McGraw-Hill, 1999

[5] Blume, Steven Warren. Electric power system basics: for the nonelectrical

professional [online]. Hoboken: Wiley, 2007 [cit. 2013-02-08]. Dostupné z:

<http://onlinelibrary.wiley.com/book/10.1002/9780470185810>. ISBN 978-

0-470-18581-0.

chap. 3, 4, spíše USA

[6] El-Hawary, M. E. Introduction to electrical power systems [online]. New

York: Wiley, 2008. IEEE Press series on power engineering [cit. 2013-02-

08]. Dostupné z:

<http://onlinelibrary.wiley.com/book/10.1002/9780470411377>. ISBN 978-

0-470-41137-7.

chap. 3, 4, 5, 7, 8

Page 6: Ing. Jan Hlaváek, Ph.D.

- 6 -

[7] Hase, Yoshihide. Handbook of power system engineering. Chichester:

Wiley, ©2007. xxvi, 548 s. ISBN 9780470033678.

chap. 1, 2, 3, 5, 8, 12, 14, 18

[8] Kasicki, Ismail. Analysis and design of low-voltage power systems: an

engineer's field guide. Weinheim: Wiley, ©2002. xxii, 387 s. ISBN

9783527602339.

chap. 8, 10, 12, 13, 15

[9] Kasikci, Ismail. Short circuits in power systems: a practical guide to IEC 60

909. Weinheim: Wiley, ©2002. xvi, 262 s. ISBN 9783527600465.

chap. 1, 6, 7, 8, 10, 11, 13

[10] Horowitz, Stanley H. a Arun G. Phadke. Power system relaying. 3rd ed.

Chichester: Wiley, ©2008. xvi, 331 s. ISBN 9780470758786.

Page 7: Ing. Jan Hlaváek, Ph.D.

- 7 -

Zakončení předmětu

ZÁPOČET

Zápočty na cvičeních:

početní cvičení (část energetiky) – DOPORUČENÁ

laboratorní měření (část pohonů) – POVINNÁ

ZKOUŠKA

Zkouška písemnou formou:

3 početní úlohy (max. 60 b.)

2 teoretické otázky (max. 40 b.)

čas na vypracování 90 min

Předtermín v zápočtovém týdnu

Page 8: Ing. Jan Hlaváek, Ph.D.

- 8 -

Current and Voltage

Current

)A(I),t(i,I,i

)s,C;A(

dt

dqi

charge flow in time

Voltage

)V(U),t(u,U,u

)C,J;V(

q

AuAB energy necessary to move unit charge

Current doesn’t appear or disappear in el. circuits, it “flows in a round”.

Current flow from A to B = IAB, then current flow from B to A = -IAB.

Voltage from A to B = UAB, then voltage from B to A = -UAB.

Page 9: Ing. Jan Hlaváek, Ph.D.

- 9 -

Ideal conductors

Page 10: Ing. Jan Hlaváek, Ph.D.

- 10 -

Electrical Sources

Ideal voltage source Ideal current source

)I(fU

.constU

)U(fI

.constI

Page 11: Ing. Jan Hlaváek, Ph.D.

- 11 -

Voltage sources connection

in series

2nd

Kirchhoff’s law

0un

1k

k

Voltage sum in the circuit closed loop equals zero.

Page 12: Ing. Jan Hlaváek, Ph.D.

- 12 -

in parallel

for real sources possible

Page 13: Ing. Jan Hlaváek, Ph.D.

- 13 -

Current sources connection

in parallel

1st Kirchhoff’s law

0in

1k

k

Current sum in the circuit bus (node) equals zero.

Page 14: Ing. Jan Hlaváek, Ph.D.

- 14 -

in series

for real sources possible

Ideal voltage source mustn’t be in short-circuit.

Ideal current source mustn’t be in open-circuit.

Page 15: Ing. Jan Hlaváek, Ph.D.

- 15 -

Basic Elements of Electric Circuits

resistance R (Ω)

)t(iR)t(u RR (Ohm’s law)

inductance L (H = Ω·s)

dt

)t(diL)t(u L

L

)0(id)(uL

1)t(i L

t

0

LL (continuous current)

Page 16: Ing. Jan Hlaváek, Ph.D.

- 16 -

capacity C (F = s/ Ω)

dt

)t(duC)t(i C

C

)0(ud)(iC

1)t(u C

t

0

CC (continuous voltage)

note: time constants

CL

R

L

CR

Page 17: Ing. Jan Hlaváek, Ph.D.

- 17 -

Electric Circuit Description (Circuit Equations)

Bus voltage method: bus voltages, branch currents, 1st Kirchohoff’s laws

for buses, elements equations, initial conditions

Example (2 buses, 4 elements) – 6 equations, 6 unknown variables

0)t(i)t(i

0)t(i)t(i)t(i

2RL

CL1R

)t(iR)t(u

dt

)t(duC)t(i

dt

)t(diL)t(u)t(u

)t(iR)t(u)t(u

2R22

1C

L12

1R11

0CC0LL u)0tt(u;i)0tt(i

Page 18: Ing. Jan Hlaváek, Ph.D.

- 18 -

Circuit Elements Connection, Dividers

Connection in series

21

21

21

21

21

CC

CC

C

1

C

1

1C

LLL

RRR

Page 19: Ing. Jan Hlaváek, Ph.D.

- 19 -

Voltage divider (resistance divider)

21

212

RR

R)t(u)t(u

(unloaded, non-reversible)

Connection in parallel

21

21

21

21

21

21

21

CCC

LL

LL

L

1

L

1

1L

RR

RR

R

1

R

1

1R

Page 20: Ing. Jan Hlaváek, Ph.D.

- 20 -

Real Sources

voltage source current source

IRUU 1AB R/UII AB1A

real voltage sources in parallel

21

21

RR

RRR

2

2

1

1

21

21

R

U

R

U

RR

RRU

R

U

21

1221

RR

RURUU

Page 21: Ing. Jan Hlaváek, Ph.D.

- 21 -

DC Circuits

Sources with constant output → transient phenomena → steady state.

RRR iR)t(iR)t(u

0dt

)t(diL)t(u L

L

0dt

)t(duC)t(i C

C

transients – differential equations

steady – algebraic equations (disconnect C, short-circuit L)

Page 22: Ing. Jan Hlaváek, Ph.D.

- 22 -

Electric Power and Energy

Generally

)s,J;W(

dt

)t(dW)t(p

)A,V;W()t(i)t(u)t(p - instantaneous power

Inductance

2

)t(i

dt

dL)t(i

dt

)t(diL)t(p

2

202

i

i

2t

t

2

iiL2

1

2

)t(idLdt

2

)t(i

dt

dLdt)t(pW

00

zero energy balance in overall time

Page 23: Ing. Jan Hlaváek, Ph.D.

- 23 -

Capacity

2

)t(u

dt

dC

dt

)t(duC)t(u)t(p

2

202

u

u

2t

t

2

uuC2

1

2

)t(udCdt

2

)t(u

dt

dCdt)t(pW

00

zero energy balance in overall time

Resistance

2)t(iR)t(i)t(iR)t(p

0dt)t(iRdt)t(pW

t

t

2

0

electric energy conversion to heat energy

Page 24: Ing. Jan Hlaváek, Ph.D.

- 24 -

Harmonic Steady State

All quantities are harmonic functions or their linear combinations.

)tsin(U)t(u M ,,0UM

T

2f2

)tcos(sinU)tsin(cosU)tsin(U MMM Standard in AC systems.

Derivative of harmonic function is harmonic function with the same

frequency.

)tcos(U)t(u M

Page 25: Ing. Jan Hlaváek, Ph.D.

- 25 -

Using complex numbers

bjaz )zIm(b),zRe(a,Rb,a 1j2

2222 ba)zIm()zRe()z(Abs

R,sinjcose j Euler’s relation ( in rad)

jeIm)sin( →

tj

M

tjj

M

)t(j

MM

eUImeeUIm)t(u

eUIm)tsin(U)t(u

j

MM eUU - phasor (in maximal values measure)

Page 26: Ing. Jan Hlaváek, Ph.D.

- 26 -

Phasors and Impedances

Time behaviour

tj

MM eUIm)tsin(U)t(u

)U(Arg);U(AbsU MMM

Why phasors?: In harmonic states differential equations can be transformed

to linear algebraic equations using only R, L, C values (time eliminated).

resistance R

)t(iR)t(u RR

tj

R

tj

R

tj

R eIRImeIImReUIm

RR IRU

inductance L

dt

)t(diL)t(u L

L

Page 27: Ing. Jan Hlaváek, Ph.D.

- 27 -

tj

L

tj

L

tj

L ejILImeIImdt

dLeUIm

LL ILjU

capacity C

dt

)t(duC)t(i C

C

CC UCjI

CC ICj

1U

In fact Ohm’s law for harmonic steady state.

Impedances

Cj

1Z,LjZ,RZ CLR

They are not phasors!

Page 28: Ing. Jan Hlaváek, Ph.D.

- 28 -

Phasors in el. circuits

213213 III)t(i)t(i)t(i All functions with the same ω!

1st Kirchhoff’s law 2

nd Kirchhoff’s law

0In

1k

k

0U

n

1k

k

Impedances connection

in series

n

1i

iv ZZ

in parallel

n

1i i

v

Z

1

1Z

Page 29: Ing. Jan Hlaváek, Ph.D.

- 29 -

Other definitions

admittance (S)

Z

1Y

conductance (S)

R

1G

reactance (Ω)

C

1X

LX

C

L

susceptance (S)

X

1B

Page 30: Ing. Jan Hlaváek, Ph.D.

- 30 -

T

0t

2 dt)t(uT

1U

Electric Power in Harmonic Steady State

Instantaneous power )t(i)t(u)t(p

Mean power for periodic course

Tt

tt

1

1

dt)t(pT

1P

for DC DCP)t(pP

)t

T

2sin(U)t(u UM

)t

T

2sin(I)t(i IM

)cos(

2

IUdt)t(i)t(u

T

1P IU

MM

T

0t

cosIUP 2

UUU MRMS

“root mean square” value

IU

Page 31: Ing. Jan Hlaváek, Ph.D.

- 31 -

resistance IUP0

inductance, capacity 0P2/

Complex Power in AC Grids

Instantaneous power

)t2cos()cos(IU2

1)t(p

)tT

2sin(I)t

T

2sin(U)t(i)t(u)t(p

IUUIMM

IMUM

e.g. for 0U

IIU

)t2cos(cosIU)t(p

Page 32: Ing. Jan Hlaváek, Ph.D.

- 32 -

resistance 0

)t2cos(1IU)t(p

IUdt)t(pT

1P

T

0t

“active power”

inductance 2/

)t2sin(IU)t(p

)2/t2cos(0IU)t(p

0dt)t(p

T

1P

T

0t

capacity 2/

)t2sin(IU)t(p

)2/t2cos(0IU)t(p

0P

Page 33: Ing. Jan Hlaváek, Ph.D.

- 33 -

general load

t2sinsint2cos1cosIU)t(p

t2sinsint2coscoscosIU)t(p

)t2cos(cosIU)t(p

“active and reactive” component

Page 34: Ing. Jan Hlaváek, Ph.D.

- 34 -

Power and Phasors

Definitions

apparent power )VA(IUS

active power )W(dt)t(p

T

1P

T

0t

reactive power 22 QPS

var)/VAr(PSQ 22

power factor S

Pcos

Complex conjugation (current)

jj*

1 eIUeIUIUS iu

CAP

INDjQPIUS 11

*

1

Page 35: Ing. Jan Hlaváek, Ph.D.

- 35 -

j

1111 eSsinjcosIUjQPS Sign according to convention.

Inductive load

iu j

f

j

ff IeI,eUU

3 phase systems (symmetrical)

)

3

2tsin(U)t(u

)3

2tsin(U)t(u

)tsin(U)t(u

UMC

UMB

UMA

Page 36: Ing. Jan Hlaváek, Ph.D.

- 36 -

3

2j

AC3

2j

ABA eUU,eUU,U

ACA

2

BA UaU,UaU,U

0UUU0aa1

e2

3j

2

1a

e2

3j

2

1a

CBA

2

3

2j

2

3

2j

phU3U

“phase-to-ground”, “phase-to-phase” voltage

Page 37: Ing. Jan Hlaváek, Ph.D.

- 37 -

Power

general *

CC

*

BB

*

AA IUIUIUS

symmetrical **

ph IU3IU3S

)VA(QPUI3IU3S 22

ph

)W(cosUI3cosIU3P ph

)VAr(sinUI3sinIU3Q ph

Page 38: Ing. Jan Hlaváek, Ph.D.

- 38 -

Resonance

parallel

CL1

Lj

Cj

1

1

Lj

1

1Z

2

CL

10

- resonance frequency

0IAbslimUAbsI

UAbslim)Z(Abslim

000

0 - L mode

0 - C mode

e.g. Ripple control signal (HDO) support

Page 39: Ing. Jan Hlaváek, Ph.D.

- 39 -

series (for ideal circuit)

C

CL1j

Cj

1LjZ

2

CL

10

- resonance frequency

0UAbslimIAbs

0I

UAbslim)Z(Abslim

0

00

0 - C mode

0 - L mode

e.g. higher harmonic filters (power quality)

Page 40: Ing. Jan Hlaváek, Ph.D.

- 40 -

Fourier Series

For periodical continuous functions

n

1i

ii0T

t2isinb

T

t2icosaa)t(f

ideally n → ∞, technically n < ∞ is sufficient

T

0t

0 dt)t(fT

1a

(mean value, DC value)

T

0t

k dtT

t2kcos)t(f

T

2a

T

0t

k dtT

t2ksin)t(f

T

2b

Page 41: Ing. Jan Hlaváek, Ph.D.

- 41 -

Fourier series and phasors – harmonic components

tj

b

tj

kkkkbk

k

k

keUImebImtsinb

T

t2ksinb)t(u

→ kb bUk

tj

a

tj2/j

kkkka

k

k

k

k

eUIm

eeaImtcosaT

t2kcosa)t(u

→ 2/j

ka eaUk

tj

k

tj2/j

kkbakkk

kkeUImeeabIm)t(u)t(u)t(u

kkbak ajbUUUkk

- analysis for each harmonic separately

kj

kk eUU

2

k

2

kk baU k

kk

b

aarctg